Free \mathbb{C}^+ -actions on affine threefolds

Hanspeter Kraft

ABSTRACT. We study algebraic actions of the additive group \mathbb{C}^+ on an affine threefold X and prove a smoothness property for the quotient morphism $\pi: X \to X/\!/\mathbb{C}^+$. Then, following Shulim Kaliman, we give a proof of the conjecture that every free \mathbb{C}^+ -action on affine 3-space \mathbb{C}^3 is a translation.

1. The main result

These notes are about algebraic actions of the additive group \mathbb{C}^+ on complex affine threefolds and, in particular, about the following conjecture which was recently proved by Shulim Kaliman [Ka04].

CONJECTURE. Every free \mathbb{C}^+ -action on \mathbb{C}^3 is a translation, i.e. there is a closed subset $S \subset \mathbb{C}^3$ such that the natural morphism $\mathbb{C}^+ \times S \xrightarrow{\sim} \mathbb{C}^3$, $(s, x) \mapsto s \cdot x$, is an isomorphism.

In fact, Kaliman proves a more general statement. Together with some results from the joint paper **[KaS04]** with Saveliev one has now the following general theorem.

THEOREM (Kaliman-Saveliev). Every free \mathbb{C}^+ -action on a smooth contractible affine threefold X is a translation.

For more information about this type of problems and additional background we refer to the survey [**Kr96**]. In particular, the corresponding result in dimension 2 goes back to Rentschler [**Re68**] who classified the \mathbb{C}^+ -actions on \mathbb{C}^2 , and the conjecture is wrong in dimension 4 as shown by Winkelmann in [**Wi90**].

The text is organized as follows. In the next two sections we describe an approach to the problem in a more general setting and work out the algebraic "obstructions" for actions to be locally trivial. This part is partially based on discussions I had with Dave Finston and James Deveney some time ago where we developed a strategy to prove the conjecture using the smoothness of the quotient morphism

©1997 American Mathematical Society

¹⁹⁹¹ Mathematics Subject Classification. Primary 14L30, 20G20; Secondary 19J35, 14D25. Key words and phrases. algebraic group actions, free actions, additive group, affine 3-space, contractible threefold.

The author was partially supported by SNF (Swiss National Science Foundation).

HANSPETER KRAFT

 $\pi: \mathbb{C}^3 \to \mathbb{C}^3 /\!\!/ \mathbb{C}^+$. Looking again at their paper [**DeF00**] I realized that the smoothness of π can be proved under more general assumptions (see Proposition 1 in §2).

In the last section, using this smoothness property of the quotient map and some topological considerations due to Kaliman we are able to give a short proof of the Theorem above, where we assume, in addition, that the quotient $X/\!/\mathbb{C}^+$ is smooth (see the Main Theorem in §4).

It should be pointed out that most results here generalize to free actions of a unipotent group U of dimension n on an (n+2)-dimensional affine variety with the appropriate properties.

Acknowledgement: I would like to thank Shulim Kaliman for showing me an early version of his paper [Ka04] and for sharing his ideas.

2. The basic setup

Our base field is the field \mathbb{C} of complex numbers. Let X be an affine variety of dimension 3 with a non-trivial action of the additive group \mathbb{C}^+ . Assume that Xis *factorial*, i.e. that the coordinate ring $\mathcal{O}(X)$ is a unique factorization domain. Denote by $X/\!\!/\mathbb{C}^+$ the *algebraic quotient*. This means that $X/\!\!/\mathbb{C}^+$ is the affine variety with coordinate ring $\mathcal{O}(X)^{\mathbb{C}^+}$, the *invariant ring* under \mathbb{C}^+ , which is finitely generated by a well-known result of Zariski [**Za54**]. Moreover, $\pi = \pi_X : X \to X/\!/\mathbb{C}^+$ denotes the *quotient morphism* defined by the inclusion $\mathcal{O}(X)^{\mathbb{C}^+} \subset \mathcal{O}(X)$.

LEMMA 1. The quotient $Y := X/\!\!/\mathbb{C}^+$ is a normal and factorial surface. If $C \subset Y$ is an irreducible curve, then the inverse image $\pi^{-1}(C)$ is reduced and irreducible. Moreover, $\pi: X \to Y$ is equidimensional, i.e. every non-empty fiber has dimension 1, and $Y \setminus \pi(X)$ is finite.

Proof. The first part is well-known. It essentially uses the fact that the group \mathbb{C}^+ has no characters.

An irreducible closed curve $C \subset Y$ is defined by an irreducible function $f \in \mathcal{O}(Y)$ which remains irreducible when considered as an element in $\mathcal{O}(X)$. Thus the schematic inverse image of C is reduced and irreducible.

