Design and pre-clinical profiling of a Plasmodium falciparum MSP-3 derived component for a multi-valent virosomal malaria vaccine

Tamborrini, M. and Mueller, M. S. and Stoffel, S. A. and Westerfeld, N. and Vogel, D. and Boato, F. and Zurbriggen, R. and Robinson, J. A. and Pluschke, G.. (2009) Design and pre-clinical profiling of a Plasmodium falciparum MSP-3 derived component for a multi-valent virosomal malaria vaccine. Malaria Journal, Vol. 8 , 314.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5843185

Downloads: Statistics Overview


BACKGROUND: Clinical profiling of two components for a synthetic peptide-based virosomal malaria vaccine has yielded promising results, encouraging the search for additional components for inclusion in a final multi-valent vaccine formulation. This report describes the immunological characterization of linear and cyclized synthetic peptides comprising amino acids 211-237 of Plasmodium falciparum merozoite surface protein (MSP-3). METHODS: These peptides were coupled to phosphatidylethanolamine (PE); the conjugates were intercalated into immunopotentiating reconstituted influenza virosomes (IRIVs) and then used for immunizations in mice to evaluate their capacity to elicit P. falciparum cross-reactive antibodies. RESULTS: While all MSP-3-derived peptides were able to elicit parasite-binding antibodies, stabilization of turn structures by cyclization had no immune-enhancing effect. Therefore, further pre-clinical profiling was focused on FB-12, a PE conjugate of the linear peptide. Consistent with the immunological results obtained in mice, all FB-12 immunized rabbits tested seroconverted and consistently elicited antibodies that interacted with blood stage parasites. It was observed that a dose of 50 microg was superior to a dose of 10 microg and that influenza pre-existing immunity improved the immunogenicity of FB-12 in rabbits. FB-12 production was successfully up-scaled and the immunogenicity of a vaccine formulation, produced according to the rules of Good Manufacturing Practice (GMP), was tested in mice and rabbits. All animals tested developed parasite-binding antibodies. Comparison of ELISA and IFA titers as well as the characterization of a panel of anti-FB-12 monoclonal antibodies indicated that at least the majority of antibodies specific for the virosomally formulated synthetic peptide were parasite cross-reactive. CONCLUSION: These results reconfirm the suitability of IRIVs as a carrier/adjuvant system for the induction of strong humoral immune responses against a wide range of synthetic peptide antigens. The virosomal formulation of the FB-12 peptidomimetic is suitable for use in humans and represents a candidate component for a virosomal multi-valent malaria subunit vaccine
Faculties and Departments:09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Department of Medical Parasitology and Infection Biology (MPI) > Molecular Immunology (Pluschke)
UniBasel Contributors:Pluschke, Gerd and Tamborrini, Marco
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:BioMed Central
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:14 Sep 2012 07:17
Deposited On:14 Sep 2012 06:37

Repository Staff Only: item control page