Cerebrospinal Fluid Profile of Amyloid β Peptides in Patients with Alzheimer’s Disease Determined by Protein Biochip Technology

Alessia S. Maddalena a, Andreas Papassotiropoulos a, Charo Gonzalez-Agosti a, Andri Signorella, Thomas Hegi b, Thomas Pasch b, Roger M. Nitscha, Christoph Hock a

aDivision of Psychiatry Research and bInstitute of Anesthesiology, University of Zürich, Zürich, Switzerland

Key Words
Alzheimer’s disease · β-Amyloid · Cerebrospinal fluid · Protein biochip · ELISA

Abstract
Amyloid-β peptides (Aβ) are major components of amyloid plaques in the Alzheimer’s disease (AD) brain and have been proposed as diagnostic markers in cerebrospinal fluid (CSF). Aβ derived from brain may be processed into fragments before emerging in CSF. Therefore, we determined mass profiles of Aβ peptides in CSF of patients with AD and age-matched healthy control subjects (CTR) by using protein biochip technology. Aβ peptides were captured on the chip surfaces (spots) by the specific monoclonal antibody 6E10 and were then analyzed by integrated surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS). We found Aβ species with mean molecular masses at 1,583.3 Da (corresponding to Aβ 2–14), 2,068.5 Da (Aβ 1–17), 2,166.4 Da (Aβ 1–18), 3,676.6 Da (Aβ 1–33), 3,789.4 Da (Aβ 1–34), 4,076.9 Da (Aβ 1–37), 4,134.0 Da (Aβ 1–38), 4,233.3 Da (Aβ 1–39), 4,332.4 Da (Aβ 1–40) and 4,516.8 Da (Aβ 1–42) in both AD (n = 24) and CTR (n = 24) subjects. Aβ 1–38 appeared to be a major Aβ species in human CSF along with Aβ 1–40. Quantitation revealed that CSF levels of Aβ 1–38 were significantly decreased in AD as compared to CTR subjects. The CSF profile of Aβ peptides may be used for diagnostic and therapeutic purposes in clinical studies.

Introduction
β-Amyloid (Aβ) deposits, along with neurofibrillary tangles, are the major histopathological hallmarks of Alzheimer’s disease (AD). The predominant protein component of Aβ plaques are strongly aggregating peptides with an approximate molecular mass of 4 kDa [1–3]. Whereas Aβ 42 is the major component of Aβ plaques, Aβ 40 is mostly found in vascular amyloid of brain blood vessels [4]. Cerebrospinal fluid (CSF) levels of Aβ 42 measured by ELISA were shown to be lower in AD patients as compared to controls [for a review, see 5], while conflicting results were reported from Aβ 40 measurements [6–12]. A number of reasons explaining the conflicting data were discussed, including heterogeneity of the patient sample and limitations of the ELISA method used, which do not display the various fragments of peptides captured by the monoclonal antibodies.
Neurodegenerative Dis 2004;1:231–235
Maddalena et al.

Fig. 1. Potential cleavage sites of Aβ peptide: secretases and putative proteases. α = Alpha secretase; β = beta secretase (BACE 1 and 2); γ = gamma secretase; DPP = dipeptidyl peptidase; IDE = insulin-degrading enzyme; ECE = endothelin-converting enzyme 1 (ECE-1); NEP = neprylisin; COL = collagenase; MMP = matrix metalloproteinase 9 (MMP-9); CAD = cathepsin D; PDD = peptidyl dipeptidase.

To clarify the patterns of Aβ peptides present in CSF we determined mass profiles of Aβ in patients with AD, as well as in age-matched healthy control subjects (CTR) by using a protein biochip technology (SELDI, Ciphergen) [13–17].

Subjects and Methods

Subjects

A diagnosis of probable AD was made according to NINCDS-ADRDA criteria [18] as well as ICD10 [19]. The clinical workup included neuropsychological testing, MRI scans and routine CSF investigations. The mean Mini-Mental State Examination (MMSE) scores were 21 ± 5.8 (SD) in the AD group (n = 24). The mean age (SD) was 71.2 ± 9 years; there were 10 females and 14 males. Healthy CTR (n = 24) were recruited among cognitively intact patients undergoing spinal anesthesia before surgical intervention. The mean age was 65.7 ± 12 years; there were 8 females and 16 males. The study was approved by the local ethics committee and subjects gave written informed consent prior to the investigation. CSF was obtained by lumbar puncture, aliquoted, immediately frozen at the bedside (−80°C) and freshly thawed prior to the analyses.