Assume that a fiber $\pi^{-1}(y)$ has an irreducible component Z of dimension 2. Then Z is defined by an irreducible function $f \in \mathcal{O}(X)$. Since Z is stable under \mathbb{C}^+ the function f is invariant. If h is any other invariant, then h is constant on Z, $h|_Z \equiv c$, and so h - c is a multiple of f. But this implies that the invariant ring is $\mathbb{C}[f]$, contradicting the fact that dim Y = 2.

Finally, if $Y \setminus \pi(X)$ is not finite, then $C := \overline{Y \setminus \pi(X)}$ is a curve and so $F := \pi^{-1}(C)$ is of dimension 2. This implies that $\pi(F)$ is of dimension 1 which contradicts the fact that $\pi(F)$ is contained in the finite subset $C \cap \pi(X)$ of Y.

PROPOSITION 1. Let $x \in X \setminus X^{\mathbb{C}^+}$ and assume that X is smooth in x and Y is smooth in $\pi(x)$. Then π is smooth in x.

PROOF. (a) We first claim that there are only finitely many $y \in Y \setminus \pi(X^{\mathbb{C}^+})$ such that the fiber $\pi^{-1}(y)$ is not reduced. Otherwise there is an irreducible curve $C \not\subset \pi(X^{\mathbb{C}^+})$ such that $\pi^{-1}(y)$ is not reduced for almost all $y \in C$. Since $F := \pi^{-1}(C)$ is reduced and irreducible by Lemma 1 this implies that almost all fibers of the morphism $\pi|_F: F \to C$ are non-reduced. On the other hand the morphism $\pi|_F$ is smooth on a dense open set which is stable under \mathbb{C}^+ . It follows that almost all (schematic) fibers of $\pi|_F$ are smooth, hence reduced, and we end up with a contradiction.

(b) Now let $x_0 \in X \setminus X^{\mathbb{C}^+}$ such that X is smooth in x_0 and Y is smooth in $y_0 := \pi(x_0)$, and assume that π is not smooth in x_0 . We will show that this leads to a contradiction. We can find an irreducible closed surface $S \subset X$ containing x_0 and smooth in x_0 such that $T_{x_0}X = T_{x_0}S \oplus T_{x_0}(\mathbb{C}^+x_0)$, i.e. S is transversal to the \mathbb{C}^+ -orbit through x_0 . It follows that there is an open dense subset $S' \subset S$ containing x_0 such that the following holds: (i) S' is smooth and $\pi(S') \subset Y$ is open and smooth; (ii) S' is transversal to the orbits \mathbb{C}^+x for all $x \in S'$. In particular, $S' \cap X^{\mathbb{C}^+} = \emptyset$.

It follows that $\pi|_{S'}$ is smooth in $x \in S'$ if and only if π is smooth in x. It is well-known that the set of points of S' where $\pi|_{S'}$ is not smooth is either empty or a curve, hence does not contain isolated points. By construction, $\pi|_{S'}$ is not smooth in x_0 and, by (a), the point $x_0 \in S'$ is an isolated point with this property. Thus we end up with a contradiction which finally proves the proposition. \Box

COROLLARY 1. If X and Y are both smooth and the \mathbb{C}^+ -action fixed point free then the quotient morphism $\pi: X \to Y$ is smooth.

REMARK 1. In case $X = \mathbb{C}^3$ this is proved in [**DeF00**] by a direct argument. In this situation the quotient is \mathbb{C}^2 by a result of Miyanishi [**Mi80**].

REMARK 2. It is shown in [KaS04] that for any smooth contractible affine threefold X the quotient $X/\!/\mathbb{C}^+$ is smooth. Thus the quotient map is smooth in this case. (Here we use the fact that a contractible affine smooth threefold is factorial.)

It is helpful to compare the results of this and the subsequent sections with the following example of a non-free \mathbb{C}^+ -action on \mathbb{C}^3 .

EXAMPLE. Consider the \mathbb{C}^+ -action on \mathbb{C}^3 given by the nilpotent derivation $\delta := x \frac{\partial}{\partial y} - 2y \frac{\partial}{\partial z}$. Then the quotient $\mathbb{C}^3 /\!\!/ \mathbb{C}^+$ is isomorphic to \mathbb{C}^2 and the quotient morphism is given by

$$\pi: \mathbb{C}^3 \to \mathbb{C}^2, \quad (x, y, z) \mapsto (x, xz + y^2).$$

The fixed point set $(\mathbb{C}^3)^{\mathbb{C}^+}$ is the z-axis $\{x = y = 0\} \subset \mathbb{C}^3$. It equals $\pi^{-1}(0)$ and coincides with the points where π is not smooth. The fibers $\pi^{-1}((0, v))$ for $v \neq 0$ consist of two orbits, and $\pi: \mathbb{C}^3 \setminus \{x = 0\} \to \mathbb{C}^2 \setminus \{u = 0\}$ is a trivial \mathbb{C}^+ -bundle.

