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Abstract 

This chapter presents new results on modeling 24 hour (circadian) human heart rate data 
collected with the LifeShirt system using a variety of linear regression and neural network 
models. Such modeling is important in biopsychology, chronobiology, and chronomedicine 
where signals collected continuously from human subjects for one or several days need to be 
interpreted. Ambulatory heart rate is influenced by a variety of factors, including physical 
activity, posture, and respiration, and our models try to predict heart rate based on these 
factors. The analyses described in the chapter indicate that neural and especially neuro-fuzzy 
techniques provide better results in the modelling of human heart rate at the circadian scale 
than conventional linear regression. The advantages of the neuro-fuzzy approaches consist in 
their computational efficiency, better interpretability, and the possibility of incorporation of 
prior knowledge for easier model construction. 

1. Introduction 

Biological systems are very complex and their behavior is typically influenced by a large 

number of factors. Consider the human heart rate (HR): at a shorter time scale (seconds to 

minutes) it is influenced by respiration, speech, physical activity, and body posture. At a 

longer scale (minutes to hours), HR is influenced by emotions, food intake, and 

thermoregulation (environmental and body temperature). At even longer scale, HR is 
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influenced by the circadian (near 24 hour long) patterns of everyday life: during sleep our 

hearts beat slower than when we are awake. 

The character of these dependencies is often assumed to be linear for the ease of 

modeling. Linear techniques have been successfully applied to modeling the human HR at 

shorter time scales, e.g. to discriminate between physical and emotional activation causing an 

increase in HR [23]. 

However, a general linear model of the human HR is hardly feasible because of the 

complexity of nonlinear static and dynamic behavior of the regulation systems of our 

organisms, including the internal clock, the thermoregulation system, the cardiovascular 

system, and the nonlinear interactions of these systems. 

Circadian variations of the human HR are of interest for biopsychology, chronobiology, 

and chronomedicine. In order to detect such variations, and especially to reliably estimate the 

underlying parameters of the circadian clock like its phase, amplitude, and free-running 

period (which is usually slightly different from 24 hours), nonlinear modeling approaches are 

required. This is a new and challenging field, and our goal here is to present a comparison of 

different modeling approaches that can be used for the investigation of the human circadian 

clock based on ambulatory measurements, when test subject keep their everyday life schedule 

while their physiological parameters are continuously recorded with a wearable device 

throughout several days or weeks. 

Artificial neural networks (ANNs) [8] have been widely used in recent years to solve a 

wide range of problems such as data mining and processing of signals of different nature 

under uncertainty as to the structure and parameters of the underlying model. The ANNs 

possess universal approximation properties and learning capabilities, so they can be trained to 

identify unknown and very complex nonlinear input-output relationships. However, the 

ANNs represent the black-box approach to systems modelling since they are nontransparent 

models, and the interpretation of the knowledge stored in an ANN can be difficult. We will 

consider three popular types of neural networks for nonlinear regression: the multilayer 

perceptron (MLP), the radial basis function network, and the generalized regression neural 

network (GRNN). 

Hybrid neuro-fuzzy approaches [5] emerged as a synergism of the neural nets and fuzzy 

systems [11], the two major directions in computational intelligence [10]. The neuro-fuzzy 

systems possess the learning capabilities similar to those of neural networks, and provide the 

interpretability and “transparency” of results inherent to the fuzzy approach. We will consider 

here two neuro-fuzzy models, the neo-fuzzy neuron (NFN) and the novel neuro-fuzzy 

Kolmogorov’s network (NFKN) that were designed to overcome such disadvantages of most 

neuro-fuzzy systems such as the slow convergence of the gradient-based learning procedures 

or high computational load of the genetic algorithm-based optimization of their parameters. 

2. Regression Models 

In this section, we consider a number of regression models that will be further used for 

modeling the ambulatory HR. The most general form of such models is 

 

 )(̂ˆ xfy= , [ ]Tdxxx ,,1K= ,  (1)  
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where ŷ is the model output, x is the vector of inputs, f̂ is the estimated input-output 

functional relation. We assume that the true function )(xfy=  is not known. 