Protein Biochip Analysis

Capturing Aβ peptides from CSF was done on SELDI Protein G-coated (PG20) ProteinChip® Arrays (Ciphergen Biosystems, Palo Alto, Calif., USA). Like PS20 ProteinChips, PG20 ProteinChip Arrays contain an epoxy surface which covalently reacts with amine and thiol groups and allows precoupling with recombinant Protein G. The specific monoclonal antibody 6E10 against Aβ epitope 1–17 (Signet Pathology Systems, Dedham, Mass., USA) was first purified on Protein G columns [ImmunoPure Protein (G) IgG Purification Kit, Pierce Biotechnology, Rockford, Ill., USA] and then added (2 µl of 0.2 mg/ml) on the microspots followed by incubation in a humidity chamber at room temperature for 1 h. Antibody solution was removed and the chip array was washed; first in bulk with 8 ml PBS (pH 7.4) containing 0.5% (v/v) Triton X-100 for 10 min, then washed in bulk twice with 8 ml PBS for 5 min, and finally rinsed with 1 mM HEPES buffer. -Cyano-4-hydroxycinnamic acid (CHCA) was dissolved in 50% (v/v) acetonitrile, 0.1% (v/v) trifluoroacetic acid. After drying, a 1:5 diluted solution of CHCA was added (0.5 µl) and mass identification was made by 100 averaged shots in a Ciphergen SELDI Protein Biology System II (PBS II). All data were normalized against a common matrix peak. Signal to noise (S/N) ratios above 2.5 were considered to be sufficient to submit the data to statistical analysis.

Statistical Analysis

Group comparisons were done by nonparametric Mann-Whitney U tests. Statistical significance was assumed at p < 0.05.

Results

We found CSF species of Aβ peptides with mean molecular masses at 1,583.3 Da (corresponding to Aβ2–14), 2,068.5 Da (Aβ1–17), 2,166.4 Da (Aβ1–18), 3,676.6 Da (Aβ1–33), 3,789.4 Da (Aβ1–34), 4,076.9 Da (Aβ1–37), 4,134.0 Da (Aβ1–38), 4,233.3 Da (Aβ1–39), 4,332.4 Da (Aβ1–40) and 4,516.8 Da (Aβ1–42) in both AD (n = 24) and CTR (n = 24) subjects (fig. 1a). Mass detection showed high accuracy with minimal intersample deviation and corresponded well to calculated peptide masses (table 1, fig. 1).

Aβ1–38 and Aβ1–40 were the most prominent Aβ species in CSF and fulfilled the requirement of an S/N ratio over 2.5 for quantitation (fig. 2a, b).
Fig. 2. a CSF profile of Aβ peptides (1 subject) captured by monoclonal antibody 6E10 on a protein biochip.

b Percentage of Aβ peptide peaks with an S/N ratio higher than 2.5.

Table 1. CSF Aβ peptides captured by monoclonal 6E10 antibody

<table>
<thead>
<tr>
<th>Aβ peptides</th>
<th>Mean MW observed, Da</th>
<th>SD Da</th>
<th>MW calculated Da</th>
<th>Amino acid sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–14</td>
<td>1,583.3</td>
<td>0.08</td>
<td>1,583.6</td>
<td>AEFRHDSGYEVHH</td>
</tr>
<tr>
<td>17</td>
<td>2,068.5</td>
<td>0.69</td>
<td>2,068.2</td>
<td>DAEFRHDSGYEVHHQKL</td>
</tr>
<tr>
<td>18</td>
<td>2,166.4</td>
<td>0.65</td>
<td>2,167.3</td>
<td>DAEFRHDSGYEVHHQKLV</td>
</tr>
<tr>
<td>33</td>
<td>3,676.6</td>
<td>0.89</td>
<td>3,674.0</td>
<td>DAEFRHDSGYEVHHQKLVFAEDVGSNKGAIG</td>
</tr>
<tr>
<td>34</td>
<td>3,789.4</td>
<td>0.85</td>
<td>3,787.2</td>
<td>DAEFRHDSGYEVHHQKLVFAEDVGSNKGAIGL</td>
</tr>
<tr>
<td>37</td>
<td>4,076.9</td>
<td>0.98</td>
<td>4,074.5</td>
<td>DAEFRHDSGYEVHHQKLVFAEDVGSNKGAIGLVMVG</td>
</tr>
<tr>
<td>38</td>
<td>4,134.0</td>
<td>1.00</td>
<td>4,131.6</td>
<td>DAEFRHDSGYEVHHQKLVFAEDVGSNKGAIGLVMVVG</td>
</tr>
<tr>
<td>39</td>
<td>4,233.3</td>
<td>1.10</td>
<td>4,230.7</td>
<td>DAEFRHDSGYEVHHQKLVFAEDVGSNKGAIGLVMVVG</td>
</tr>
<tr>
<td>40</td>
<td>4,332.4</td>
<td>1.00</td>
<td>4,329.9</td>
<td>DAEFRHDSGYEVHHQKLVFAEDVGSNKGAIGLVMVVG</td>
</tr>
<tr>
<td>42</td>
<td>4,516.8</td>
<td>1.63</td>
<td>4,514.1</td>
<td>DAEFRHDSGYEVHHQKLVFAEDVGSNKGAIGLVMVVG</td>
</tr>
</tbody>
</table>

