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Abstract 

In budding yeast, several mRNAs are selectively transported into the daughter cell in an actin-

dependent manner by a specialized myosin system, the SHE machinery. With ABP140 

mRNA, we now describe the first mRNA that is transported in the opposite direction and 

localizes to the distal pole of the mother cell, independent of the SHE machinery. Distal pole 

localization is not observed in mutants devoid of actin cables and can be disrupted by 

latrunculin A. Furthermore, localization of ABP140 mRNA requires the N-terminal actin-

binding domain of Abp140p to be expressed. By replacing the N-terminal localization motif, 

ABP140 mRNA can be retargeted to different subcellular structures. In addition, 

accumulation of the mRNA at the distal pole can be prevented by disruption of polysomes. 

Using the MS2 system, the mRNA was found to associate with actin cables and to follow 

actin cable dynamics. We therefore propose a model of translational coupling, in which 

ABP140 mRNA is tethered to actin cables via its nascent protein product and is transported to 

the distal pole by actin retrograde flow. 
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Introduction 

Many mRNAs are transported to defined subcellular localizations. Until recently, the 

prevailing view was that localized mRNAs are an exception to the rule, with mRNA transport 

affecting only selected transcripts (Holt and Bullock, 2009; Meignin and Davis, 2010). 

However, in a global analysis on mRNA localization in Drosophila oocytes and early 

embryos, a striking 70% of all transcripts displayed some type of subcellular localization. In 

this study, the authors distinguished dozens of distinct patterns (Lécuyer et al., 2007). Other 

genome-wide screens carried out in human cell lines identified mRNAs enriched on mitotic 

microtubules or in pseudopodia of migrating fibroblasts (Blower et al., 2007; Mili et al., 

2008). Similarly, in yeast, several classes of localized transcripts have been described: 

mRNAs are specifically transported to the tip of the growing bud (Long et al., 1997; 

Takizawa et al., 1997; Shepard et al., 2003; Aronov et al., 2007), to the surface of 

mitochondria (Marc et al., 2002; Saint-Georges et al., 2008), or to peroxisomes (Zipor et al., 

2009). 

A growing amount of evidence suggests that the secretory pathway is involved in mRNA 

localization: Secretory mutants in S. cerevisiae show a defect in mRNA trafficking to the bud 

tip (Trautwein et al., 2004; Aronov and Gerst, 2004); in sensory neurons, the vesicular coat 

component Copb1 interacts with kappa opioid receptor mRNA and is required for its axonal 

transport (Bi et al., 2007); several proteins involved in vesicular transport were found to be 

enriched in polyadenylated mRNAs captured on oligo(dT) beads, among them components of 

the COPI coat (Tsvetanova et al., 2010). Finally, Sec27p, the β’ subunit of the COPI coat, was 

found to be associated with OXA1 mRNA (Slobodin and Gerst, 2010).  

In our lab, we have been interested in the small GTPase Arf1p of S. cerevisiae, which is 

required for vesicle formation at the Golgi (for review, see D'Souza-Schorey and Chavrier, 

2006). In several mutants of ARF1, ASH1 mRNA is not efficiently localized to the bud tip. 

Moreover, several mRNAs were found in a ribonucleoprotein complex present on Arf1p-
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dependent COPI vesicles that mediate retrograde transport to the endoplasmic reticulum (ER) 

(Trautwein et al., 2004). In previous years, studies carried out in yeast and mammalian cells 

had revealed that many transcripts are enriched at the ER, including numerous mRNAs that 

encode cytosolic proteins and lack a signal sequence (Diehn et al., 2000; Lerner et al., 2003). 

To identify mRNAs that accumulate at the ER in an Arf1p-dependent manner, we analyzed 

the ER membrane-enriched 13,000 x g pellet of a temperature-sensitive arf1 mutant by 

microarray and compared it to wild-type. One candidate that appeared in the screen was 

ABP140 mRNA. To our surprise, the mRNA localized to the distal pole of the mother cell in 

wild-type yeast. Here, we describe how ABP140 mRNA is transported to the distal pole of 

budding yeast. Localization of ABP140 mRNA is actin-dependent and requires a part of its 

own protein, namely the N-terminal actin-binding domain. Moreover, mRNA localization is 

sensitive to inhibition of translation, but only if polysomes are disrupted in the process. Taken 

together, these data suggest that ABP140 mRNA could localize as part of a ternary complex 

consisting of ribosome, mRNA, and nascent protein, which binds to actin cables. 

 

Results 

ABP140 mRNA localizes to the distal pole of the mother cell 

Previous data from our group indicated that Arf1p plays a role in mRNA localization 

(Trautwein et al., 2004). To find additional mRNA targets of Arf1p, we used microarrays to 

identify transcripts that accumulate in the ER membrane-enriched 13,000 x g pellet of a 

temperature-sensitive arf1 mutant if compared to wild-type. mRNAs identified in this screen 

were subjected to fluorescence in situ hybridization (FISH) to verify their subcellular 

localization. One of the candidate mRNAs was ABP140 mRNA. 

Analyzing the FISH data, we realized that ABP140 mRNA localizes in a very distinct pattern 

in wild-type cells; namely, it is concentrated in one spot at the distal pole of the mother cell in 

about 40-50% of the cell population (Fig. 1A and B). Line plots of individual cells can be 
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found in the supplementary material (Suppl. Fig. 1A). Antisense probes directed against two 

different regions of the mRNA yielded an identical pattern. Only background signal was 

detected in a Δabp140 strain, indicating that our staining was specific (Fig. 1A and B). Distal 

pole localization had not been described for any mRNA in yeast before and was not observed 

for any other of the 25 mRNAs identified in the screen that we tested. 

