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1 Introduction 1

1 Introduction
The biggest part of the human population lives in cities or urban agglomerations.
Anthropogenic activities (living, working, traffic, etc) modify more and more these urban
areas in manifold ways. Cities consist of building structures of different vertical and
horizontal extension with varying building material. The interaction between this complex
urban morphology and the atmosphere close to the ground leads to the urban boundary layer.
A city in its complete extension influences the physical and the chemical state of the lower 1-2
km of the atmosphere.

The discussion on the predicted global climate change has shifted again increasing interest to
the topic "urban climate". Many measurements of air temperature were done at places, which
during this century gradually changed from rural to urban sites, and therefore for example the
question arises, whether the measured increased temperatures could not be explained by the
heat island effect.

In the early years of urban climate research the primary scope was focussed on finding
measures for the strength of the urban anomaly compared to its “rural” counterpart. The
climate of cities has been recognized as a mesoscale phenomenon whose properties are
affected by anthropogenic influences and urban planning. In general there are three main
characteristics valid for most urban atmospheres (i.e. Landsberg, 1981, Oke, 1987, Garrat,
1992):

•  The urban environment in the nighttime is warmer than the surrounding areas, this fact is
usually referred to as the “urban heat island”.

•  Due to the very rough surface of a city, the air motion is slower compared to rural
surfaces.

•  evaporation rates are generally lower because large parts of the ground are sealed.

In recent years the aspect of air pollution became increasingly important in urban climate
research (Cermak, 1995). Sources of pollutants are highly concentrated in urban areas and
some of them could sensitively harm the health of the residents in case of an accident. A better
understanding of the dispersion processes over heterogeneous terrain like an urban surface is
therefore needed for the development of dispersion models and models for accident scenarios,
where a fast and well founded forecast could even save lives.

The transport of any property in the atmosphere is strongly associated with advection and
dispersion. Dispersion again is governed to a large amount by the turbulent state of the lower
atmosphere. The knowledge of these turbulent characteristics is therefore an essential part for
the design of a useable dispersion model (Rotach, 1998). Unfortunately the common
“classical” theories for the description of atmospheric turbulence rely on flat and
homogeneous surface types. In complex terrain and especially over a rough urban surface the
required preconditions of these theories are often not given and their application becomes
questionable at least.

The aim of this study is to provide more information about the nature and the structure of
turbulence in the lowest one hundred meters above a typical European urban surface. Beside
the classical approaches the identification and description of organized motions was a main
point of interest. The results should also give a contribution to the design of future
experiments on the subject.

This study is the result of the Swiss National Science Foundation grants 20-40621.94 and
20.49490.96, the BASTA (BAsler STAdtklima)-project.
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2 Theory
2.1 The planetary boundary layer
The planetary boundary layer (PBL, also known as the atmospheric boundary layer, ABL) is
the region of the lowest 1-2 km of the lower atmosphere (troposphere). Its depth and structure
is determined by the physical and thermal properties of the underlying surface in conjunction
with the dynamics and thermodynamics of the lower atmosphere. Above the PBL is the free
atmosphere, where the flow is no longer influenced by surface properties and is in near-
geostrophic balance. The PBL is the layer, where the turbulent exchange of momentum, heat
and mass occurs. The energy for this turbulent exchange is provided by the large vertical wind
shear and the thermal effects of surface heating. Temporal variations of the PBL depth are
forced by the diurnal cycle of heating and cooling the surface and the evolution and passage
of mesoscale and synoptic scale systems, while spatial variations occur due to changes in land
use and surface topography. The PBL responds to surface forcings with a timescale of about
an hour or less.

Fig. 2.1 shows the concept of an idealized homogeneous, stationary and neutrally stratified
boundary layer.
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Fig. 2.1: The concept of an idealized PBL (adapted and slightly modified from Schmid and Rotach, 1997).

The main characteristics of the regions and layers are:

•  outer region: the turbulent fluxes vary with height (mostly decreasing with increasing
height). With increasing height, the influence of the surface (friction) decreases in favor of
the Coriolis effects. Wind direction changes to the geostrophic direction at the upper
boundary. The most important scaling length is the height of the PBL zi.

•  inner region: vertical turbulent fluxes can be considered as constant. Coriolis effects can
be neglected in favor of friction forces. The most important scaling length is the height
above ground z.

•  mixed layer: turbulence is mainly driven by thermal convection

•  inertial sublayer: the characteristics of both regions hold approximately.

•  roughness sublayer: influences of the surface and the roughness elements force the flow to
be essentially three dimensional.
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•  canopy layer: characteristic profiles of mean variables and higher order moments for
certain types of canopies, highly intermittent turbulence.

This is just an idealized concept of the PBL, which is varying strongly according to
atmospheric and surface conditions. The next section will treat the subject of the urban
boundary layer more sophistically.

The state of the atmosphere can be described by the following seven variables:

•  the wind velocity vector U with its longitudinal, lateral and vertical components u, v
and w

•  temperature T or potential temperature θ

•  pressure p

•  density ρ

•  specific humidity q
Five equations form the frame in which the spatial (x, y, z) and temporal (t) dependence of
these variables can be described, namely: the conservation equations for momentum
(equations of motion, Navier-Stokes’ equations), mass (continuity equation), moisture and
heat (the first law of thermodynamics) and the equation of state for ideal gases. For this
complex set of equations as applied to the boundary layer, no analytical solution is known.
Therefore the equations have to be simplified depending on the scale of the problem to solve
by eliminating terms that are orders of magnitude smaller than others.

