edoc

The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells

Zahno, Anja and Brecht, Karin and Morand, Réjane and Maseneni, Swarna and Török, Michael and Lindinger, Peter W. and Krähenbühl, Stephan. (2011) The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells. Biochemical pharmacology, Vol. 81, Issue 3. pp. 432-441.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5841928

Downloads: Statistics Overview

Abstract

Amiodarone is a class III antiarrhythmic drug with potentially life-threatening hepatotoxicity. Recent in vitro investigations suggested that the mono-N-desethyl (MDEA) and di-N-desethyl (DDEA) metabolites may cause amiodarone's hepatotoxicity. Since cytochrome P450 (CYP) 3A4 is responsible for amiodarone N-deethylation, CYP3A4 induction may represent a risk factor. Our aim was therefore to investigate the role of CYP3A4 in amiodarone-associated hepatotoxicity. First, we showed that 50?M amiodarone is more toxic to primary human hepatocytes after CYP induction with rifampicin. Second, we overexpressed human CYP3A4 in HepG2 cells (HepG2 cells/CYP3A4) for studying the interaction between CYP3A4 and amiodarone in more detail. We also used HepG2 wild type cells (HepG2 cells/wt) co-incubated with human CYP3A4 supersomes for amiodarone activation (HepG2 cells/CYP3A4 supersomes). Amiodarone (10-50?M) was cytotoxic for HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes, but not for HepG2 cells/wt or less toxic for HepG2 cells/wt incubated with control supersomes without CYP3A4. Co-incubation with ketoconazole, attenuated cytotoxicity of amiodarone incubated with HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes. MDEA and DDEA were formed only in incubations containing HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes but not by HepG2 cells/wt or HepG2 cells/wt with control supersomes. Metabolized amiodarone triggered the production of reactive oxygen species, induced mitochondrial damage and cytochrome c release, and promoted apoptosis/necrosis in HepG2 cells/CYP3A4, but not HepG2 cells/wt. This study supports the hypothesis that a high CYP3A4 activity is a risk factor for amiodarone's hepatotoxicity. Since CYP3A4 inducers are used frequently and amiodarone-associated hepatotoxicity can be fatal, our observations may be clinically relevant.
Faculties and Departments:03 Faculty of Medicine > Bereich Medizinische Fächer (Klinik) > Klinische Pharmakologie > Klinische Pharmakologie (Krähenbühl)
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Medizinische Fächer (Klinik) > Klinische Pharmakologie > Klinische Pharmakologie (Krähenbühl)
03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Clinical Pharmacology (Krähenbühl)
05 Faculty of Science
05 Faculty of Science > Departement Pharmazeutische Wissenschaften
05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Pharmazie
05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Pharmazie > Pharmakologie (Krähenbühl)
UniBasel Contributors:Krähenbühl, Stephan and Brecht Brüngger, Karin
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:Pergamon Press
ISSN:0006-2952
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:15 Aug 2019 14:53
Deposited On:08 Jun 2012 06:41

Repository Staff Only: item control page