The distal pole in S. cerevisiae is not very well characterized. Under favorable conditions, 

growth is polarized towards the bud, and many proteins and mRNAs are known to 

concentrate there (Lew and Reed, 1993; Long et al., 1997; Takizawa et al., 1997; Walch-

Solimena et al., 1997; Shepard et al., 2003; for review, see Pruyne et al., 2004). In contrast, 

not a single molecule has been described to be constantly transported to the distal pole of the 

mother cell. However, early in daughter cell development, Bud8p is deposited at the bud tip, 

where it serves as a cortical landmark that is stable during several cell divisions (Harkins et 

al., 2001; Schenkman et al., 2002; Cullen and Sprague, 2002). Since haploid yeast cells bud in 

an axial pattern, meaning that each new daughter buds proximal to the birth scar (Chang and 

Peter, 2003), such a landmark coincides with the distal pole during the entire life of a haploid 

cell. Thus, we wondered whether ABP140 mRNA was recruited to a distal pole landmark or 

whether it would be found opposite to the current bud even if the cell repolarized. For this, we 

used a Δbud5 strain that buds in a random pattern, but is not affected in Bud8p landmark 

deposition (Yang et al., 1997; Kang et al., 2001). As in the wild-type, ABP140 mRNA was 

concentrated distal to the current bud in this strain, and we observed no random distribution 

along the cortex of the mother cell (Suppl. Fig. 1B and C). The same was true for the diploid 

yeast BY4743, which buds bipolarly, i.e. polarity is reverted after each cell cycle, and for a 

Δbud7/Δbud7 strain with a random budding pattern (Yang et al., 1997; Suppl. Fig. 1B and C). 

From this data, it was apparent that the site of ABP140 mRNA accumulation was determined 

by the current polarity axis of the cell. 
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ABP140 mRNA localization requires actin cables 

The polarity of yeast cells is mostly determined by the presence of a polarized actin 

cytoskeleton along which protein and mRNA cargoes are transported (for review, see Pruyne 

et al., 2004). Thus, we wanted to know whether localization of ABP140 mRNA also 

depended on actin cables. We deleted the tropomyosin TPM1 - in the resulting strain, only 

very few actin cables are detected (Liu and Bretscher, 1989; Suppl. Fig. 1D). In the Δtpm1 

strain, the FISH signal was diffuse and cytoplasmic, and localization to the distal pole was 

very rarely observed (Fig. 1C and D). To see whether short-term disruption of actin cables 

would have the same effect, we applied Latrunculin A (LatA), which prevents polymerization 

of actin (Coué et al., 1987). After only 10 min of LatA treatment, which is sufficient to 

abolish the actin/myosin-dependent localization of ASH1 mRNA to the bud tip, ABP140 

mRNA became disperse (Takizawa et al., 1997; Fig. 1C and D). In S. cerevisiae, the actin 

cytoskeleton is also required for the proper orientation of microtubules, which have been 

implicated in mRNA trafficking in many organisms (Theesfeld et al., 1999; Hwang et al., 

2003; Czaplinski and Singer, 2006; Cepeda-García et al., 2010). However, disruption of 

microtubules by treatment with benomyl did not affect the localization of ABP140 mRNA 

(Fig. 1C and D). Taken together, these data suggest that ABP140 mRNA could be transported 

to the distal pole on actin cables. 

 

The ORF sequence is sufficient to localize ABP140 mRNA to the distal pole 

In many instances, mRNAs are localized with the help of trans-acting factors that recognize 

sequences in the untranslated regions (UTRs) of the transcript, most often in the 3’UTR (for 

review, see Jambhekar and Derisi, 2007). To test whether the UTRs play a role in ABP140 

mRNA localization, we replaced the endogenous sequences. When the ABP140 5’UTR was 

exchanged for the ADH1 promoter, the signals, which were now often elongated or crescent-
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shaped, were markedly stronger, but nevertheless localized to the distal pole (Fig. 2A). 

Similarly, when the endogenous 3’UTR was replaced by GFP followed by the ADH1 3’UTR, 

ABP140 mRNA localized as in wild-type (Fig. 2A and B), and even combination of these 

replacements had no effect on mRNA localization, indicating that the ORF sequence was 

sufficient to localize the transcript (Fig. 2A and B).  

 

ABP140 mRNA colocalizes with actin cables 

The protein product of ABP140 mRNA localizes to actin cables and has been used as marker 

to study actin cable dynamics in yeast (Yang and Pon, 2002; Huckaba et al., 2004). As the 

mRNA of the GFP-tagged construct displayed wild-type localization to the distal pole, we 

could visualize Abp140p-labelled actin cables and ABP140 mRNA simultaneously using 

combined FISH/immunofluorescence (FISH/IF). Most ABP140 mRNA accumulations 

colocalized with actin cables (72%, n= 356), often at sites where several cables converged, 

again suggesting that ABP140 mRNA is transported on the actin cytoskeleton (Fig. 2C). 

In S. cerevisiae, actin cables are polarized towards the bud, such that myosin-driven transport 

is predominantly directed away from the distal pole (Yang and Pon, 2002). This made it 

improbable that ABP140 mRNA was transported by a myosin motor. Indeed, when we 

deleted the unconventional myosin MYO4, which mediates mRNA transport to the bud tip, 

ABP140 mRNA localized as in wild-type (Long et al., 1997; Takizawa et al., 1997; Suppl. 

Fig. 2A and B). Actin cables, however, are not stationary, and insertion of actin monomers in 

the bud neck region results in a constant retrograde flow (Yang and Pon, 2002). Mitochondria 

that are retained in the mother cell during cell division have been shown to undergo actin-

dependent retrograde movement at the speed of the flow, indicating that they are transported 

towards the distal pole by stable linkage to actin cables (Boldogh et al., 2005). 

 

Localization of Abp140p determines ABP140 mRNA localization 
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If ABP140 mRNA was transported by actin retrograde flow, the machinery would - in the 

simplest case – require only one protein with two distinct features: An RNA-binding domain, 

which would be able to recruit ABP140 mRNA, and an actin-binding domain (ABD), which 

would stably link the mRNA to actin cables. Retrograde flow would then transport the mRNA 

towards the distal pole, where the mRNA would be deposited at sites where the cables 

disassembled.  

Most actin-binding proteins in yeast are predominantly found in actin patches, structures 

involved in endocytosis that are concentrated in the bud region (Kübler and Riezman, 1993; 

Doyle and Botstein, 1996; Ayscough et al., 1997; Kaksonen et al., 2003; Huckaba et al., 

2004). One protein that could meet our requirements was Abp140p itself: With an ABD 

located in the first 17 amino acids, it almost exclusively binds to actin cables, and brighter 

spots of Abp140p-GFP on cables have been used as fiduciary marks to determine the speed of 

actin retrograde flow (Yang and Pon, 2002; Huckaba et al., 2004; Riedl et al., 2008). In 

addition, Abp140p carries a putative RNA-binding domain, which we mapped to amino acids 

205 to 249 using the optimal prediction mode of RNAbindR, a software for prediction of 

RNA-binding residues in proteins (Terribilini et al., 2007). First, we tested whether actin-

binding of Abp140p was required for correct localization of ABP140 mRNA. An N-terminal 

truncation where the ABD was replaced by GFP localized to the cytoplasm (ΔN17-GFP-

Abp140; Fig. 3A). When we assessed the mRNA localization, the staining was also 

cytoplasmic, indicating that actin binding of Abp140p was required for ABP140 mRNA 

localization to the distal pole (Fig. 3A). 