2.1. Linear Regression 

The simplest model that we consider is given by the linear multiple regression equation: 

 

 ddxwxwxwwy ++++= K22110ˆ ,  (2)  

 

where dwww ,,,10 K  are the regression parameters. 

2.2. Multilayer Perceptron 

A multilayer perceptron (MLP) [8] is shown in Fig. 1. This is a feed-forward network of 

artificial neurons with sigmoid activation functions. The number of layers in an MLP is 

usually two or three (layers of neurons, input layer is not counted). 
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Figure 1. Multi-layer perceptron with 2 hidden layers. 

The MLP is described by the following equation [18]: 

 

 )))(((ˆ ][
0

]1[
0

]1[
0

]1[]1[]1[]1[][][ LLLLLL nnnnnn wwwxWWWy ++++ΓΓΓ= −−− KK ,  (3)  

 

where ][lW  is the matrix )( ]1[][ −× ll nn  of the synaptic weights of the l-th layer, ][ln  is the 

number of neurons in the l-th layer, Lnl ,,1K= , dn =]0[ , y
n nnL =][ , Ln is the number of 

layers, x is the input vector )1(×d , ][
0
lw  is the vector )1( ][×ln  of bias parameters of the l-th 
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layer, ][iΓ  is a nonlinear operator implemented by a set of sigmoid activation functions of the 

l-th layer. 

2.3. Radial Basis Function Network 

A radial basis function network (RBFN) [1, 6] always contains two layers: the hidden layer of 

basis functions and the output layer (see Fig. 2). 
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Figure 2. Radial basis function network. 

The RBFN model is described by the equation 

 

 0
1

)(ˆ wvxwy
hn

i
ii +−=∑

=

φ ,  (4)  

 

where hn is the number of neurons (basis functions) in the hidden layer, iw is the weight of 

the i-th basis function, φ is the basis function (usually Gaussian), ivis the vector )1( ×dn  of 

the center of the i-th basis function, 0w is the bias parameter. 

The most important advantage of the RBF networks consists in shorter training time as 

compared to the conventional multilayer networks trained by means of the error 

backpropagation technique. At the same time, the construction and training of an RBF 

network usually requires the use of at least two procedures. The first one is for the setting of 

the basis function parameters and the second one is for the training of the output layer 

weights. 

It was shown in [9] that the RBFNs and neuro-fuzzy systems are functionally equivalent 

under minor restrictions, so similar training procedures can be used for both. The RBFNs are 

also considered to be more transparent than the MLP models because the radial basis 
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functions have a clear interpretation in terms of clustering of the input space in contrast to the 

neurons of the MLPs, especially with more than one hidden layer. 

2.4. Generalized Regression Neural Network 

A generalized regression neural network (GRNN) [19] has a similar architecture to that of the 

RBFN but it has as many hidden layer units (basis functions) as the number of samples in the 

training data set. So each sample from the training data set is memorized in the GRNN as a 

prototype. 

2.5. Neo-fuzzy Neuron 

The neo-fuzzy neuron (NFN) was proposed as a simple neuro-fuzzy architecture with very 

fast learning and guarantee for the convergence to the global minimum of the error surface 

[25]. It is also very well suited for hardware implementations, including purely analog circuits 

[17]. This neuron has been successfully applied to the problems of time series prediction, 

signal filtering, and restoration [20]. 

The NFN model is described by the expressions 

 

 ∑
=

=
d

i
iixfy

1

)(ˆ ,   ∑
=

=
im

h
hiihiii wxxf

1
,, )()( µ ,  (5)  

 

where )(iixf  is the nonlinear synapse of the i-th input, im is the number of membership 

functions per input i, )(, ihi xµ  is the h-th membership function (MF) at the i-th input, hiw, is 

the tunable synaptic weight of the respective MF. These weights are tuned automatically by 

an optimization procedure that is used to fit the model to the data. The architecture of an NFN 

is shown in Fig. 3. 
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f
1

f
d

f
2 Σ

 

µ
i,1

µ
i,2

µ
i,m

x
i f

i
(x
i
)

w
i,1

w
i,m

w
i,2

Σ

 

Figure 3. Neo-fuzzy neuron (left) and its nonlinear synapse (right). 