3. Configuration of "bad" curves

From now on we make the following assumptions:

X is an affine, factorial and smooth variety of dimension 3 with a fixed point free \mathbb{C}^+ -action such that the quotient $Y := X/\!\!/\mathbb{C}^+$ is smooth.

It then follows from Proposition 1 that the quotient morphism $\pi: X \to Y$ is smooth. Consider the following subset $E \subset Y$:

$$E := \{ y \in Y \mid \pi^{-1}(y) \text{ is not an orbit} \}.$$

Observe that E contains the finite set $Y \setminus \pi(X)$.

PROPOSITION 2. If E is finite, then X is a principal \mathbb{C}^+ -bundle over $\pi(X)$. In particular, $E = Y \setminus \pi(X)$.

PROOF. Consider the fiber product

$$\begin{array}{cccc} Z & \stackrel{\mu}{\longrightarrow} & X \\ & \downarrow^{\pi_Z} & & \downarrow^{\pi} \\ X & \stackrel{\pi}{\longrightarrow} & Y \end{array}$$

where the horizontal π is considered as (a smooth) base change and so the \mathbb{C}^+ -action on Z is such that μ is equivariant. In addition, π_Z is the quotient morphism since almost all fibers are orbits, by assumption (use [Kr85, II.3.4 Lemma and Bemerkung]). Clearly, π_Z (and hence Z) is smooth. Moreover, there is an equivariant morphism

$$\varphi: \mathbb{C}^+ \times X \to Z$$

such that $\mu \circ \varphi_Z = \operatorname{pr}_X$, the projection onto X, and $\mu \circ \varphi \colon \mathbb{C}^+ \times X \to X$ is given by the \mathbb{C}^+ -action on X. Define $\tilde{E} := \pi^{-1}(E) \subset X$. Since, by construction, every fiber of π over $Y \setminus E$ is an orbit, the same holds for the fibers of π_Z over $X \setminus \tilde{E}$, and so φ induces a bijective morphism

$$\varphi': \mathbb{C}^+ \times X \setminus \tilde{E} \xrightarrow{\sim} Z \setminus \pi_Z^{-1}(\tilde{E}).$$

Since E is finite we see that $\operatorname{codim}_X \tilde{E} \ge 2$ and so $\operatorname{codim}_Z \pi_Z^{-1}(\tilde{E}) \ge 2$. Hence φ is an isomorphism (see [**Kr85**, **II.3.4**]). Thus the morphism $\pi: X \to \pi(X)$ becomes a trivial \mathbb{C}^+ -bundle after a smooth surjective base change, and the claim follows. \Box

For a (complex) variety Z we denote by $\chi(Z)$ its *Euler characteristic* with respect to the usual C-topology. We refer to [**KrP85**, **Appendix**] for some basic properties of χ with respect to complex algebraic varieties and for more details.

COROLLARY 2. If E is finite then the following statements are equivalent:

(i) $\chi(X) = \chi(Y);$

(ii) π is surjective;

- (iii) $\pi: X \to Y$ is a trivial \mathbb{C}^+ -bundle;
- (iv) The \mathbb{C}^+ -action is a translation, i.e. $X \simeq \mathbb{C}^+ \times S$ for some closed $S \subset X$.

PROOF. Since X is a locally trivial \mathbb{C}^+ -bundle over $\pi(X)$ we have $\chi(X) = \chi(\pi(X))$. Moreover, $\chi(\pi(X)) = \chi(Y) - d$ where d is the cardinality of $Y \setminus \pi(X)$ (see [**KrP85, Appendix**]). This proves the equivalence of (i) and (ii).

The assertion (iii) follows from (ii) since every principal \mathbb{C}^+ -bundle over an affine variety is trivial, and (iii) obviously implies (iv). Finally, if $X \simeq \mathbb{C}^+ \times S$ then the quotient morphism $\pi: X \to Y$ corresponds to the projection $\mathbb{C}^+ \times S \to S$, and so π is surjective. Hence (ii).

The second part of Proposition 2 generalizes to the following results which states that the only possible isolated points of \overline{E} are in $Y \setminus \pi(X)$.

COROLLARY 3. If the set E is not finite then $\overline{E \cap \pi(X)}$ is equidimensional of dimension 1 and the induced morphism

$$X' := X \setminus \pi^{-1}(\overline{E}) \to \pi(X')$$

is a principal \mathbb{C}^+ -bundle.