Next, we asked whether we could force ABP140 mRNA into an ectopic localization if we 

redirected the protein to a different organelle. Therefore, we replaced the ABD of Abp140p 

by the C-terminus of Listeria monocytogenes ActA, which binds the outer mitochondrial 

leaflet in mammalian cells (Pistor et al., 1994). This peptide has been used previously to 

sequester proteins to mitochondria in vivo (Zhu et al., 1996; Bear et al., 2000). Interestingly, 
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the ActA peptide targeted Abp140p to the ER in our strain background (ActA-ABP140-GFP; 

Fig. 3A). ER localization of ActA-Abp140p was confirmed by coexpression of a plasmid-

borne ER marker (Sec63p-RFP, Suppl. Fig. 3A). Importantly, the mRNA of this construct 

behaved similarly to the protein: It localized to the cell periphery and encircled the nucleus, a 

structure typical for yeast ER (Fig. 3A and Suppl. Fig. 3B). Colocalization of this construct’s 

mRNA with the ER was verified by confocal microscopy using FISH/IF where we stained for 

the ER-marker HDEL-GFP (71% of all mRNA foci, n = 315; Suppl. Fig. 3C). From this data, 

it was apparent that the localization of Abp140p determined the localization of ABP140 

mRNA. 

To provide corroborating evidence that Abp140p expression is required to localize its mRNA, 

we generated a construct in which we replaced the endogenous 5’UTR of ABP140 by the 

ADH1 promoter followed by a GFP including a stop codon; the resulting transcript carries the 

full ORF, but only GFP is expressed (GFP-TAA-ABP140). The mRNA of this construct did 

not localize to the distal pole, but showed a punctate staining throughout the cell (Fig. 3B). 

Because of the artificially extended 3’UTR, there was a possibility that this construct would 

be a substrate for nonsense-mediated decay, which affects transcripts that carry premature 

stop codons (Leeds et al., 1991). However, by immunoblot, we detected expression of GFP, 

and quantitative RT-PCR with primers specific for ABP140 revealed that the mRNA was 

present in amounts comparable to the wild-type transcript when placed under the same 

promoter (Fig. 3C and D). Taken together, this indicated that expression of Abp140p was 

required to localize its mRNA to the distal pole and strengthened our notion that Abp140p 

directly mediates the localization of ABP140 mRNA. 

 

The first 67 amino acids of Abp140p are sufficient to localize ABP140 mRNA 

Next, we wanted to determine whether Abp140p satisfies the second requirement for our 

minimal model of ABP140 transport – the capacity to bind mRNA. We removed the putative 
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RNA-binding domain (Δrna). To our surprise, the mRNA localized as in wild-type (Suppl. 

Fig. 4A and B), indicating that ABP140 mRNA associates with Abp140p independently of 

the putative RNA-binding domain. 

In order to identify the part of Abp140p involved in localizing its mRNA, we generated a 

series of C-terminal truncations. All truncations were expressed (Fig. 4A), and the protein 

product localized to actin cables for each of the constructs (Suppl. Fig. 4C). When we probed 

for the mRNAs using a probe complementary to GFP, distal pole localization was detected for 

all truncation constructs except for the shortest, (1-17)-GFP, demonstrating that even though 

the ABD was necessary, it was not sufficient to localize the mRNA (Fig. 4B and C). 

However, in addition to the ABD, only a very short fragment comprising amino acids 18 - 67 

was required for mRNA localization. 

 

mRNA localization is determined by the length of the translatable sequence that follows 

the N-terminal ABD 

To verify whether amino acids 18-67 were specifically required to localize ABP140 mRNA to 

the distal pole, we generated a deletion mutant in which this sequence was replaced by GFP. 

As a control, in a second construct, GFP was inserted between amino acids 17 and 18. As 

expected, because the N-terminal ABD remained intact, the resulting proteins localized to 

actin cables (Suppl. Fig. 4D). Interestingly, the mRNA of both constructs localized as in wild-

type (Fig. 5A). Thus, although amino acids 18-67 were sufficient to induce distal pole 

localization when added to (1-17)-GFP – which by itself does not localize the mRNA – , this 

sequence was not required for localization of the full-length mRNA. One possible explanation 

for this result is that the length of the construct is critical, regardless of the sequence. When 

we appended the ABD, which was not sufficient to localize the mRNA if fused to GFP alone, 

to four copies of GFP, this expanded construct now localized to the distal pole, although the 

fragment of Abp140p it contained was identical ((1-17)-4GFP; Fig. 5B and C). Conversely, 
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when we inserted a stop codon between amino acid 67 of Abp140p and the GFP sequence of 

(1-67)-GFP, mRNA localization to the distal pole was lost ((1-67)TAA-GFP; Fig. 5B and C). 

Thus, proper localization of ABP140 mRNA seemed to be dependent on the total length of 

the protein that followed the ABD, rather than on any specific sequence that the protein or the 

mRNA contained.  

  

mRNA localization requires active translation 

The observation that mRNA localization depends on the length of the construct made us think 

that transport of ABP140 mRNA could happen cotranslationally. The N-terminal ABD is the 

first part of the protein to exit the ribosome during translation – thus, transport could be 

mediated by the N-terminal domain, which is already exposed to the cytoplasm while nascent 

protein and mRNA are still stably associated with the translating ribosome. This way, the 

translating ribosome would provide the missing link between protein and mRNA, but would 

do so independently of the sequence that followed the localization domain. If this hypothesis 

was correct, we would expect that inhibition of translation would disrupt transport of ABP140 

mRNA to the distal pole. Indeed, when we used the conditional allele prt1-1, a mutant 

deficient in translation initiation (Hartwell and McLaughlin, 1969), ABP140 mRNA became 

dispersed (Fig. 6A). Loss of translating polysomes was confirmed by polysome profile 

analysis (Fig. 6B). Localization of ABP140 mRNA was similarly disrupted when we treated 

wild-type cells with protein translation inhibitor Verrucarin A (VA), but not when we used 

cycloheximide (CHX), a translation inhibitor that stabilizes polyribosomes (Fig. 6C, D and 

G). To exclude that we depleted Abp140p during VA treatment, we detected the GFP-tagged 

protein by immunoblot. No decrease in Abp140p levels was observed (Fig. 6F), indicating 

that depletion of the protein was not responsible for the mislocalization of the mRNA.  