The MFs in a neo-fuzzy neuron are fixed and equidistantly spaced. They are chosen such 

that at maximum two adjacent MFs in each synapse fire at a time and their sum is always 

unity: 
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The functions of nonlinear synapses )(iixf  are piecewise-linear since they are 

superpositions of triangular membership functions. An example of an approximation of a 

univariate nonlinear function by a nonlinear synapse is shown in Fig. 4 where the unknown 

approximated function is plotted as dotted line. 
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Figure 4. Approximation of a univariate nonlinear function by a nonlinear synapse. 

Each nonlinear synapse is a single-input single-output fuzzy inference system. It contains 

fuzzy rules in the form: 

 

 hiihii wfXx ,,  THEN   IS  IF = ,   di ,,1K= ,   imh ,,1K= ,  (7)  

 

where hiX, is the h-th linguistic label (fuzzy set) on the i-th input. The fuzzy sets are defined 

by the respective triangular MFs )(, ihi xµ , and represent such linguistic values as “SMALL”, 

“MEDIUM”, “LARGE”, etc, depending on a particular fuzzy partition which can be chosen 

based on the domain knowledge and experience of the person that designs the model. In such 

a way, prior knowledge can be incorporated into the model and the neo-fuzzy model itself 

possesses inherent interpretability along with nonlinear approximation capabilities. 

A disadvantage of the NFN model consists in the fact that it assumes that the 

nonlinearities of the inputs are separable. So the NFN model is not a universal approximator, 

in contrast to the neural nets [7] considered above or to the conventional fuzzy systems 

[16, 21]. But it possesses better approximation properties than the linear models, as it has 

more degrees of freedom allowing good piecewise-linear approximation for many processes 

and imposing very low requirements on the computational resources. The most important 

advantage of the NFN model is its extremely fast learning which can be performed in the 

online mode with very simple weight update rules [25, 2], or in just a single operation with 

the linear least-squares formula [3]. 
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2.6. Neuro-fuzzy Kolmogorov’s Network 

The neuro-fuzzy Kolmogorov’s network (NFKN) is a universal approximator based on the 

NFNs [14]. The NFKN architecture [4, 15] is comprised of two layers of neo-fuzzy neurons 

(NFNs) [25] and is described as follows:  
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where n is the number of hidden layer neurons, )( ],1[]2[ l
l of  is the l-th nonlinear synapse in the 

output layer, ],1[lo  is the output of the l-th NFN in the hidden layer, )(],1[ i
l

i xf  is the i-th 

nonlinear synapse of the l-th NFN in the hidden layer. 

The NFKN architecture was named after the famous Kolmogorov’s theorem on the 

representation of functions of multiple variables as a two-level superposition of univariate 

functions [13]. Indeed, the NFKN makes approximate representations of multivariate 

functions by a two-level superposition (8) of the nonlinear synapses (univariate 

approximators) of its hidden and output layers (see Fig. 5). 
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Figure 5. NFKN with d inputs and n hidden layer neurons. 

The equations for the hidden and output layer synapses are 
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where im,1 and lm,2 are the number of membership functions (MFs) per input i and l in the 

hidden and output layers respectively, )(]1[, ihi xµ and )( ],1[]2[
,

l
jl oµ  are the MFs, ],1[

,
l
hiw  and ]2[

,jlw  are 

the tunable weights. The MFs in the NFKN at each input in the hidden and output layers are 

shared between all neurons of the respective layer. 

The outputs of the NFKN are computed via the following two-stage fuzzy inference 

procedure: 
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Since the nonlinear synapses represent local piecewise-liner approximations, the overall 

NFKN model is also piecewise-linear and does not involve any operations other than addition 

and multiplication in computing its input-output mapping. So a trained NFKN model can be 

easily implemented even on embedded processors with very limited computational resources. 