To separate the processes of different scales, Reynolds’ decomposition is usually applied. The
variables of interest are split into a mean and a fluctuating part. For any given variable x, this
means

'xxx += (2.1)

where x is the average of x over a given time interval and x’ is the momentary deviation from
this average. By this, 0=′x  and for the product of two variables x and y

'' yxyxxy +⋅= (2.2)

holds. Note that the nonlinear term yx ′′  is not necessarily zero. The second moments 2x′ and
yx ′′  can be interpreted in a statistically sense as variance and covariance, respectively.

Applying Reynolds’ averaging and assuming several reasonable conditions, that are valid in
the PBL, namely:

•  incompressibility

•  hydrostatic equilibrium of the mean flow (dynamic pressure changes are negligible)

•  density changes only essential for ρ’g

•  (ρ’,θ’,p’) << ( )p,,θρ

•  molecular diffusivity << turbulent diffusivity
The governing equations can be substantially simplified to a Boussinesq set of equations for
the mean motions in the turbulent boundary layer (see i.e. Stull (1988) or Panofsky and
Dutton (1984) for a comprehensive derivation of the equations):
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the first law of thermodynamics, where the first term on the right side stands for the effect of
net radiation and the effect of latent heat on temperature change, Rn is the net radiation, E the
evaporation rate, λv the latent heat of vaporization of water and cp the specific heat at constant
pressure for moist air,
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the conservation of moisture, where Smoist stands for the effect of evaporation on moisture
change,
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the equation of state with ℜ as the gas constant for dry air and
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the continuity equation.

The total derivative d/dt is defined as
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From the equations of motion eqs.(2.3-5) the budget equation for turbulent kinetic energy
(TKE) per unit mass , defined as ( )222

2
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  I    II III IV V    VI   VII

Term II and III refer to the production rate of TKE by the mean wind shear; term IV describes
the buoyant production (unstable conditions) or consumption (stable conditions) of TKE, term
V relates pressure perturbations to the redistribution of TKE, term VI represents the turbulent
transport of TKE and term VII stands for the dissipation of TKE into heat. The following
restrictions have been made to derive eq.(2.11) from eqs.(2.5-9): Vertical velocity fluctuations
are of the same magnitude as the horizontal and vertical gradients are much larger than the
horizontal gradients. The factor (1+0.07/β) in term IV accounts for the production of
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convective energy due to water vapor, where β is the Bowen Ratio, the ratio of sensible to
latent heat flux at the surface.

In the set of equations for turbulent flow above, the number of unknowns is larger than the
number of equations and when we introduce new equations for these unknowns, even more
unknowns appear. The higher the order of moments included in the equations, the higher the
number of unknown moments will be. This fact is called the closure problem, for any finite
set of those equations, the description of turbulence is not closed. It follows that at a certain
level of desired complexity (the order of closure), assumptions have to be made about the
remaining unknowns. Similarity theory for example can be viewed as a type of zero-order
closure. Similarity relationships can be used to diagnose the mean values of wind,
temperature, etc. as a function of height without any turbulence closure assumptions to be
made, however this implies, that the turbulent fluxes are known. In first order closure the
turbulent fluxes are related to mean quantities, this is for example done in K-theory, where the
turbulent transport is related to the gradient of the mean by an eddy diffusivity coefficient.
The equations of mean and turbulent flow can be simplified by making assumptions about the
evolution of the variables or their horizontal variability.

2.1.1 Homogeneity
For turbulent flows, homogeneity means, that the statistics of a variable do not change in
space. This does not hold for the vertical direction in the PBL, where the flow is clearly
stratified. Homogeneity in the boundary layer therefore means horizontal homogeneity. If
homogeneity is given, the partial derivations ∂/∂x and ∂/∂y vanish (as in eq.(2.10)).
Homogeneity also always refers to the scale of the problem under consideration: very close to
the surface, even a flat desert is inhomogeneous, whereas sufficiently far from the ground,
even a rough surface like a forest or a city can be considered as homogeneous. As a measure
for homogeneity the “required fetch” is introduced. Fetch refers to the upwind distance with
the same surface characteristics. If the fetch is large enough, the flow can be considered
adapted to the surface and no essential horizontal differences exist.

2.1.2 Stationarity

If the statistics of a variable do not change in time, stationarity is given and hence ∂/∂t=0.
Stationarity is therefore homogeneity in time. Due to the diurnal cycle of solar radiation
(influencing temperature, humidity and wind) and changing synoptic patterns, stationarity is
not given in the boundary layer. However, stationarity can be approached by choosing a
suitable averaging time. The spectrum of atmospheric motions shows a pronounced gap at
time periods of one hour. Motions at the low frequency side of the gap can be associated with
the mean flow, motions right of the gap represent turbulence. Averaging periods of 30 to 60
minutes therefore record the turbulent exchange under approximate stationary conditions.