PROOF. Let $C \subset \overline{E \cap \pi(X)}$ be the union of the 1-dimensional components. Then C is defined by an invariant function $f \in \mathcal{O}(X)^{\mathbb{C}^+} = \mathcal{O}(Y)$. Define the principal open sets $X_f \subset X$ and $Y_f \subset Y$ as usual. Then $X_f = X \setminus \pi^{-1}(C)$ is a \mathbb{C}^+ -stable affine open subvariety of X. Moreover, $\pi|_{X_f}: X_f \to Y_f$ is the quotient morphism (see Remark 3 below). Since $E \cap Y_f$ is finite we can apply Proposition 2 and conclude that $\pi|_{X_f}: X_f \to \pi(X_f)$ is a principal \mathbb{C}^+ -bundle. Thus $\pi(X_f) \cap E = \emptyset$. In addition, $\pi(X) \cap Y_f = \pi(X_f)$, because $X_f = \pi^{-1}(Y_f)$. Hence

$$\emptyset = E \cap \pi(X_f) = E \cap \pi(X) \cap Y_f = \overline{E \cap \pi(X)} \cap Y_f,$$

and the claim follows.

REMARK 3. Let X be an irreducible affine variety with a \mathbb{C}^+ -action. Then we have $\operatorname{Quot}(\mathcal{O}(X)^{\mathbb{C}^+}) = \operatorname{Quot}(\mathcal{O}(X))^{\mathbb{C}^+}$. In fact, let $r \in \operatorname{Quot}(\mathcal{O}(X))^{\mathbb{C}^+}$ be an invariant rational function. Then $\mathfrak{a} := \{q \in \mathcal{O}(X) \mid qr \in \mathcal{O}(X)\}$ is a \mathbb{C}^+ -stable ideal in $\mathcal{O}(X)$ and so $\mathfrak{a}^{\mathbb{C}^+} \neq 0$ which implies that $r \in \operatorname{Quot}(\mathcal{O}(X)^{\mathbb{C}^+})$. More generally, if $f \in \mathcal{O}(X)^{\mathbb{C}^+}$ is an invariant function then $(\mathcal{O}(X)_f)^{\mathbb{C}^+} = (\mathcal{O}(X)^{\mathbb{C}^+})_f$.

Assume now that E is not finite and let C_i be an irreducible component of $C = \overline{E \cap \pi(X)}$ of dimension 1. Then $S_i := \pi^{-1}(C_i)$ is irreducible and reduced of dimension 2, $\pi|_{S_i}: S_i \to C_i$ is smooth (Proposition 1) and there are infinitely many fibers of $\pi|_{S_i}$ which have more than one component. Thus we get a factorization

$$\pi|_{S_i} = \varphi_i \circ \pi_{S_i} \colon S_i \to S_i /\!\!/ \mathbb{C}^+ \to C_i$$

where $\varphi_i: S_i / \mathbb{C}^+ \to C_i$ has degree > 1. It also follows that the fibers of the quotient morphism π_{S_i} are reduced, hence smooth. Now we have the following general result.

LEMMA 2. Let S_0 be an irreducible affine surface with a non-trivial \mathbb{C}^+ -action.

(a) The quotient $S_0/\!\!/\mathbb{C}^+$ is an irreducible curve and $\pi: S_0 \to S_0/\!\!/\mathbb{C}^+$ is surjective.

(b) There is a dense open set $U \subset S_0 /\!\!/ \mathbb{C}^+$ and an isomorphism $\mathbb{C}^+ \times U \xrightarrow{\sim} \pi^{-1}(U)$ over U.

(c) Assume that the action is fixed point free and that the fibers of π are reduced. Then the following are equivalent:

(i) S_0 is smooth.

(ii) S_0 is normal.

(iii) $S_0/\!\!/\mathbb{C}^+$ is normal, hence smooth.

If (i), (ii) or (iii) holds then π is smooth.

PROOF. (a) Assume that π is not surjective. Then there is a rational function r on $S_0/\!\!/\mathbb{C}^+$ which is defined on $\pi(S_0)$ but not on $S_0/\!\!/\mathbb{C}^+$. Then $\pi^*(r) \in \mathcal{O}(S_0)^{\mathbb{C}^+}$ and so $r \in \mathcal{O}(S_0/\!/\mathbb{C}^+)$, contradicting the assumption.

(b) This is a general fact: For every non-trivial \mathbb{C}^+ -action on an irreducible affine variety Z there is an invariant function $f \neq 0$ and a closed subset $T \subset Z_f$ such that the action induces an isomorphism $\mathbb{C}^+ \times T \xrightarrow{\sim} Z_f$.

(c) We clearly have the implications (i) \Rightarrow (ii) \Rightarrow (iii). By assumption, the fibers of π are reduced and are finite unions of orbits, hence smooth. As a consequence, we have $T_x(\mathbb{C}^+x) = \text{Ker}(d\pi)_x$ for every $x \in S_0$, and so S_0 is smooth in x if and only if $S_0/\!\!/\mathbb{C}^+$ is smooth in $\pi(x)$, and in this case π is smooth in x.

