edoc

Thermodynamics of the coil beta-sheet transition in a membrane environment

Meier, M. and Seelig, J.. (2007) Thermodynamics of the coil beta-sheet transition in a membrane environment. Journal of molecular biology, Vol. 369, H. 1. pp. 277-289.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257377

Downloads: Statistics Overview

Abstract

Biologically important peptides such as the Alzheimer peptide Abeta(1-40) display a reversible random coil beta-structure transition at anionic membrane surfaces. In contrast to the well-studied random coil left arrow over right arrow alpha-helix transition of amphipathic peptides, there is a dearth on information on the thermodynamic and kinetic parameters of the random coil left arrow over right arrow beta-structure transition. Here, we present a new method to quantitatively analyze the thermodynamic parameters of the membrane-induced beta-structure formation. We have used the model peptide (KIGAKI)(3) and eight analogues in which two adjacent amino acids were substituted by their d-enantiomers. The positions of the d,d pairs were shifted systematically along the three identical segments of the peptide chain. The beta-structure content of the peptides was measured in solution and when bound to anionic lipid membranes with circular dichroism spectroscopy. The thermodynamic binding parameters were determined with isothermal titration calorimetry and the binding isotherms were analysed by combining a surface partition equilibrium with the Gouy-Chapman theory. The thermodynamic parameters were found to be linearly correlated with the extent of beta-structure formation. beta-Structure formation at the membrane surface is characterized by an enthalpy change of DeltaH(beta)=-0.23 kcal/mol per residue, an entropy change of DeltaS(beta)=-0.24 cal/mol K residue and a free energy change of DeltaG(beta)=-0.15 kcal/mol residue. An increase in temperature induces an unfolding of beta-structure. The residual free energy of membrane-induced beta-structure formation is close to that of membrane-induced alpha-helix formation.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig J)
UniBasel Contributors:Seelig, Joachim
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:Elsevier
ISSN:0022-2836
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:19
Deposited On:22 Mar 2012 13:17

Repository Staff Only: item control page