The description (10) corresponds to the following two-level fuzzy rule base: 
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where hiX, and jlO, are the antecedent fuzzy sets in the first and second level rules, 

respectively. Thus, the NFKN is an interpretable model, and the domain knowledge can be 

used in designing the model in a similar way as for the NFNs. 

3. Experiments 

In this section, we describe the application of the models introduced in section 2 to the 

prediction of heart rate in healthy test subjects. The prediction is based on the measurements 

of physical activity, posture, and respiration. A comparison of the models w.r.t. their 

prediction quality is presented. 

3.1. Participants 

Participants were 18 healthy adults (6 men and 12 women), mean age: 39.27 years, standard 

deviation (SD): 11.67; mean body mass index: 22.78, SD: 3.22. These test subjects were 
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recruited by means of postings and local newspaper advertisements. Participants on 

medication with direct effects on the autonomic nervous system were excluded. The study 

was approved by the local ethics committee for medical research and participants received a 

reimbursement of 200 CHF (approximately 160 USD). 

3.2. Data Acquisition 

Physiological recordings were performed by means of the LifeShirt System (VivoMetrics, 

Inc., Ventura, CA, USA). The LifeShirt is a non-invasive ambulatory monitoring system 

consisting of a data recorder, a garment with embedded sensors for continuous monitoring of 

ECG, respiration, 3-D accelerometry and other functions and a software package 

(VivoLogic®) for offline signal analysis. For detailed description of the LifeShirt system, see 

[22, 24].  

The data recorder can be carried in a waist pack and the data is written to a flash memory 

card. Data were recorded at 10 Hz (accelerometry), 200 Hz (ECG), and 50 Hz (respiratory 

pattern), respectively. The following measures were automatically derived by means of the 

VivoLogic Software for the present analysis: heart rate (‘HR’, beats/min), motion (‘AccM’, 

summed absolute values of acceleration along 2 axes), posture (‘AccP’), minute ventilation 

(‘Vent’, liters inhaled/min), tidal volume (‘Vt’, ml), breaths per minute (‘Br/M’). 

3.3. Procedure 

On arrival in the laboratory (between 8 and 9am), participants gave written informed consent. 

Subsequently, the sensors and the LifeShirt were attached, the data recording was started and 

the respiration signal was calibrated against a known fixed volume. Before leaving the 

laboratory, participants were instructed to pursue their regular everyday activities and to stop 

the recording after awakening the next morning. To avoid artifacts, they were advised not to 

pursue any sports. 

3.4. Modeling 

For modelling purposes, the data were downsampled to 30 sec sampling period (1/30 Hz). 

The posture channel was divided into 3 separate channels for supine, lateral, and upright body 

positions. With the other channels, it resulted in 7 input variables (one for ‘AccM’, three for 

‘AccP’, and another three for the ‘Vent’, ‘Vt’, and ‘Br/M’ respectively). The dependent 

variable was the heart rate (‘HR’).  

Mean length of a data set for one test subject was 2583.6 samples (21.53 hours), SD: 

177.33 samples (1.48 hours). An example of a downsampled heart rate recording is shown in 

Fig. 6. A clear circadian pattern is visible: the heart rate is reduced and remains more stable 

during the night, while during the day it is on average higher due to the opposite phase of the 

circadian clock and has more variations because of physical activity, emotions, etc. 
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Figure 6. Heart rate recording for test subject N18. 

The parameters of the compared models are listed in Table 1. The column ‘Architecture’ 

shows the number of inputs (first value), the number of outputs (last value), and the number 

of neurons in the respective intermediate layers (if applicable). The fewer parameters a model 

has, the better it is from the point of view of computational complexity. 

Table 1. Models used for heart rate prediction (best values in bold, second best in italics) 

Model 
Activation 

function 
Architecture 

Number of 

parameters 

Linear  Linear  7-1  8  

MLP  Sigmoid   7-10-10-1  201  

RBFN  Gaussian   7-25-1   201  

GRNN  Gaussian   7-1292*-1  10336*  

NFN  Triangular  7-1 38 

NFKN  Triangular  7-4-1 104 
*average value 

 

For the linear model the parameters were the respective regression coefficients from (2). 