Mean MW with standard deviation (SD) in daltons, calculated peptide MW in daltons and amino acid sequence. Only peaks with an S/N ratio higher than 2.5 were included in the analyses.
Fig. 3. CSF Aβ_{1-38} (a) and Aβ_{1-40} (b) peak intensity measured on the protein biochip after normalization to a common matrix peak in patients with AD and CTR. *p = 0.001 (a) and *p = 0.000 (b), Mann-Whitney test. Only peaks with an S/N ratio higher than 2.5 were included in calculations. c Mean peak intensity Aβ_{1-38}/Aβ_{1-40} ratio in CSF of patients with AD and CTR. *p < 0.01, Mann-Whitney U test.

The mean peak intensity corresponding to Aβ_{1-38} [mean molecular weight (MW) 4,134 Da] was lower in CSF of AD patients (mean 8.65 ± 1.12 SE, n = 23), as compared to CTR (22.28 ± 4.25, n = 24; p < 0.01, Mann-Whitney U test) (fig. 3a). Similarly, the mean peak intensity corresponding to Aβ_{1-40} (mean MW 4,332.4 Da) was lower in CSF of AD patients (mean 7.55 ± 1.18 SE, n = 21) as compared to CTR (23.98 ± 4.25, n = 24; p < 0.01, Mann-Whitney U test) (fig. 3b).

The mean peak intensity of the Aβ_{1-38}/Aβ_{1-40} ratio was significantly higher in CSF of the AD patients (1.43 ± 0.15 SE, n = 21), as compared to CTR (0.95 ± 0.08, n = 24; p = 0.01, Mann-Whitney U test) (fig. 3c).

Discussion

We have determined mass profiles of Aβ peptides in human CSF by using protein biochip technology. We found Aβ species corresponding to Aβ_{1-40} and Aβ_{1-42} (4,333.5 and 4,517.7 Da, respectively), and additionally detected Aβ species corresponding to Aβ_{2-14}, Aβ_{1-17}, Aβ_{1-18}, Aβ_{1-33}, Aβ_{1-34}, Aβ_{1-37}, Aβ_{1-38} and Aβ_{1-39} in both AD patients and CTR subjects. Presence of Aβ species with similar mass profiles was recently reported in cell culture media, measured by immunoprecipitation-MALDI-TOF mass-spectrometric analysis (IP/MS) [20, 21], immunoprecipitation-HPLC-mass spectrometry [22], as well as by SELDI technology [13–16]. In human CSF, several of the mass peaks found in the present analyses, including Aβ_{1-38}, were also identified by MALDI-TOF [6] and SELDI [17]. Thus, protein biochip technology may allow for detection of a heterogeneous population of truncated Aβ peptides in human CSF. The exact origin of the various Aβ species is currently not known; in addition to the action of the APP secretases and endopeptidases, such as IDE and neprelysin (see fig. 1), other yet unidentified proteases may be involved. Interestingly Aβ_{1-38} turned out to be one of the most prominent Aβ peptide in CSF, particularly in AD patients, where it showed an even higher peak intensity than Aβ_{1-40}. These results are in line with a recent report of increased Aβ_{1-38} (in percent, relative to total Aβ) in CSF of patients with AD, as well as chronic neuroinflammation [6].

The generation of Aβ_{1-38} peptide is still a matter of discussion. Beher et al. [16] showed that such C-terminally truncated peptides are generated by action of γ-secretase and not by a separate enzyme entity. In a cell culture model, Weggen et al. [23] and De Strooper and Konig [24] also demonstrated an increase of Aβ_{1-38} peptides and a de-
crease of A_β_{42} upon administration of nonsteroidal anti-inflammatory drugs with potential γ-secretase activities.

In conclusion, protein biochip technology may allow for both mass profiling and relative quantitation of A_β species in human CSF, and may thus expand the methodological repertoire of diagnostic and therapeutic biomarker research in AD.

Acknowledgments

We thank Lee Lomas and Pia Nybom for technical support and installation of the SELDI protein biochip system (Ciphergen). Andrea Walter, Estelle Obrist, Christin Wilde and Esmeralda Garcia for expert technical assistance, and Jay Tracy for editing the manuscript. This work was supported by NCCR on Neuronal Plasticity and Repair, and the European Union under the programme ‘Quality of Life and Management of Living Resources’, Key Action 3 ‘The Cell Factory’, Contract No. QLK3-CT-2001-02362.

References