2.1.3 Isotropy
If the statistics of a flow are invariant to rotation and reflections of the coordinates
(σu

2=σv
2=σw

2), isotropy is given. Obviously, the flow in the in the PBL for the given
averaging times is fully anisotropic. However, the concept of isotropy becomes very
important for spectral considerations. The smallest eddies are found to be isotropic in the
inertial subrange, which allows a relatively easy description of the spectral densities in this
scale. See chapter 2.4 for the concept of atmospheric turbulence spectra.

2.2 The structure of the urban boundary layer
A city consists of building structures of varying material and varying horizontal and vertical
length scales. The interaction between this heterogeneous urban surface and the atmosphere
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modifies the surface layer and produces an urban boundary layer. The turbulent exchange
processes will vary strongly both in time and space due to the inhomogeneous physiognomy
of a city. At the rural-urban interface, an internal boundary layer is formed, the urban
boundary layer (UBL). If the site of consideration is far enough from this transitional region,
the former rural boundary layer is completely replaced by the UBL. Within the UBL the
roughness sublayer (RS) and the canopy layer (CL) are considerably extended compared to
their rural counterparts, whereas the inertial sublayer is reduced or may even vanish. This
concept was first presented by Rotach (1999) and is shown in fig. 2.2.
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Fig. 2.2: Concept of the sublayers in the UBL, with zi as mixed layer height and z* as the height of the roughness
sublayer
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Strictly speaking the conventional methods to describe the characteristics of turbulent
exchange of momentum, heat and mass, as developed for smooth, homogeneous surfaces, can
not be applied to the urban boundary layer. Due to the lack of better knowledge dispersion-
and flow-models still apply the semi-empirical Monin-Obukhov similarity framework
(chapter 2.3) for the parameterization of the urban boundary layer. Therefore, the present
model calculations are normally based on very simplified methods.

For modeling purposes it is important to know the complex structure of the turbulent
characteristics above urban areas and how they compare to the better known values of other
surfaces types. The dimensionless variances of the three wind components are of special
interest because they play a dominant role in pollution dispersion models.

The properties of urban surfaces strongly affect the local atmosphere. Their aerodynamic
roughness and emission of thermal energy act on the wind field. In the lower part, in the urban
canopy layer, high levels of turbulence result from pressure patterns formed on the individual
buildings and by thermal convection cells.
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2.3 Similarity theory
Similarity theory provides a useful tool to derive empirical relationships for the variables of
interest, if it is not possible to derive laws based on first principles of the governing physics of
the turbulent flow. It is based on organizing the variables into dimensionless groups by
applying a dimensional analysis called Buckingham Pi theory. A non-dimensionalized
variable can then be described by an empirical “universal” function of dimensionless groups
of variables, as long as all important variables for the situation studied are taken into account.
This universal function works everywhere at all the time for the problem in question.

Four steps have to be performed for developing the empirical relationships (Stull, 1988):
•  chose the relevant variables for problem in question
•  organize the variables into non-dimensionalized groups
•  experimentally determine the values of the dimensionless groups
•  describe the relationship between groups by fitting an empirical curve to the data

This four step process results in an empirical equation or a set or curves of a similar shape
(hence the name similarity theory).

2.3.1 Monin-Obukhov Similarity
The crucial part of similarity theory is the choice of the relevant variables. This is relatively
simple for the surface layer (SL), where the fluxes of momentum, sensible and latent heat are
almost constant (variation < 10 %) due to the required conditions for homogeneity and
stationarity and a comparison of the order of magnitudes. Equation (2.3) i.e. then reduces to

0'' ≈
∂
∂ wu
z

, (2.12)

which means, that the coordinate system can always be rotated in a way that 0=v  and the
mean wind vector is described by u  only (cf. Appendix A.2). The problem is therefore one
dimensional for a homogeneous surface.

In their original work from 1958, Monin and Obukhov determined the four relevant variables
that govern the turbulent flow in the SL as:
•  the height above ground level z. In the case of rough surfaces the reference height is z-d,

where d is the zero plane displacement height (cf. chapter 4.1)
•  the friction velocity u* to account for production of mechanical turbulence due to friction

at the surface
•  the kinematic heat flux ''θw  to account for energy exchange at the surface (and

production of thermal turbulence)
•  the term g/θ  to consider for buoyancy effects due to temperature variations, where g

stands for earth’s gravity acceleration
As a second length scale (beside z), Monin and Obukhov used the well known Monin-
Obukhov length (also Obukhov length, introduced first in 1946 by Obukhov) L
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kg
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with the scaling variables u* for velocity and θ* for temperature (linked to the turbulent fluxes
of  momentum and sensible heat), namely:

ρ
τ=−= ''* wuu  (2.14)
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c
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u
w p
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�

�
�

�

�
−
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where τ is the surface shear stress and k the von Karman constant (which was introduced for
historical reasons). Note also, that the term (1+0.07/β) in eq.(2.13) was introduced later by
Lumley and Panofsky (1964) to account for buoyancy effects of water vapor. Since in
practice, the lateral flux of momentum does not vanish completely after the coordinate
rotation (cf. Appendix A.2), the friction velocity u* is calculated by

4 22
* '''' wvwuu += , (2.16)

however, differences between eqs. (2.14) and (2.16) are very small.

From the above relationships, a dimensionless group

L
dz −=ζ (2.17)

can be formed. By the definition of similarity theory, every other parameter describing the
turbulent flow in the SL, nondimensionalized by its relevant scaling variable, can now be
described by an universal function of ζ, which is independent on the surface, height, velocity,
etc.