Let us go back to the situation above where $C = \overline{E \cap \pi(X)} = \bigcup_i C_i$ and $S_i = \pi^{-1}(C_i)$, and consider the factorization as above:

$$S_i \xrightarrow{\pi_{S_i}} D_i := S_i /\!\!/ \mathbb{C}^+ \xrightarrow{\varphi_i} C_i.$$

LEMMA 3. In the following commutative diagram, let the vertical maps η_{S_i} and η_{C_i} denote the normalizations. Then the outer square is Cartesian, \tilde{S}_i is smooth, the morphism $\tilde{\varphi}_i: \tilde{S}_i /\!\!/ \mathbb{C}^+ \to \tilde{C}_i$ is smooth and η is birational.

$$\begin{split} \tilde{S}_i & \xrightarrow{\pi_{\tilde{S}_i}} \tilde{S}_i /\!\!/ \mathbb{C}^+ & \xrightarrow{\tilde{\varphi}_i} \tilde{C}_i \\ & \downarrow^{\eta_{S_i}} & \downarrow^{\eta} & \downarrow^{\eta_C} \\ S_i & \xrightarrow{\pi_{S_i}} S_i /\!\!/ \mathbb{C}^+ & \xrightarrow{\varphi_i} C_i \end{split}$$

PROOF. Since $\pi|_{S_i}: S_i \to C_i$ is smooth the fiber product $\tilde{S}_i := S_i \times_{C_i} \tilde{C}_i$ is a smooth irreducible surface and so the induced (finite and birational) morphism $\tilde{S}_i \to S_i$ is the normalization. Therefore, the quotient $\tilde{S}_i/\!\!/\mathbb{C}^+$ is normal, hence smooth, and the composition $\tilde{S}_i \xrightarrow{\pi_{\tilde{S}_i}} \tilde{S}_i/\!\!/\mathbb{C}^+ \to \tilde{C}_i$ is smooth. If follows that $\tilde{S}_i/\!\!/\mathbb{C}^+ \to \tilde{C}_i$ is smooth (because $\pi_{\tilde{S}_i}$ is surjective by Lemma 2(a)). Since π_{S_i} is the trivial \mathbb{C}^+ -bundle over a dense open set (Lemma 2(b)) we see that η is birational. \Box

REMARK 4. We believe that $\eta: \tilde{S}_i /\!\!/ \mathbb{C}^+ \to S_i /\!\!/ \mathbb{C}^+$ is finite, i.e. that η is the normalization map.

For a general variety Z with irreducible components $Z = \bigcup_i Z_i$ we denote by Z the disjoint union of the normalizations \tilde{Z}_i of the components Z_i and will call the canonical morphism $\eta_Z: \tilde{Z} \to Z$ the normalization of Z. Now Lemma 3 immediately implies the following result.

LEMMA 4. In the following diagram where η_S and η_C are the normalizations the outer square is cartesian, \tilde{S} is smooth and the morphisms $\pi_{\tilde{S}}$ and $\tilde{\varphi}$ are both smooth.

$$\begin{split} \tilde{S} & \xrightarrow{\pi_{\tilde{S}}} \tilde{D} := \tilde{S} /\!\!/ \mathbb{C}^+ & \xrightarrow{\tilde{\varphi}} \tilde{C} \\ \downarrow_{\eta_S} & & \downarrow_{\eta} & & \downarrow_{\eta_C} \\ S & \xrightarrow{\pi_S} D := S /\!\!/ \mathbb{C}^+ & \xrightarrow{\varphi} C \end{split}$$

4. Topological considerations (following Shulim Kaliman)

We follow here the ideas of Shulim Kaliman [**Ka04**] to give a proof of the conjecture of §1, based on some topological considerations. In fact, it suffices to assume that the ambient variety X is smooth and contractible and that the quotient Y is smooth. (The latter is even automatically the case as shown in the subsequent paper [**KaS04**].)

MAIN THEOREM. Let X be a 3-dimensional smooth affine variety with a free \mathbb{C}^+ -action. Assume that X is factorial, that $H_2(X) = H_3(X) = 0$ and that Y := $X/\!\!/\mathbb{C}^+$ is smooth. Then the action is a translation, i.e. X is \mathbb{C}^+ -isomorphic to $\mathbb{C}^+\times Y.$

We use the notation introduced in the previous section. Clearly, there is a finite subset $\mathcal{F} \subset C$ such that the following holds:

- 1. $C' := C \setminus \mathcal{F}$ is smooth,
- 2. $D' := D \setminus \varphi^{-1}(\mathcal{F})$ is smooth,
- 3. $\varphi' := \varphi|_{D'}: D' \to C'$ is unramified and surjective,

4. $S' := S \setminus \pi^{-1}(\mathcal{F})$ is smooth and $\pi_{S'}: S' \to D'$ is a trivial \mathbb{C}^+ -bundle. Put $Y' := Y \setminus \mathcal{F}, X' := X \setminus \pi^{-1}(\mathcal{F}), Y^0 := Y \setminus C$ and $X^0 := X \setminus S$. Then $X^0 \subset X' \subset X$ and $Y^0 \subset Y' \subset Y$, and $\pi^0: X^0 \to \pi(X^0) \subset Y^0$ is a principal \mathbb{C}^+ bundle by Proposition 2. We get the following exact homology sequence where the vertical maps are induced by π :

In the sequel we will frequently use the Thom isomorphism in the following form (see [**Do72**, **VIII.11**]).