The 3’UTR of ASH1 mRNA, a transcript that localizes to the bud tip with help of a 

specialized actin/myosin system, has been shown to be sufficient to induce bud tip 
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localization if added to another mRNA (Long et al., 1997; Takizawa et al., 1997). When we 

replaced the endogenous 3’ UTR of ABP140 with ASH1 3’UTR, it was unable to induce bud 

tip localization, and the transcript localized to the distal pole almost as efficiently as wild-type 

(Fig. 6E and G). However, when we treated the cells with the translational inhibitor VA, 

dominance of distal pole localization was lost, and the mRNA was now found at the bud tip in 

30-40 % of the population (Fig. 6E and G). In contrast, CHX treatment did not confer bud tip 

localization (Fig. 6E and G). Taken together, these experiments suggest that association of 

ABP140 mRNA with ribosomes is necessary for distal pole localization, supporting the 

cotranslational transport. 

 

+1 ribosomal frameshift is not required for ABP140 mRNA localization 

ABP140 mRNA carries a +1 ribosomal frameshift site at amino acid 277. The frameshifting 

mechanism involves a translational pause at a codon that is recognized very slowly. 

Recognition of the first codon in the +1 frame by a highly abundant tRNA then leads to a shift 

in the reading frame (Farabaugh et al., 2006). Thus, we hypothesized that this translational 

pause might increase the efficiency of cotranslational transport of ABP140-mRNA. A 

frameshift-corrected allele of ABP140 (similar to Morris and Lundblad, 1997), however, 

localized as in wild-type (abp140-RFS*; Suppl. Fig. 5A and B), demonstrating that the 

frameshift site did not significantly enhance mRNA localization. If frameshifting on Abp140 

fails, translation is terminated at a stop codon immediately downstream of the frameshift site, 

which results in a C-terminally truncated protein that is easily distinguished from full-length 

Abp140p by immunoblot when an internal GFP-tag is inserted (Suppl. Fig. 5C and D). 

Interestingly, frameshifting efficiency of Ty1 retrotransposon, which carries an identical 

frameshift site, is largely dependent on the growth condition and increases after diauxic shift, 

due to variations in tRNA availability (Stahl et al., 2004). However, the ratio between non-

frameshifted, truncated Abp140p and the frameshifted full-length protein did not increase 
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when cells entered stationary phase (Suppl. Fig. 5E). In addition, expression of the frameshift 

mutant abp140-RFS*, which produces only full-length Abp140p, had no deleterious effect 

when cells were grown on glycerol, indicating that differential frameshifting on Abp140p is 

not part of a regulatory mechanism during diauxic shift (unpublished observation). Depending 

on the demand, the local availability of tRNAs can vary (Zhang et al., 2010). Thus, we 

hypothesized that the high local concentration of ABP140 mRNA at the distal pole may lead 

to a depletion of factors at the site, which in turn might impact on frameshifting efficiencies. 

To test this, we deleted TPM1 in a strain expressing internally GFP-tagged Abp140p. Because 

actin cables are absent in this strain, Abp140p relocalizes to actin patches, and ABP140 

mRNA is uniformly distributed throughout the cell (Suppl. Fig. 5F; see Fig. 1C). However, 

we could detect no significant difference to the wild-type (Suppl. Fig. 5E), indicating that 

concentration at the distal pole had no influence on frameshifting efficiencies. 

 

ABP140 mRNA localization is dynamic and follows movements of the actin cytoskeleton 

To further support our model, we wanted to follow ABP140 mRNA movement on actin 

cables. For live tracking of mRNAs, different systems have been developed that rely on 

stemloop structures that can be integrated into the mRNA and are detected with the help of 

fluorescently tagged stemloop-binding proteins (Bertrand et al., 1998; Brodsky and Silver, 

2000). We integrated either MS2 or U1A stemloops into the 3’UTR of ABP140 mRNA and 

followed the fluoresecence using plasmid-borne MS2-GFP or U1A-GFP, respectively (Fig. 

7A). Since ABP140 mRNA localization was more prominent when cells were grown in rich 

medium, and the U1A-GFP plasmid was only poorly retained under these conditions, we used 

the MS2 system for timelapse imaging. Most frequently, MS2-GFP was observed in 

elongated structures that hovered around the distal pole (Suppl. Movies 1 and 2), but rapid 

linear movements of particles or filaments from the distal pole to the bud neck region and in 

reverse direction were similarly observed (Fig. 7B, C and D, Suppl. Movies 3, 4 and 5). 
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During long-range movements, particles crossed the mother cell in 3-6 frames, which 

approximately matches the published speed of actin cable elongation of ~0.3 μm/s (Yang and 

Pon, 2002). In 169 cells that were filmed for 270 s on average, we observed 25 cases of fast 

long-range movement directed towards the bud neck (e.g. Suppl. Movie 6), 19 cases of fast 

long-range movements directed towards the distal pole (e.g. Suppl. Movie 3, Fig. 7B and C), 

22 cases of looping (where the signal quickly traversed the cell but immediately returned to 

its place of origin on another route, e.g. Suppl. Movies 4 and 5, Suppl. Fig. 6), and 9 cases of 

fast lateral cable movements (e.g. Suppl. Movie 7). When ABP140-MS2/MS2-GFP was 

followed in the presence of an actin cable marker, plasmid-borne Abp140(1-17)-2xmCherry, 

the GFP signal was observed to colocalize with brighter patches on actin cables (Fig. 7E, 

Suppl. Movies 6 and 7). Collectively, our data strongly support a model of cotranslational 

transport of ABP140 mRNA to the distal pole via actin retrograde flow. 

 

Discussion 

As a somewhat unexpected finding, we identified ABP140 mRNA as the first distal pole-

localized transcript in S. cerevisiae in a screen for mRNAs that change localization in an 

ARF1 mutant. The effect of the arf1-11 mutation on ABP140 localization is likely indirect, 

because this mutant shows a decrease in general translation at the restrictive temperature 

(Kilchert et al., 2010). However, ARF proteins were shown to play a role in the organization 

of the actin cytoskeleton (Myers and Casanova, 2008). 