When z-d is small compared to L, mechanical turbulence dominates. For (z-d) >  L ,
buoyancy effects become more important. ζ therefore indicates the relative importance of
mechanical and thermal effects, thus ζ and L are also a measure for the stability of the
stratification of the atmosphere similar to the gradient Richardson number Ri or the bulk
Richardson number Rf, which are defined as follows:

2)/(
)/(

zu
zgRi

∂∂
∂∂= θ

θ
(2.18)

2)/(''
''

zuwu
wgRf

∂∂
= θ

θ
(2.19)

The relations between these common stability parameters are given in tab.2.1.
Tab. 2.1:

Relationship between stability parameters

stability Ri, Rf, ζ L

unstable < 0 < 0

neutral = 0 → ± ∞

stable > 0 > 0
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The gradients of velocity and temperature, nondimensionalized by k(z-d)/u* can be written as
an universal function of ζ, namely:

)()(

*

ζφMz
u

u
dzk =

∂
∂− (2.20)

)()(

*

ζφθ
θ Hz

dzk =
∂
∂− (2.21)

If the right-hand side is set to unity, eq.(2.20) is the familiar differential equation of the
logarithmic wind profile for neutral conditions, thus the universal functions φM = φH = 1 and
(z-d)/L = 0 for neutral stratification. Businger et al. (1971) presented the well established
semi-empirical relationships for φM and φH such as:

( ) 4/1161 −−= ζφM (2.22)

and

( ) 2/1161 −−= ζφH (2.23)

for unstable conditions with ζ < 0, and

( )ζφφ 51+== HM (2.24)

for stable conditions with ζ > 0.

In the same way, similarity theory predicts the variances of the turbulent fluctuations, usually
considered in terms of the standard deviations σu,v,w,θ and normalized appropriately by u* and
θ* in the general form (after de Bruin et al., 1993)

)(
*

ζσ
x

x f
x

= (2.25)

where x stands for u, v, w and θ and x* is the respective scaling variable (u* for velocity and θ*
temperature). For unstable conditions, eq. (2.25) becomes (Panofsky and Dutton, 1984)

3/1
21 )1()( ±−±= ζζ xxx ccf (2.26)

with the empirical constants cx1 and cx2 . With ζ → - ∞, eq.(2.26) passes over to
3/1)()( ±±→ ζζ fxx cf , (2.27)

the prognostic equation for free convection (Wyngaard et al., 1971). The (+)-sign in the above
equations is valid for the wind fluctuations u, v, w, the (-)-sign is valid for temperature
fluctuations θ.

For stable conditions,

sx
x c

x
=

*

σ
(2.28)

holds, which implies, that the nondimensionalized standard deviations are constant and
similar to the neutral limit of eq.(2.26). The following empirical constants (adapted from
Wyngaard et al. (1971), Tillman (1972) and Panofsky and Dutton (1984)) have been used as a
reference in this work:
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Tab. 2.2:
Empirical constants for MOS-relationships

constant constant

cθ1 2.9 cfθ 0.95

cθ2 28.4 cfw 1.8

cw1 1.25 csθ 2

cw2 3 csw 2.5

Many authors have verified the above relationships and the empirical constants by
experimental measurements, though the scatter of data points among the various
investigations is large. This is mainly due to non standard measuring techniques of the fluxes,
the vertical variation of these parameters in the SL, variations in sampling time and possibly
the influence of mesoscale circulation features.
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2.4 Spectral analysis
If stationarity is fulfilled, a turbulent time series can be analyzed as a function of time f(t) as
well as a function of frequency f̂ (ω ). Fourier transformation is the tool to get from one
domain to the other. Both can be looked at as an equivalent consideration of the same
property.

�
∞

∞−

= dtetff tiωω )()(ˆ (2.29)

�
∞

∞−

−= ωω
π

ω deftf ti)(ˆ
2
1)(

In atmospheric turbulence research we are mainly interested in frequencies of the turbulent
fluctuations (eddies) contributing to the total turbulence. In the case of turbulence, the spectral
density S(n) is the contribution of a single frequency n to the total variance of the spectrum,
thus the spectrum gives us a idea of how much of the variance of a time series is associated
with a particular frequency. For stationary conditions the spectral density Sx(n) of any given
property x corresponds to the total variance of the Fourier transformed time series. See i.e.
Stull (1988), Eugster (1994) or Panofsky and Dutton (1984) for a comprehensive derivation of
this relation:

�
∞

=≡
0

22 )(2' dnnSx xxσ (2.30)

The coherence between the frequency and the size of an eddy in turbulent flows is given by
Taylor’s ‘frozen turbulence’ hypothesis. It says that turbulence can be considered as ‘frozen’
in the case where the turbulent eddies evolve with a timescale longer than the time it takes the
eddy to be advected past a sensor. The high frequency part of turbulence spectra mostly
fulfills this condition and the following equation holds for frequency n, wavelength λ and the
horizontal velocity u  of an eddy:

n
u=λ (2.31)

To compare turbulence spectra from different conditions it is convenient to use a normalized
frequency f for plotting the spectra, where f is defined as

u
nzf = . (2.32)