Thom Isomorphism. Let Z be a smooth variety and $A \subset Z$ a closed smooth subvariety of codimension d. Put $Z^0 := Z \setminus A$. Then there is an isomorphism

$$H_j(Z, Z^0) \xrightarrow{\sim} H_{j-2d}(A).$$

In particular, $H_i(Z, Z^0) = 0$ for j < 2d and so $H_i(Z^0) \xrightarrow{\sim} H_i(Z)$ for j < 2d - 1.

Recall that the homology of an affine variety Z vanishes above dim Z (see [Mi63]). In particular, $H_i(Y) = H_i(Y^0) = 0$ for j > 2 and $H_i(X) = H_i(X^0) =$ 0 for j > 3. Since $\pi^{-1}(\mathcal{F})$ consists of a finite number of \mathbb{C}^+ -orbits we obtain $H_i(\pi^{-1}(\mathcal{F})) = 0$ for i > 0 and therefore get, from the Thom isomorphism and the exact sequence of the pair (X, X'),

 $H_i(X') \xrightarrow{\sim} H_i(X)$ for i = 0, 1, 2 and $H_i(X') = H_i(X) = 0$ for $j \ge 4$,

together with an exact sequence

$$0 \to H_0(\pi^{-1}(\mathcal{F})) \to H_3(X') \to H_3(X) \to 0.$$

Similarly, $H_i(Y') \xrightarrow{\sim} H_i(Y)$ for $i = 0, 1, 2, H_j(Y') = H_j(Y) = 0$ for $j \ge 4$ and $H_0(\mathcal{F}) \simeq H_3(Y')$. Moreover, $H_j(X^0) \xrightarrow{\sim} H_j(\pi(X^0))$ for all j since $X^0 \to \pi(X^0)$ is a principal \mathbb{C}^+ -bundle. Hence $H_2(X^0) \xrightarrow{\sim} H_2(\pi(X)) \xrightarrow{\sim} H_2(Y^0)$, because $Y^0 \setminus \pi(X^0)$ is a finite set. Finally, $H_3(X', X^0) \xrightarrow{\sim} H_1(S') \simeq H_1(D')$ and $H_3(Y', Y^0) \simeq H_1(C')$.

Now assume that $H_2(X) = 0$. Then we get the following commutative diagram with exact rows where θ is induced by $\varphi: D \to C$:

It is well-known and easy to see that the normalization $\eta_D: \tilde{D} \to D$ induces an injection $H_1(\tilde{D}) \hookrightarrow H_1(D)$ so that the two natural maps

$$\iota_D: H_1(D') \to H_1(D) \quad \text{and} \quad \iota_{\tilde{D}}: H_1(D') \to H_1(D)$$

have the same kernel. Moreover, $\iota_{\tilde{D}}$ is surjective. Clearly, the same holds for the curve C and so, using again the Thom Isomorphism, we get the following diagram with exact rows:

In other words, the kernel of the homomorphism $\iota_{\tilde{C}}$ and hence of ι_{C} is generated by simple loops around the points of $\tilde{C} \setminus C'$. The crucial point is to show that $\tilde{\theta}$ is an isomorphism.

PROPOSITION 3. Assume $H_2(X) = H_3(X) = 0$. Then $C \subset \pi(X)$. In particular, $\varphi: D \to C$ and $\tilde{\varphi}: \tilde{D} \to \tilde{C}$ are both surjective.

PROOF. If $C \not\subset \pi(X)$ then there is a point $y_0 \in \mathcal{F}$ which is not in $\pi(X)$ (by assumption (3) on the set \mathcal{F} , see above). The isomorphism $H_0(\mathcal{F}) \xrightarrow{\sim} H_3(Y')$ maps the point y_0 to the class ω given by a 3-sphere in Y' around y_0 . The image $\gamma_C := \rho_Y(\omega) \in H_1(C')$ is the sum of simple loops $\gamma_i \subset \Gamma_i$ around y_0 in the different analytic branches Γ_i of C through y_0 . These loops can be lifted to D' which implies that there is an element $\gamma_D \in H_1(D')$ such that $\theta(\gamma_D) = m\gamma_C$ with an integer m > 0, see the diagram (*) above. It follows that $\mu_X(\gamma_D) = 0$ and so $\gamma_D = \rho_X(\omega_X)$ for some $\omega_X \in H_3(X')$ such that $\delta'(\omega_X) = m\omega$. Now we have the commutative diagram