We suggest that ABP140 mRNA is transported to the distal pole cotranslationally by actin 

retrograde flow, as part of the ternary complex of mRNA, translating ribosome, and nascent 

polypeptide (Fig. 8). The ABD of Abp140p is sufficient to localize the mRNA if appended to 

any long translatable sequence that keeps the translating complex stable while the ABD is 

exposed. Longer mRNAs also accommodate more ribosomes. The sum of nascent peptides 

can bind actin with avidity, enhancing the recruitment to cables. 
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Alternative models are conceivable: The sequence encoding the ABD could contain an RNA 

recognition motif recognized by another factor, which would link the mRNA to actin cables, 

leading to the impression that actin-binding of Abp140p was required for localization of its 

mRNA. This factor could be rapidly depleted after translational shut-down, thereby 

abolishing distal pole localization under these conditions. However, if translation was shut 

down with CHX, which stabilizes the ternary complex, distal pole localization was 

maintained (Fig. 6). Moreover, we have generated at least three constructs which contain the 

ABD, but do not localize to the distal pole. In addition, the data on ActA-Abp140 suggests 

that localization of Abp140p and its mRNA are correlated (Fig. 3). 

We consider the presence of a third factor unlikely. First, the ABD is sufficient to localize the 

mRNA if a long translated sequence follows. Second, we were unable to rescue localization 

of non-localizing constructs in trans, by coexpressing wild-type Abp140p ((1-17)-mCherry or 

(1-67)TAA-GFP; unpublished observation). Third, on the RNA level, the molecular 

differences between the constructs are much smaller than on the protein level. 

Our findings complement other cotranslational mechanisms that have been reported 

previously (Walter and Blobel, 1981; Ahmed and Fisher, 2009; Yanagitani et al., 2009; 

Garcia et al., 2010; Liao et al., 2011). During targeting of signal recognition particle (SRP)-

dependent mRNAs to the ER, SRP recognizes the nascent peptide and halts translation until 

bound by the SRP receptor (Walter and Blobel, 1981). Mammalian XBP1, an mRNA that is 

spliced in response to ER stress, is tethered to the ER by hydrophobic regions contained 

solely in the unspliced protein product. In this case, a conserved peptide in the C-terminus 

stably interacts with the protein-conducting channel of the ribosome, and this induced 

translational pause is thought to maintain the ternary complex stable (Yanagitani et al., 2009; 

Yanagitani et al., 2011). For ABP140, we found no evidence that a specific region of the 

protein would be required to slow down protein synthesis in order to allow cotranslational 

transport. As far as we know, mRNA localization may be an intrinsic property that would be 
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shared by any protein with a domain structure similar to Abp140p, with a protein interaction 

domain close to the N-terminus, and might occur much more frequently than is currently 

appreciated. Lécuyer et al. (2007) found most transcripts in Drosophila oocytes and early 

embryos to be subcellularly enriched, and the localization of the mRNAs matched that of their 

protein products in most of the cases. For many of these, mRNA localization might not 

require a dedicated machinery, but may simply happen as a by-product of translation in the 

cytoplasm, where nascent proteins are already exposed to interactors. mRNAs may thus have 

a tendency to accumulate at sites where their protein product encounters binding partners. On 

a very speculative note, if such translation in situ would enhance the efficiency of protein 

sorting, this could even favor the evolution of N-terminal protein interaction domains over 

alternative domain arrangements. 

We found the speed of ABP140 mRNA movement to be consistent with the reported speed of 

actin flow (Yang and Pon, 2002; Fig. 7). In contrast to Yang and Pon, we also observed 

movement of cables towards the bud neck, which could be due to the required overexpression 

of Abp140p, which might alter actin dynamics (Gao and Bretscher, 2008). In addition, recent 

data indicate that not all actin filaments are strictly polarized (Yu et al., 2011). In accordance 

with this, MS2-GFP foci frequently looped back to the distal pole on a different route shortly 

after they had reached the bud neck. Thus, the steady state localization of ABP140 mRNA 

represented in the FISH may reflect the degree of predominance of filaments polarized 

towards the bud over filaments with reverted polarity. 

To date, the function of Abp140p remains largely elusive. Its best characterized features are 

the ABD with its weak actin-bundling activity (Asakura et al., 1998; Yang and Pon, 2002; 

Riedl et al., 2008) and the highly conserved C-terminal methyltransferase domain, which has 

recently been shown to mediate methylation of tRNAs (Farabaugh et al., 2006; D'Silva et al., 

2011; Noma et al., 2011). These seemingly unrelated functions are separated by the ribosomal 

frameshift site (Farabaugh et al., 2006). The ABD is conserved only among close relatives of 
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budding yeast, but not found in other organisms (Riedl et al., 2008). ABP140 shows physical 

and genetic interactions with regulators of Rho GTPase activity, the septin ring, and factors 

involved in actin polymerization and stabilization (Gao and Bretscher, 2008; Costanzo et al., 

2010; Michelot et al., 2010), supporting a possible role of Abp140p in actin dynamics. 

While ABP140 mRNA is predominantly found close to the distal pole, Abp140p appears to 

be associated with cables throughout the cell. However, when we fused an aggregation-prone 

red fluorescent protein C-terminally to Abp140p, the protein accumulated at the distal ends of 

actin cables (Suppl. Fig. 7A and B), indicating that the mRNA at the distal pole might be the 

primary source of the protein. It has been reported to be beneficial for the assembly of some 

large protein complexes if their components are generated close by (Chang et al., 2006; 

Halbach et al., 2009). In the case of Abp140p, the situation would be the opposite, as actin 

cables are thought to polymerize at the bud neck. However, the bud region is packed with 

other actin structures, including actin patches. There is a possibility that cotranslational 

enrichment at the distal pole could favor association of Abp140p with actin cables over 

integration into actin patches. For (1-17)-Abp140p-GFP, we observe patch staining in 

addition to actin cable staining (Suppl. Fig. 4C), which we never detected for any of the 

mRNA localizing constructs. This is not simply due to the small size of the protein, because 

full-length Abp140p also becomes integrated into patches in the Δtpm1 strain, where cables 

are largely absent, and in which the mRNA, again, does not localize (Fig. 1C and Suppl. Fig. 