The nature of atmospheric turbulence spectra is directly related to the fact, that production and
dissipation are not occurring at the same scales. Production is feeding only the large size
eddies (at low frequencies), whereas dissipation is happening only at the high frequency end
of the spectrum. This means, that the rate of transport across the middle part of the spectrum
equals the rate of dissipation ε. This transfer is considered as taking place inertially, there is
neither production nor dissipation. This concept is also known as the energy cascade which
was captured by Lewis Richardson in his famous poem (‘big whorls....’). Therefore, all
turbulence spectra can be subdivided in three main parts:

- 1. energy containing range
production of energy by buoyancy and mechanical shear

- 2. inertial subrange
characteristic timescale is the ‘Kolmogorov microscale’. Based on Kolmogorov
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(1941), Kaimal et al. (1972) showed, that Kolmogorov’s hypothesis is
applicable also to experimental data, which finally gives us the base for
modeling turbulence spectra. The spectral density in this range is proportional
to f x.

- 3. dissipation range
turbulent energy is dissipated into molecular oscillation.

log f

lo
g 

(n
*(

S(
n)

))

1 2 3

-2/3

Fig. 2.4: Schematic turbulence spectrum with: 1) energy containing range, 2) inertial subrange and 3) dissipation
range (adapted from Kaimal and Finnigan, 1994).

2.4.1 Data processing for spectral analysis
Time series of 53 minutes (216 samples at 20.83 Hz) have been chosen for spectral analysis to
minimize the amount of time for the spectra calculation. Four steps are performed before
calculating the spectra:

•  Correction for possible non-stationarities by linear detrending

•  Rotation of the coordinate system around the z-axis such that the x-axis is aligned
with the mean wind direction. ( v  = 0, see Appendix A.3).

•  Rotation of the coordinate system in the x-y plane such that the mean vertical wind
becomes zero ( w = 0, see Appendix A.3).

•  Tapering with a cosine taper to eliminate edge effects prior to the discrete Fourier
transformation (Stull, 1988; Kaimal and Finnigan, 1994).

•  Calculation of FFT spectrum

•  Averaging raw FFT spectrum into 20 logarithmically spaced frequency classes
(0.0004..8.3 Hz).

Composite spectra have been formed for velocity and temperature fluctuations and
momentum and sensible heat flux. Due to normalization of the spectra (spectral density S(n)
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by n/(co)variance and frequency n by (z-d)/ zu ), the single spectra are comparable to each
other and averaged composite spectra can be calculated. This is done by interpolating the
respective single spectral density by a cubic spline and averaging these curves into a defined
set of 20 logarithmically spaced non-dimensional frequency classes (ranging from
0.0015..380), which results finally in the composite spectra shown in chapter 4.4.

A general remark concerning the conventional way of computing and plotting atmospheric
turbulence spectra must be made: Since the usual plot of atmospheric turbulence spectra is
double logarithmic, the classes for averaging the single spectra are logarithmically spaced.
This results in fewer values to be averaged into low-frequency classes than at the high-
frequency end, which causes the spectra to look sometimes very jagged at the low-frequency
end. Kaimal and Finnigan (1994) suggested the so called spectral slicing method to smooth
the spectra as well at the low-frequency as at the high-frequency part: time series are
subdivided into N non-overlapping blocks of equal length for the calculation of N single high-
frequency spectra, which then will be averaged to obtain an averaged spectrum for the high-
frequency part. This minimizes the influence of single spikes in the time series. The low
frequency part of the spectrum is formed by block averaging the original time series
(simulating a lower sampling rate) and then compute the spectrum. Both, high- and low-
frequency spectra are then averaged into logarithmically spaced frequency bands such that an
overlapping region of bands at the transition from low- to high-frequency spectra exists. See
Kaimal and Finnigan (1994), Mazzoni (1996) or Eugster (1994) for a detailed description of
the procedure. Figure 2.4 shows the effect of frequency smoothing, spectral slicing and
tapering of an arbitrarily chosen raw spectrum.

Fig. 2.5: Arbitrarily chosen spectrum of vertical velocity component. Light gray: raw spectrum, (+) frequency
smoothing (spectrum averaged into 20 bands), (*) spectral slicing (spectrum composed from high-frequency and
low-frequency spectrum), (∆) tapered spectrum with spectral slicing.
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2.5 Quadrant analysis
It has to be taken in mind, that the term „conditional sampling“ describes a broad class of
methods for analyzing turbulence time series. The goal is always to extract information about
postulated events or patterns of coherent motion by detecting the events and to assign each
realization a time origin (i.e. the edge of a ramp structure). Next, an ensemble-averaged
pattern of the detected events is produced, which gives the possibility to determine the
contribution of the coherent motions to overall turbulent fluxes like − u w' ' or w' 'θ . According
to the detection scheme, four categories of conditional analysis can be distinguished:

•  Quadrant analysis (Wallace et al., 1972) classifies u’w’ (or w’θ’) into four quadrants
in the (u’,w’)-plane and provides information about the contributions of ejections and
sweeps to the total flux, however, it says nothing about the characteristic patterns of
the turbulent flow.

•  Visual event detection

•  Automated detection algorithms for sharp changes in turbulence signals

•  Event detection based on wavelet transforms
In this section, the theory of quadrant analysis is described, for wavelet analysis refer to
chapter 2.6.