$$H_3(X') \xrightarrow{\tau_X} H_3(X) = 0$$

$$\delta' \downarrow \qquad \qquad \delta \downarrow$$

$$H_3(Y') \xrightarrow{\tau_Y} H_3(\pi(X))$$

By construction, $\tau_Y(\omega) \neq 0$ since $y_0 \notin \pi(X)$, and so $\tau_Y(\delta'(\omega_X)) \neq 0$ which leads to a contradiction. Thus $\pi: X \to Y$ is surjective, as well as $\varphi: D \to C$. Now Lemma 4 implies that $\tilde{\varphi}: \tilde{D} \to \tilde{C}$ is surjective, too.

REMARK 5. It follows from the diagram (**) above and Proposition 3 that the homomorphism $\theta: H_1(D') \to H_1(C')$ maps the kernel of $\iota_{\tilde{D}}$ surjectively onto the kernel of $\iota_{\tilde{C}}$, because $\tilde{D} \setminus D' \to \tilde{C} \setminus C'$ is surjective.

REMARK 6. In case $X = \mathbb{C}^3$ it was shown by Bonnet in **[Bo02]** that the quotient map π is surjective which implies the result above in this case.

PROPOSITION 4. Assume that $H_2(X) = H_3(X) = 0$. Then, with the notation above,

$$\rho_X(H_3(X')) \subset \operatorname{Ker}(\iota_D: H_1(D') \to H_1(D)),$$

$$\rho_Y(H_3(Y')) \subset \operatorname{Ker}(\iota_C: H_1(C') \to H_1(C))$$

(see the diagram (*) above).

PROOF. Let us first look at the map ρ_Y and recall that $Y' = Y \setminus \mathcal{F}$. The isomorphism $H_0(\mathcal{F}) \xrightarrow{\sim} H_3(Y')$ says that $H_3(Y')$ is generated by small spheres around the points of \mathcal{F} . Thus we get a sequence of maps

$$H_0(\mathcal{F}) \xrightarrow{\sim} H_3(Y') \xrightarrow{\rho_Y} H_3(Y', Y^0) \xrightarrow{\sim} H_1(C') \xrightarrow{\iota_C} H_1(C)$$

and we have to show that the composition is zero. For every $y \in \mathcal{F}$ we choose a small open neighborhood $U_y \subset Y$ such that $U_y \cap C$ is contractible. Put $U := \bigcup_y U_y, U' := U \cap Y'$ and $U^0 := U \cap Y^0 = U \setminus C$. The functoriality of the Thom isomorphism with respect to open embeddings (see [**Do72**, **VIII.11**]) implies the following commutative diagram (were we use $U \setminus U' = Y \setminus Y' = \mathcal{F}$)

and the claim follows.

For X and the map ρ_X we get a similar diagram (using $H_3(X) = 0$):

We have to show that the composition $H_0(X \setminus X') \to H_1(D)$ is zero. This time we choose for every orbit $O \subset X \setminus X'$ a small open neighborhood $U_O \subset X$ with the property that the image V_O of $S \cap U_O$ in D is contractible. Setting $U := \bigcup_O U_O$, $U' := U \cap X'$, $U^0 := U \cap X^0$ and $V = \bigcup V_O$ we obtain, as above, the commutative diagram

Hence, the horizontal composition of the maps is zero and the claim follows. \Box

PROOF OF THE MAIN THEOREM. We look again at the diagram (**) and claim that $\tilde{\theta}$ is an isomorphism. It follows from Proposition 4 that $\iota_{\tilde{D}}$ factors through μ_X and $\iota_{\tilde{C}}$ through μ_Y (see the diagram (*)), inducing the diagram

$$\begin{array}{cccc} H_1(D') & \xrightarrow{\mu_X} & H_2(X^0) & \xrightarrow{\bar{\iota}_D} & H_1(\tilde{D}) & \longrightarrow & 0 \\ \\ \theta & & \simeq & & & \theta \\ H_1(C') & \xrightarrow{\mu_Y} & H_2(Y^0) & \xrightarrow{\bar{\iota}_C} & H_1(\tilde{C}) & \longrightarrow & 0 \end{array}$$

where the composition of the horizontal maps are $\iota_{\tilde{D}}$ and $\iota_{\tilde{C}}$, respectively. Since θ maps the kernel of $\iota_{\tilde{D}}$ surjectively onto the kernel of $\iota_{\tilde{C}}$ (Remark 5) we see that the isomorphism $H_2(X^0) \xrightarrow{\sim} H_2(Y^0)$ maps the kernel of $\bar{\iota}_D$ onto the kernel of $\bar{\iota}_C$. Hence $\tilde{\theta}$ is an isomorphism, too.