For the MLP, NFN, and NFKN models the only adjustable parameters were their synaptic 

weights, while for the RBFN and GRNN models these included also the respective prototype 

vectors iv sized )17(×  for each basis function φ in (4). The radii of the basis functions were 

fixed and equal to 2.7 (RBFN) and 0.75 (GRNN) for all the basis functions. The NFN model 

had 8 MFs per ‘AccM’, ‘Vent’, ‘Vt’, and ‘Br/M’ inputs, and 2 MFs per each of the 3 ‘AccP’ 

inputs. The NFKN model had 3 MFs per ‘AccM’, ‘Vent’, ‘Vt’, and ‘Br/M’ inputs, 2 MFs per 

each of the 3 ‘AccP’ inputs in the hidden layer, and 8 MFs per each of the 4 synapses in its 

output layer. All model structures were chosen based on best performance. 
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The data sets for each subject were divided into two parts: one with samples with odd 

numbers and another one with samples with even numbers. For each of the compared models 

we performed two runs of testing: in the first run the samples with odd numbers were used for 

training, the samples with even numbers for checking, and in the second run vice versa. In 

each of the two runs the training and checking procedures were repeated 18 times with the 

respective training and checking data sets for all the 18 test subjects. For each subject, the 

data were standardized as follows: the means of all the variables in the training set were 

subtracted from both the training and checking sets, and then both the training and checking 

sets were divided by the respective standard deviations of the training set. 

3.5. Learning Algorithms 

The parameters of all the models during the training phase were estimated by minimizing the 

sum of squared errors on the training data set 

 

 [ ] )̂()̂()(̂)(
1
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=

,  (13)  

 

where N is the number of samples in the training set, )(ky  is the real output (target value) for 

the input vector [ ]Tdkxkxkx )(,),()( 1 K=  corresponding to the k-th sample from the training 

set, )(̂ky  is the model output for the k-th sample, Y is the vector of target values, and Ŷ is the 

vector of model outputs: 

 

 [ ]TNyyyY )(,),2(),1( K= ,   [ ]TNyyyY )(̂,),2(̂),1(̂ˆ K= .  (14)  

 

The models and their training procedures were implemented in Matlab 7.0. The 

parameters of the linear model and the NFN were found with the conventional linear least 

squares method. 

The MLP, RBFN, and GRNN models were programmed with the Matlab Neural Network 

Toolbox. For training the MLP, the resilient propagation algorithm was used (function 

trainrp), which is considered to be one of the best training procedures for the MLPs, 

combining high speed and high precision. The RBFN and GRNN models were constructed 

with the newrb and newgrnn functions, respectively. 

For the NFKN model, a separate Matlab toolbox was developed. The training of the 

NFKN model is based on the hybrid algorithm which involves linear least-squares 

optimization for the output layer and gradient-based learning of the hidden layer weights. The 

overall training algorithm is very fast and does not involve any nonlinear operations [15]. 

3.6. Results 

The coefficient of determination 2R, indicating the proportion of “explained variance”, was 

used to estimate the prediction quality. The 2R index was computed as 
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where k is the number of a measurement in the sample Y, )(̂)()( kykyke −=  is the modelling 

error (residual) for the measurement k, and y is the mean value of the sample Y. The 

performance of the models in the first and second runs is summarized in Tables 2 and 3, 

respectively. 2
trnR  stands for training, and 

2
chkR  for checking. 

The fourth and the last columns in Tables 2 and 3 show the ratio of the 2R indices w.r.t. 

their respective standard deviations )(2RSD . Good performance of a model is indicated by 

high values of 2R and low values of )(2RSD  resulting in high values of the ratio 

)(/ 22 RSDR . 

The values of 2
chkR  for individual test subjects for the runs 1 and 2 are shown in Fig. 7 

and 8, respectively. The 2
chkR  curves for the linear models in Figs. 7 and 8 are below all the 

respective curves for the nonlinear models, so the 2
chkR  for the nonlinear models was always 

higher than that for the linear ones. 