The mean rate of downward diffusion of longitudinal momentum is represented by the
kinematic Reynolds stress − u w' ' . Additional information about the diffusion process is
provided by sorting the instantaneous values of u’ and w’ into four categories according to the
sign of the fluctuating components. The quadrants in the (u’,w’)-plane are numbered
conventionally and named after Shaw et al. (1983) as follows:

quadrant 1: u’ > 0, w’ > 0 outward interaction

quadrant 2: u’< 0, w’ > 0 ejection or burst

quadrant 3: u’ < 0, w’ < 0 inward interaction

quadrant 4: u’ > 0, w’ < 0 sweep or gust

Quadrants 1 and 3 both represent upward transfer, while quadrants 2 and 4 represent
contributions to downward diffusion of momentum. By introducing a hyperbolic hole H as a
region in the (u’,w’)-plane, where instantaneous values of u’w’ are smaller than H u w⋅ ' ' , and
increasing H progressively, the small and frequent contributions to Reynolds stress are
excluded from the analysis and the incidence of events exhibiting large values of u’w’ can be
determined easily within each quadrant. The fraction of the flux outside hole H in quadrant i
is then defined as

S
u w

u wi H
i H

,
,' '

' '
= , (2.33)

where angle brackets �...� denote a conditional average

u w
T

u t w t I t dti H T i H

T

' ' lim ' ( ) ' ( ) ( ), ,=
→∞ �

1

0

(2.34)

with



2.5 Theory/Quadrant analysis 16

��

�
�
� ≥=

otherwise                                                         0
'''' and quadrant in  is  if     1

,
wuHwui(u'w')I Hi (2.35)

It follows from the definition of the flux fraction in eq. (2.33), that Si
i

,0
1

4

1
=
� = . In addition, the

time fraction Ti,H for any contribution Si,H is

T
T

I t dti H T i H

T

, ,lim ( )=
→∞ �

1

0

, (2.36)

i.e., T2,H and T4,H are total sweep and ejection durations for hole size H, respectively. Ti,H can
also be viewed as the ratio of  the total duration of events in quadrant i to the sampling period
T. Note that for scalar transport (i.e. w'θ’), quadrants 1 and 3 refer to ejections and sweeps,
respectively.

From the stress fractions Si,H, two measures of the relative importance of sweeps and ejections
can be defined: The difference ∆SH

HHH SSS ,2,4 −=∆ (2.37)

or their respective ratio

H

H
H S

S

,4

,2=γ . (2.38)

Furthermore, Shaw et al. (1983) introduce exuberance E as the ratio of uncorrelated (upward)
to organized (downward) contributions to the total momentum flux, say

0,40,2

0,30,1

SS
SS

Ex
+
+

= . (2.39)

Quadrant analysis has been applied by numerous authors over a wide range of canopies:
Finnigan (1979) (wheat crop), Raupach (1981) (wind tunnel), Shaw et al. (1983) (Zea mays
L.), Raupach (1981) (wind tunnel) (1983), Bergström and Högström (1982) (pine forest),
Maitani & Shaw (1990) (deciduous forest), Chen (1990) (mallee bushland), Katul et al.
(1997) (tall natural grass, bare soil). Rotach (1993a) and Oikawa and Meng (1995) (both
urban). A general conclusion of all these studies is the dominance of gusts over burst within
and close above the canopy, where as in the high roughness sublayer and surface layer, bursts
contribute most to the momentum transport. The relative contribution of gusts increases both
with surface roughness and with proximity to the canopy top from both sides. Only a few
studies analyze the sensible heat flux by means of quadrant analysis and practically no
distinction of stability classes has been considered until now. In this study, the fluxes of
momentum and sensible heat are investigated by the means of quadrant analysis with
consideration of the different stability conditions (chapter 4.3) and compared to the results of
the studies mentioned above.
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2.6 Wavelets
During the past ten years, wavelet transforms have been formalized into a rigorous
mathematical framework for signal and image processing among others. It has become a
common analysis tool in geophysics. An increasing number of papers dealing with the subject
of atmospheric turbulence and wavelets have been published since 1991, when Farge (1992)
and Meneveau (1991) established the wavelet transform in turbulence research. A
comprehensive description of applications in geophysics is given in Foufoula-Georgiou and
Kumar (1994). Several textbooks exist that treat the wavelet analysis theoretically, from
which a few shall be mentioned here: Daubechies (1992), Holschneider (1995) and
Wickerhauser (1993).

The continuous wavelet transform is an attractive tool for decomposing a time series into
time-frequency space, which gives the opportunity to determine both the dominant modes of
variability and how these modes vary in time. This is in contrast to the Fourier transform,
which has been so far the dominant technique used in processing data sets provided by fast
response wind and temperature sensors. The Fourier transform is strictly localized in
frequency and so it is not well-suited to investigate intermittent processes like atmospheric
turbulence, because all temporal information is lost. Hence, it is a „global“ transform. The
wavelet transform is characterized as a „local“ transform because the transform coefficients
are only influenced by a portion of the signal around the point defined by the translation
parameter. Thus the wavelet transform is able to detect isolated events and preserve
information about their occurrence time and characteristic feature.

In this chapter, a basic introduction to wavelets is given, followed by a review of the related
literature concerning atmospheric turbulence and a overview of the work done since. A
methodic part shows the analytic possibilities of the wavelet transform for event detection
event detection, which are used in this study. The results of wavelet analysis of the data
related to this work are presented in chapter 4.5.