5E). In agreement with this, Michelot et al. (2010) have found Abp140p to interact with the 

actin patch protein Las17p. If this model was true, it could explain why C-terminal truncation 

does not gradually decrease localization efficiency, but becomes catastrophic at a certain 

point: Enhanced integration of the nascent protein into patches would further decrease distal 

pole localization of the mRNA, resulting in a negative feedback loop. Since Abp140p has 

actin-bundling activity, excessive integration of the full-length protein into patches could 

potentially disrupt their function. We are not able to test this hypothesis, however, since other 
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RNA localization signals, e.g. the ASH1-3’UTR, were not strong enough to mislocalize the 

transcript. Thus, we cannot express full-length Abp140p at a different location without 

disrupting the actin cytoskeleton. 

 

Materials and Methods 

Yeast methods 

Standard genetic techniques were employed throughout (Sherman, 1991). All genetic 

manipulations were performed chromosomally. Tagging and deletions were carried out as 

described (Knop et al., 1999; Gueldener et al., 2002; Janke et al., 2004; Gauss et al., 2005). 

The RFS* and the Δrna mutant were generated with the delitto perfetto method (Storici et al., 

2001). To N-terminally insert the ActA peptide, oligonucleotides CK496/496 containing the 

ActA N-terminal were inserted into pYM-N7, which was used as a template for the 

integration cassette. ASH1-3’UTR was subcloned from YEP lac195 Lz-MS2-Ash1 (Bertrand 

et al., 1998) into pYM27 to allow chromosomal tagging. Similarly, MS2 and U1A stemloops 

were integrated into pYM51 to allow cassette amplification and chromosomal integration. 

NLS-MS2-GFP was subcloned from pG14-MS2-GFP (Bertrand et al., 1998) into p415 ADH 

(Mumberg et al., 1995) to reduce the expression level. All yeast strains are given in Table S1, 

and primers and plasmids (including a detailed description of their generation) used for strain 

construction are given in Tables S2 and S3, respectively. 

None of the strains used in this study had a marked growth phenotype on YPD, nor did they 

appear very sick/misshaped under the microscope. Importantly, this was also true for all 

strains in which ABP140 mRNA was mislocalized (Suppl. Fig. 7C). Since we knew that 

actin-binding of Abp140p was required for mRNA localization, we routinely tested whether 

our constructs localized to actin cables using GFP fusions (Suppl. Fig. 8A unless shown 

elswhere); in doing this, we also confirmed that actin cable integrity was not affected in these 

strains. In strains where we could not insert a GFP tag or where the construct was designed to 
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not bind to cables (DN17-Abp140, GFP-TAA-Abp140, ActA-Abp140, (1-67)TAA-GFP), we 

used rhodamine phalloidin staining to verify that the actin cytoskeleton was intact (Suppl. Fig. 

8B). There was only one strain in which the morphology of the actin cytoskeleton was clearly 

altered: In (1-17)-4GFP, about 10-20% of all cells contained a massive bundle of actin cables 

that was oriented perpendicular to the mother-daughter axis (Suppl. Fig. 8A). In the Δtpm1 

strain, with no cables present, Abp140-GFP relocalized to the sites of polarized growth, 

presumably to actin patches (Suppl. Fig. 5F). (1-17)-GFP showed some patch staining in 

addition to the usual localization to actin cables (Suppl. Fig. 4C). 

 

Fluorescent in situ hybridization (FISH) 

In situ mRNA hybridization with digoxigenin-labeled antisense probe was performed as 

described previously (Takizawa et al., 1997). Primers used for probe generation are given in 

Table S2. Fluorescence was monitored with an Axiocam mounted on an Axioplan 2 

fluorescence microscope (Carl Zeiss, Oberkochen, Germany) using an eqFP611 filter (AHF 

analysentechnik, Tübingen, Germany) and Axiovision software. For quantitation, only 

budded cells were counted, and only those cells where mother/daughter pairs could be 

unambiguously assigned in the DIC channel were considered. All cells where the brightest 

signal was close to the cortex in an area spanning 60° to both sides of the central axis, either 

dot- or crescent-shaped, were considered positive. For every condition, a minimum of one 

hundred cells from at least two independent experiments was counted. 95.4% confidence 

intervals were determined assuming random sampling and using the normal approximation 

for a binomial distribution. Statistical significance was tested using a one-tailed two 

proportion z-test. 

 

Combined FISH/immunofluorescence 
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An adapted protocol was used for combined FISH/immunofluorescence. In short, 2.5 OD of 

yeast cells grown to logarithmic phase were fixed with 3.6 % formaldehyde for 1h at RT, 

washed twice in PBS, and resuspended in 100 mM KPi (pH 7.0), 1.2 M sorbitol. After 5 min 

pretreatment with 30 mM 2-mercaptoethanol, cells were spheroplasted with zymolyase T-100 

(Seikagaku Biobusiness). Cells were washed repeatedly in 100 mM KPi (pH 7.0), 1.2 M 

sorbitol, and left to settle on poly-lysine-treated slides. The slides were fixed by immersion in 

ice-cold methanol for 6 min, then in ice-cold acetone for 30 s, and air-dried. Prehybridization 

and hybridization were carried out according to the standard FISH protocol. After 

hybridization, slides were washed 2 x 10 min with 0.5 x SSC pre-warmed to 42°C. Wells 

were washed with PBT (PBS, 0.1% Tween-20; 1 x 5 min) and blocked with PBTB (PBS, 

0.1% Tween-20, 1% non-fat milk) for 10 min. Incubation with anti-DIG-POD (Roche, 1:750 

in PBTB) and anti-GFP (Torrey Pines, 1:200) was carried out for 1 h at 37°C in a humid 

chamber. Wells were washed repeatedly with PBTB (6 x 5 min) and subsequently incubated 

with preabsorbed chicken anti-rabbit-IgG-Alexa488 (Invitrogen, 1:200 in PBS) for 1 h at 

37°C in a humid chamber. After repeated washing (3 x 5 min PBTB, 1 x 5 min PBT, 1 x 

5 min PBS), 10 μl tyramide solution (PerkinElmer, 1:100 in Amplification Solution) was 

added to each well and incubated for 1 h at 37°C in a humid chamber. Slides were washed 

with PBS (6 x 5 min), and mounted with Citifluor AF1 (supplemented with 1 μg/ml DAPI to 

stain the nuclei). Pictures were taken on a Leica SP5 confocal microscope. Image processing 

was performed with ImageJ (NIH, open source). 