By definition, $H_1(\tilde{C}) = \bigoplus_i H_1(\tilde{C}_i)$ and $H_1(\tilde{D}) = \bigoplus_i H_1(\tilde{D}_i)$ and so the (unramified) morphisms $\tilde{D}_i \to \tilde{C}_i$ induce an isomorphisms $H_1(\tilde{D}_i) \xrightarrow{\sim} H_1(\tilde{C}_i)$ for all *i*. The next well-known lemma shows that $\tilde{\varphi}$ is an isomorphism which contradicts our assumption that the set *E* is not finite. Therefore, by Proposition 2, the morphism $\pi: X \to \pi(X)$ is a principal \mathbb{C}^+ -bundle. The claim follows from Corollary 2 once we show that $\pi(X) = Y$. But this follows from the exact homology sequence for the pair $(Y, \pi(X))$ and the Thom Isomorphism:

LEMMA 5. Let C_0, D_0 be irreducible affine smooth curves and $\varphi: D_0 \to C_0$ an unramified surjective morphism. Assume that φ induces an isomorphism $H_1(D_0) \xrightarrow{\sim} H_1(C_0)$. Then φ is an isomorphism.

PROOF. Assume that the morphism φ is of degree d > 1. Let $\mathcal{F} \subset C_0$ be the (finite) subset of those points y where $\#\varphi^{-1}(y) < d$. Then we obtain the following relation between the Euler characteristics of the curves C_0 and D_0 :

$$\chi(D_0) - \#\varphi^{-1}(\mathcal{F}) = d\left(\chi(C_0) - \#\mathcal{F}\right).$$

By assumption, $\chi(D_0) = \chi(C_0)$ and $\#\varphi^{-1}(\mathcal{F}) \leq d \#\mathcal{F}$ and so $(d-1)\chi(C_0) \geq 0$. This implies that C_0 and D_0 are both isomorphic to \mathbb{C} or to $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$. The first case cannot occur since there are no unramified morphisms $\mathbb{C} \to \mathbb{C}$ of degree > 1. In the second case there is, up to isomorphism only one morphism $\mathbb{C}^* \to \mathbb{C}^*$ of degree d, namely $z \mapsto z^d$, and this one induces the map $d \cdot \mathrm{Id}$ on $H_1(\mathbb{C}^*) \simeq \mathbb{Z}$ which is not an isomorphism.

References

- [Bo02] Bonnet, Ph., Surjectivity of quotient maps for algebraic C⁺-actions and polynomial maps with contractible fibers, Transform. Groups 7 (2002), 3–14.
- [DeF00] Deveney, J. K.; Finston, D. R., Free G_a -actions on \mathbb{C}^3 , Proc. Am. Math. Soc. **128** (2000), 31–38.
- [Do72] Dold, A., Lectures on Algebraic Topology, Grundlehren der math. Wiss., vol. 200, Springer Verlag, Berlin–Heidelberg–New York, 1972.
- [Ka02] Kaliman, S., Free \mathbb{C}^+ -actions on \mathbb{C}^3 are translations, Invent. Math. **156** (2004), 163–173.
- [KaS02] Kaliman, S., Saveliev, N., C₊-actions on contractible threefolds, Michigan J. Math. (2004) (to appear).
- [Kr96] Kraft, H., Challenging problems on affine n-space, Séminaire Bourbaki, Vol. 1994/95, Exp. No. 802, 5, Astérisque 237 (1996), Société Mathématique de France, Paris, 295– 317.
- [Kr85] Kraft, H., Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, vol. D1, Vieweg Verlag, Braunschweig/Wiesbaden, 1985, 2., durchgesehene Auflage.
- [KrP85] Kraft, H.; Popov, V. L., Semisimple group actions on the three dimensional affine space are linear, Comment. Math. Helv. 60 (1985), 466–479.
- [Mi63] Milnor, J., Morse Theory, Princeton Univ. Press, Princeton, NJ, 1963.
- [Mi80] Miyanishi, M., Regular subrings of a polynomial ring, Osaka J. Math. 17 (1980), 329–338.
- [Re68] Rentschler, R., Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris 267 A (1968), 384–387.

- [Wi90] Winkelmann, J., On free holomorphic \mathbb{C} -actions on \mathbb{C}^n and homogeneous Stein manifolds, Math. Ann. **286** (1990), 593–612. Zariski, O., Interprétations algébro-géométriques du quatorzième problème de Hilbert,
- [Za54] Bull. Sci. Math. 78 (1954), 155-168.

Mathematisches Institut der Universität Basel Rheinsprung 21, CH-4051 Basel, Switzerland *E-mail address*: Hanspeter.Kraft@unibas.ch