2.6.1 Basics

The continuous wavelet transform W(s,τ) of a real square integrable signal f(t) with respect to
an analyzing wavelet ψ (t) can be defined as

( )��
+∞

∞−

+∞

∞−

=�
�

�
�
�

� −= dtttf
s

dt
s

ttf
s

sW s τψτψτ ,)(1)(1),( (2.40)

where s is a scale dilation and τ a position translation. In Fourier space, using Parseval’s
theorem, Eq. (2.40) can be written as
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where the asterix indicates the complex conjugate and „^ „ stands for the Fourier transform of
a function given by

�( ) ( )f f t e dti tω
π

ω= −

−∞

+∞

�
1

2
(2.42)

The continuous wavelet transform can be viewed as a numerical microscope whose optics,
magnification and position are given by ψ (t), s and τ, respectively, in fact, it is the
convolution of f(t) with a scaled and translated version of a wavelet function ψ (t).
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A wavelet ψ  is defined as a real or complex valued function of a real variable that must have
zero mean and be localized in both time (t) and frequency space (ω ), this means the following
two integrals have to converge:

E t dt=
−∞

+∞

�ψ ( ) 2 (2.43)

C dψ π
ψ ω

ω
ω=

−∞

+∞

�2
2

� ( )
(2.44)

From eq. (2.43) it follows, that ψ  has finite energy. Eq. (2.44)implies, that ψ  has a zero
mean with its Fourier transform around the zero frequency limited. This is called the
admissibility condition (Farge, 1992) and Cψ is the admissibility parameter, which is scale
independent and constant for each wavelet function.

As a consequence of the admissibility condition in eq. (2.44), the wavelet transform as a
bandpass filter with a known response function (namely the wavelet function) is invertable
and it is possible to reconstruct the original time series using the following equation:

f t
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The wavelet transform is also energy preserving so that it follows, that the total energy Ef of a
function f(t) can be written as
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Eq. (2.46) correlates the spectral energy density (also referred to as Fourier or energy

spectrum) E ff ( ) � ( )ω ω=
2
to the so called wavelet variance

E s W s dW ( ) ( , )=
−∞

+∞

� τ τ2
. (2.47)

In other words, EW(s) is the energy of a function f(t) at scale s and is sometimes also referred
to as wavelet scalogram. Thus the coherence between Fourier spectrum and wavelet spectrum
is given by

E s E E dW f s
( ) ( ) ( )=

−∞

+∞

�2 ω ω ωψ , (2.48)

i.e., EW(s) is the Fourier spectrum of f(t) averaged by the Fourier spectrum of the bandpass
filter (the wavelet function) ψ s at scale s. See Perrier et al. (1995) for an comprehensive
theoretical discussion of the comparison between Fourier and wavelet spectra.

The wavelet transform conserves not only the energy of a function, but also the inner product
of two functions. So just as the wavelet variance is correlated to the Fourier spectrum, one can
define a wavelet covariance as an equivalent of a Fourier cross-spectrum of two functions f(t)
and g(t) as

E s W s W s dW f gf g,
( ) ( , ) ( , )*=

−∞

+∞

� τ τ τ (2.49)
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with Wf and Wg as the wavelet transforms of the two functions f(t) and g(t). In analogy to the
Fourier cross-spectrum, one is able to define a wavelet cospectrum and quadrature spectrum
as the real and the imaginary part of eq. (2.49), respectively, a wavelet amplitude spectrum as
the absolute value of the cross-spectrum and a phase spectrum from the ratio of quadrature
spectrum and cospectrum.

If we use nonorthogonal wavelets (as is the case in this study), we have to consider the
redundancy of the information from the continuous wavelet transform. The similarity of
wavelets with adjacent values of s in the time-representation must provide the same kind of
information from one scale to another, whereas, in the frequency space, the broad peaks may
interfere from one scale to another. In other words, a particular wavelet coefficient contains
information about its neighbours in the (s,τ) plane. To quantify this redundancy, one has to

study the properties of ψ τs t, ( )
2
and � ( ),ψ ωτs

2
, and specifically their standard deviations. As a

consequence of eq. (2.44), � ( ),ψ ωτs = =0 0 , and therefore, the center ωψ τ� ,s

0 of a bandpass filter

ψ τs t, ( ) is located away  from the origin ω = 0 and can be determined as the center of mass for
ω > 0 by
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and its standard deviation σψ τ� ,s
as
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Similarly, the localization in the time domain t
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and analogous its standard deviation σψ τs ,
 by
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From eqs.(2.50) –2.53) the following relationships can be derived:
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Therefore, an increased resolution in the time domain for the time localization of high
frequency components comes with the cost of an increased uncertainty in the frequency
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localization and vice-versa. Eq. (2.56) gives the relationship between the wavelet scale s and
the equivalent Fourier period or frequency. To illustrate the above relationships, the resolution
cells of the wavelet transform for certain points in the phase space are shown qualitatively in
fig.2.6.
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Fig. 2.6: Phase-space representation using the wavelet transform (adapted from Kumar and Fourfoula, 1994).