 

Live-cell imaging 

Yeast cells were grown in YPD to early log phase. The cells were taken up in HC-complete 

medium containing 2% glucose and immobilized on ConA-coated slides. Fluorescence was 

monitored with an Axiocam mounted on an Axioplan 2 fluorescence microscope (Carl Zeiss, 

Oberkochen, Germany) using GFP and eqFP611 filters (AHF analysentechnik, Tübingen, 
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Germany) and Axiovision software. For time-lapse imaging, pictures of all three channels 

were acquired every 10s, with exposure times of 250 ms (RFP), 500 ms (GFP), or set to 

automatic acquire mode (DIC). Movies display the images at 50 frames per second and were 

generated with ImageJ. 

 

Denaturing Yeast Extracts and Western Blot Quantitation 

15 ml of yeast culture were grown to early log phase (OD600 0.5–0.7). The cells were 

harvested and lysed with glass beads in 150 μl of lysis buffer (20 mM Tris/HCl pH8, 5mM 

EDTA, 1mM DTT, 1% SDS). The lysates were incubated at 65°C for 5 min and cell debris 

removed by centrifugation. Per sample, 30 μg of the lysate were analyzed by SDS-PAGE and 

immunoblotting using polyclonal rabbit anti-GFP antibodies (1:1000, Torrey Pines). For 

quantitation of frameshifting efficiences, lysates were generated with Lämmli containing 8M 

Urea to allow efficient disruption of stationary cells and 2 μl of total lysate were loaded per 

lane. Band intensities were quantified using the ImageQuant LAS 4000 system (GE 

Healthcare). 

 

quantitative real-time PCR 

For qPCR, total RNA was isolated from yeast essentially as described (Schmitt et al., 1990). 

RNA clean-up and qPCR were carried out at the Life Sciences Training Facility (LSTF) of 

the University of Basel. In short, 5 μg of RNA were treated with Turbo DNase (TURBO 

DNA-free™ Kit, Ambion), cleaned up on Zymo-SpinTM columns (Zymo Research), and 

reverse transcribed using random nonamers and the Eurogentec Core Kit (RT-RTCK-03). The 

resulting cDNA was used as a template for the qPCR reaction and incorporation of SyBR 

green monitored on a Corbett Rotor-Gene Q. PGK1 was used as reference gene. The primers 

used for the qPCR reaction are given in Table S2. 
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Polysome profiles 

Polysome preparations were performed as described previously (de la Cruz et al., 1997) on 4–

47% sucrose gradients prepared with a Gradient Master (Nycomed Pharma, Westbury, NY). 

Gradient analysis was performed using a gradient fractionator (Labconco, Kansas City, MO) 

and the Äcta FPLC system (GE Healthcare) and continuously monitored at A254 
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Figure Legends 

Figure 1: 

ABP140 mRNA localizes to the distal pole of the mother cell. (A) Cells were grown to 

logarithmic phase, fixed, and subjected to FISH against ABP140 mRNA. Anti-sense probes 

towards different regions of the mRNA show similar staining. Only background staining was 

detected in a strain deleted for ABP140. (B) Quantitation of (A). Only budded cells were 

counted, and only those cells where mother/daughter pairs could be unambiguously assigned 

in the DIC channel were considered. All cells where the brightest signal was close to the 

cortex in an area spanning 60° to both sides of the central axis, either dot- or crescent-shaped, 

were considered positive. For every condition, a minimum of one hundred cells from at least 

two independent experiments was counted. Error bars designate the 95.4% confidence 

interval or two standard deviations. The confidence interval was determined assuming random 

sampling and using the normal approximation for a binomial distribution. *** denotes 

statistical significance with P < 0.001 in a one-tailed two proportion z-test. The c in 

superscript indicates that Δtpm1 was compared to an untreated wild-type sample for statistical 

testing. (C) ABP140 mRNA localization is dependent on actin. FISH against ABP140 mRNA 

in a Δtpm1 mutant, which has no detectable actin cables. Alternatively, cells were treated with 

30 μg/ml latrunculin A, which prevents polymerization of actin cables, for 10 min. Treatment 

with 30 μg/ml benomyl for 15 min could not phenocopy the effect of latrunculin A on 

ABP140 mRNA localization. (D) Quantitation of (C). See (B) for details. The white bars in 

(A) and (C) correspond to 5 μm. 

 

Figure 2: 
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ABP140 mRNA localizes to the end of actin cables, independently of 3’ and 5’UTR. 

(A) 5’ and 3’ UTR are not required for localization of ABP140 mRNA to the distal pole. 

FISH against ABP140 mRNA in strains where either 5’ UTR, 3’ UTR, or both, were 

exchanged for the corresponding sequences from the ADH1 locus. The mRNA was detected 

at the distal pole in all cases. Exposure times for pADH1 constructs were reduced to 

compensate for the increase in signal strength. (B) Quantitation of (A). See Fig. 1B for 

details. The three UTR-constructs showed no significant decrease in localization if compared 

to the wild-type in a one-tailed two proportion z-test. Sketches of the constructs are included: 

Gray represents endogenous sequences, while white parts are taken from exogenous sources. 

The wider area corresponds to the ORF. Additional features of the protein are indicated: N17: 

actin-binding domain; RNA: putative RNA-binding domain; RFS: ribosomal frameshift site. 

(C) Confocal microscopy on FISH/IF against ABP140 mRNA and GFP in cells expressing 

Abp140-GFP under an ADH1 promoter. ABP140 mRNA signal frequently colocalized with 

actin cables (72% of 356 foci counted). The white bars in (A) and (C) correspond to 5 μm. 

 

Figure 3: 

Localization of Abp140p determines localization of ABP140 mRNA. (A) Live-cell 

imaging of GFP fluorescence or FISH against ABP140 mRNA in various strains expressing 

different GFP-tagged constructs of ABP140. Exposure times for pADH constructs were 

reduced to compensate for the increase in signal strength. (B-D) Abp140p is required for 

ABP140 mRNA localization. (B) FISH against ABP140 mRNA in a strain expressing GFP-

TAA-ABP140 which harbors an in-frame stop codon after the N-terminal GFP. In the absence 

of Abp140p, ABP140 mRNA signal dispersed. (C and D) Construct GFP-TAA-ABP140 is 

expressed. (C) Western blot for GFP on total lysate. 30 μg of total protein were analyzed. 