To test the significance of these results we used the nonparametric Wilcoxon matched 

pairs test on 2
chkR  for all 18 test subjects. In both runs, the p-values for 2

chkR  of each nonlinear 

model compared to the linear one are smaller than 0.0002, i.e. the results presented here are 

highly significant in the statistical sense. 

Note that the NFN and the NFKN models had fewer parameters than the other nonlinear 

models. Nevertheless, the simplest NFN model with only 38 parameters outperformed the 

most complex GRNN models with more than 10000 parameters on average, and the NFKN 

model with 104 parameters performed like the RBFN and MLP models with 201 parameters 

each. 

Table 2. Performance of the models in the 1st run (best values in bold, 

second best in italics) 

Model Mean 2
trnR  )(2trnRSD  

Mean 

)(2

2

trn

trn

RSD

R Mean 
2
chkR )(2chkRSD  

Mean 

)(2

2

chk

chk

RSD

R
 

Linear   0.7622   0.0552  13.7986  0.7632   0.0566  13.4851  

MLP 0.8269 0.0411  20.1334  0.8145   0.0453  17.9920  

RBFN  0.8215  0.0440  18.6637  0.8092 0.0483  16.7421  

GRNN   0.8131   0.0478  17.0092  0.7969   0.0527  15.1196  

NFN   0.8020   0.0449  17.8543  0.7915   0.0496  15.9639  

NFKN 0.8320 0.0427  19.4870  0.8042 0.0461  17.4329  
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Figure 7. Values of 
2
chkR  for the 1st run for the compared models. 
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Figure 8. Values of 
2
chkR  for the 2nd run for the compared models. 
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Table 3. Performance of the models in the 2nd run (best values in bold, 

second best in italics) 

Model Mean 2
trnR  )(2trnRSD  

Mean 

)(2

2

trn

trn

RSD

R Mean 
2
chkR )(2chkRSD  

Mean 

)(2

2

chk

chk

RSD

R
 

Linear   0.7645   0.0561  13.6238  0.7610   0.0558  13.6458  

MLP 0.8318 0.0424  19.6337  0.8150   0.0411  19.8062  

RBFN  0.8230  0.0470  17.5276  0.8099 0.0465  17.3986  

GRNN   0.8161   0.0503  16.2402  0.7918   0.0511  15.4938  

NFN   0.8030   0.0485  16.5533  0.7900   0.0476  16.6039  

NFKN 0.8332 0.0452  18.4324  0.8024 0.0455  17.6224  

4. Conclusion 

The results presented in this chapter indicate that nonlinear models provide better accuracy in 

predicting human heart rate at the circadian scale than conventional linear models. These 

results are significant from the statistical point of view as confirmed by the nonparametric 

Wilcoxon test. 

Neuro-fuzzy models, such as the NFN and the NFKN, are especially attractive because 

they provide the same level of accuracy as neural networks but have low computational 

complexity of both the input-output mapping and the training procedures, and are more 

transparent (interpretable). Another important advantage of the considered neuro-fuzzy 

models (the NFN and the NFKN) is their capability of working in high dimensions of input 

space because their computational complexity is increased linearly with the increase of the 

input dimension [4]. This is important for the development of complex models with many 

input variables. 

Based on the presented results, it is expected that neural and neuro-fuzzy techniques 

described here will find application in analyzing human circadian rhythms. Linear techniques 

do not appear to provide reliable results for ambulatory monitoring where test subjects live 

their normal everyday life rather than stay in the controlled laboratory environment [12]. 

For the reliable detection of circadian parameters such as the phase of the internal clock 

based on indirect measurements of physiological parameters from, e.g., cardiovascular, 

respiratory, and temperature recordings, it will be necessary to solve a number of problems 

related to data preparation for the nonlinear models and estimating variance from between-

individual differences in responsivity to behavioral variations such as physical activity. These 

problems include reliable calibration of the recording devices, signal filtering, and adequate 

preprocessing. 
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