Proton chemical shift imaging, metabolic maps, and single voxel spectroscopy of glial brain tumors

Mader, I. and Roser, W. and Hagberg, G. and Schneider, M. and Sauter, R. and Seelig, J. and Radue, E. W. and Steinbrich, W.. (1996) Proton chemical shift imaging, metabolic maps, and single voxel spectroscopy of glial brain tumors. Magma, Vol. 4, H. 2. pp. 139-150.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257439

Downloads: Statistics Overview


Seventeen patients with presumed glial brain tumors were examined with proton chemical shift imaging and single voxel spectroscopy that used different echo times. Metabolite resonances were evaluated by metabolic ratios and absolutely by correcting for coil load and comparison to phantom measurements. Metabolic images were created to visualize the metabolic changes. All patients showed spectra that were different from those measured in healthy control subjects. Spectral changes were also present in normal-appearing matter (NAM) that was distant from lesions. The resonance at 3.55 ppm which is usually assigned to both myo-inositol and glycine, was the only one to allow a discrimination between healthy volunteers, astrocytoma grade II, and glioblastoma multiforme (GBM) (p > 0.02). From the different echo times used we conclude that an increase in this resonance has to be assigned to glycine rather than myo-inositol. This resonance might be used to grade human gliomas more reliably. Total creatine (Cr) decreased more drastically with malignancy than N-acetylated metabolites (NA). This led to a higher NA/Cr ratio in GBM compared to astrocytoma grade II. NA/Cr was thus pseudonormal in GBM due to a change in both nominator and denominator. This study reveals the importance of comparing magnetic resonance spectroscopy data of lesions to spectra measured in identical localizations in healthy control subjects instead of NAM and the importance of quantifying single metabolic peaks instead of creating metabolic ratios in clinical magnetic resonance spectroscopy.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig J)
UniBasel Contributors:Seelig, Joachim
Item Type:Article, refereed
Article Subtype:Research Article
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:19
Deposited On:22 Mar 2012 13:18

Repository Staff Only: item control page