(D) Quantitative RT-PCR with primers specific for ABP140. PGK1 was used to normalize the 

samples. Endogenous ABP140 was set to 1.0. GFP-TAA-ABP140 mRNA is present in similar 
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amounts as the wild-type transcript when placed under the same promoter (pADH1) 

(E) Quantitation of (A) and (B). Sketches of the constructs are included. See Fig. 1B and 2B 

for details on the representation. The white bars in (A) and (B) correspond to 5 μm. 

 

Figure 4: 

The first 67 amino acids of Abp140p are sufficient to localize the mRNA to the distal 

pole. (A) Western blot against GFP on total lysates generated from strains expressing 

different GFP-tagged C-terminal truncations of ABP140. (B) FISH against GFP on the 

truncations shown in (A). The first 67 amino acids are sufficient to localize the mRNA to the 

distal pole when fused to GFP. The white bar corresponds to 5 μm. (C) Quantitation of (B). 

Sketches of the constructs are included. See Fig. 1B and 2B for details on the representation. 

 

Figure 5: 

Localization of ABP140 mRNA is dependent on the length of the ORF. (A) Amino acids 

18-67 are not specifically required for mRNA localization. FISH against ABP140 mRNA in 

cells where amino acids 18-67 of ABP140 were replaced by GFP. In the control strain, GFP is 

inserted between amino acids 17 and 18. ABP140 mRNA localization to the distal pole is not 

affected in these strains. (B) FISH against GFP in cells expressing (1-17)-GFP, (1-17)-4GFP, 

(1-67)-GFP, or (1-67)TAA-GFP. The exposure time for the quadruple GFP construct was 

reduced to compensate for the increase in signal strength. If the actin-binding domain is 

appended with four copies of GFP instead of one, mRNA localization to the distal pole is 

recovered. If a stop codon is inserted between ABP140(1-67) and GFP, mRNA localization to 

the distal pole is lost. (C) Quantitation of (A) and (B). Sketches of the constructs are included. 

See Fig. 1B and 2B for details on the representation. The white bars in (A) and (B) 

correspond to 5 μm. 
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Figure 6: 

Active translation is required for ABP140 mRNA localization to the distal pole. (A) 

Wild-type and prt1-1 mutant cells were shifted to 37°C for 20 min and processed for FISH 

against ABP140 mRNA. In the translation initiation mutant, localization of ABP140 mRNA 

to the distal pole was greatly reduced. (B and C) Polysome profile analysis on yeast lysates. 

The positions of the 80S peak and the polysome fraction are indicated. Translation was 

blocked either in a conditional translation initiation-deficient mutant that was shifted to the 

non-permissive temperature (37°C) for 20 min (B) or by treatment of wild-type cells with 

10 μg/ml Verrucarin A for 1 h (C). The control was incubated with the solvent. (D and E) 

FISH against ABP140 mRNA on wild-type cells (D) or on yeast expressing ABP140-3’ASH 

(E) that were treated with either 10 μg/ml Verrucarin A for 1 h, or 100 μg/ml CHX for 20 

min. Control cells correspond to the chloroform control for Verrucarin A treatment. (F) 

Abp140p is not depleted during Verrucarin A treatment. Western blot against GFP on total 

lysate of cells expressing Abp140-GFP that were treated with 10 μg/ml Verrucarin A for 1 h. 

Per lane, 30 μg of total protein were loaded. (G) Quantitation of (D) and (E). Sketches of the 

constructs are included. See Fig. 1B and 2B for details on the representation. The white bars 

in (A), (D) and (E) correspond to 5 μm. 

 

Figure 7: 

Live-cell imaging of ABP140 mRNA dynamics. (A) Live-cell imaging of GFP fluorescence 

in cells expressing pADH-ABP140-MS2/MS2-GFP or pADH-ABP140-U1A/U1A-GFP. 

Sketches of the constructs are included. See Fig. 2B for details on the representation. 

(B) Time-lapse imaging of an ABP140-MS2/MS2-GFP particle moving towards the distal 

pole. The images correspond to a subarea of a movie that can be viewed in full in the 
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supplementary material (Suppl. Movie 3). (C) Particle trace of (B). Each color represents a 

different 10s time point. Particles that moved between two consecutive frames are connected 

with white lines (dt = 10s). (D) Particle trace of Suppl. Movie 4 as in (C). Stills can be found 

in Suppl. Fig. 6. (E) Time-lapse imaging of an ABP140-MS2/MS2-GFP comigrating with a 

brighter patch on an actin cable marked by (1-17)Abp140p-2xmCherry. The full movie can be 

viewed in the supplementary material (Suppl. Movie 6). The white bars in (A), (C), (D), and 

(E) correspond to 5 μm. 

 

Figure 8: 

Model of the cotranslational transport of ABP140 mRNA to the distal pole. In the course of 

translation, the N-terminal actin-binding domain of Abp140p is exposed to the cytoplasm and 

binds actin cables. The complex of nascent protein, ribosome, and mRNA is transported to the 

distal pole by actin retrograde flow. The bulk of the protein would then be generated at the 

distal pole and distributed from there. 











GFPGFP

GFPGFP GFPGFP GFPGFPGFPGFP

GFPGFP

GFPGFP

GFPGFP

RNAN17 RFS

GFPGFP

C Percent of budded cells
0 10 20 30 40 50 60 70 80 90 100

(1-67)-GFP

(1-67)-TAA-GFP

(1-17)-GFP-(18-629)

(1-17)-GFP-(68-629)

(1-17)-GFP-(68-629)

A B

FI
SH

 s
ig

na
l

D
IC

Kilchert et al. , Figure 5

(1-17)-GFP-(18-629)

(1-17)-GFP

(1-17)-4GFP

(1-17)-4GFP(1-17)-GFP (1-67)TAA-GFP(1-67)-GFP

 not localized

 distal pole localized

***

***








	Kilchert_revisedII.pdf
	Kilchert-Figure1.jpg
	Kilchert-Figure2.jpg
	Kilchert-Figure3.jpg
	Kilchert-Figure4.jpg
	Kilchert-Figure5.jpg
	Kilchert-Figure6.jpg
	Kilchert-Figure7.jpg
	Kilchert-Figure8.jpg