2.6.2 Wavelet applications in atmospheric turbulence research
In the following section, an overview on some important contributions of wavelet applications
in atmospheric turbulence shall be given. However, there is no claim to completeness, since a
large amount of papers dealing with the subject have been published in the last years. Most of
the authors mentioned below have also published several papers with similar contents, which
are not cited in the following.

One of the most important applications of wavelets in atmospheric turbulence research is the
detection of the organized structures that rule the flow within and above a canopy. In
consequence, it is possible to construct averaged patterns of the dynamics of turbulent
transport processes and analyze the contributions of the coherent motions to momentum and
heat fluxes for instance. Turbulent transport within and above a canopy is dominated to a large
extent by large-scale intermittent coherent structures. These structures are known as periodic
ramp patterns in time series of scalars (i.e. temperature) or, in a more general point of view, as
occasional large amplitude excursions from the mean on time series of turbulent variables
(Paw U et al., 1992). They are characterized by cycles of ‘sweeps’ (‘gusts’) and ‘ejections’
(‘bursts’), which have been observed over a wide range of canopies (Gao et al., 1989;
Bergström and Högström, 1989; Paw U et al., 1992, Katul et al., 1997). In fact, the ejection-
sweep sequence appears to be a general feature of all wall bounded flows (see also chapter
2.5).

In the study of Collineau and Brunet (1993a, 1993b), the advantages of wavelet transform
algorithms for jump detection compared to other methods like the Variable Interval Time-
Averaging (VITA) method (i.e. Shaw et al., 1989) or the Window Averaged Gradient (WAG)
(Bisset et al., 1990) technique is demonstrated on a forest canopy data set. Using the so called
Mexican hat wavelet, a second derivative-like wavelet (a twice-differentiated Gaussian), jump
detection only involves identification of zero-crossing points with a particular slope sign
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depending on the slope of the jumps. VITA, WAG and wavelet detection functions using first
derivative-like wavelets (i.e. the Haar wavelet) require the use of a threshold to select the
larger peaks in the detection function, this means, these methods have to be calibrated against
a reference for each analyzed run. For an extended data set like the one analyzed in this study,
the zero-crossing method provides an admittedly tool for the isolation of organized motions.
Additionally, the wavelet transform as an alternative to the Fourier spectral analysis also can
be used to determine the characteristic time scales of the organized structures as shown by
Collineau and Brunet (1993b). One year later, Brunet and Collineau (1994) applied the same
method to a maize canopy data set.

Hagelberg and Gamage (1994a, 1994b) presented a technique based on a non-orthogonal
wavelet transform to provide a signal decomposition which preserves coherent structures.
Embedded within this technique were a coherent structure detection mechanism, an analysis
of intermittency resulting in a intermittency index, and filtering techniques. An other
decomposition method was presented by Howell and Mahrt (1994) using the Haar wavelet.
They partitioned the turbulence time series into four modes of variations: a mesoscale mode, a
large eddy scale mode, a transporting eddy mode and a fine scale mode, using a variable
cutoff scale to separate the transport mode from the fine scale mode.

Hudgins et al. (1993) was one of the first papers that presented a (cubic spline) wavelet cross
scalogram of atmospheric turbulence data to visualize the highly intermittent features of the
momentum flux field. He also emphasizes the advantages of the better resolution of low
frequency variations in wavelet spectra compared to Fourier spectra. Katul and Parlange
(1994a, 1995) used the orthonormal wavelet transform to analyze the role of temperature and
heat fluxes in surface-layer turbulence by wavelet spectra. In their 1994 study, Katul et al.
(1994b) investigated power-law deviations from the classical Kolmogrov theory in the inertial
subrange using a conditional sampling scheme based on an orthonormal wavelet
representation.

Handorf and Foken (1997) analyzed the turbulent exchange processes over the Antarctic
shelf-ice. They determined the contribution of large scale eddies to the total turbulent flux of
sensible heat by conditional sampling based on wavelet analysis.

As one can see, the analysis of turbulence time series by the means of wavelet transforms has
become an important alternative to the well established spectral Fourier analysis during the
last 5 years. But it has to be stated, that in most studies, only a few runs of data are analyzed,
so they have to be considered rather as methodological studies than a complete analysis.
However, this studies show, that wavelet analysis is a promising tool to get more insight in the
nature of turbulence concerning coherent structures and their dominant time scales.

2.6.3 The method
Wavelet analysis in this study was done using the continuous wavelet transform according to
the really practical guide to wavelet analysis given in Torrence and Compo (1998). Because in
practice, we operate with finite time series fn, the above equations for the continuous wavelet
transform have to be modified for a discrete sequence fn. Equation (2.40) then becomes
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in other words, a variation of wavelet scale s and a translation along the localized time index
n, or according to eq. (2.41) in Fourier space
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and k = 0...N-1 is the frequency index. Using eq.(2.58) and a standard Fourier transform
routine, the continuous wavelet transform for a given scale s can be computed at all n
simultaneously and very efficiently. See Torrence and Compo (1998) for a closer look at the
properties of the continuous wavelet transform on discrete time series, like i.e. normalization
and reconstruction.

The Mexican hat wavelet, a second derivative of a Gaussian, is shown in fig. 2.7 in the time
domain as well as in the Fourier domain. This wavelet is used for all transforms in this study
for reasons addressed in the next section. It can be seen that a change of the scale dilation s
causes an expansion for s < 1 and a contraction for s > 1 of the analyzing wavelet function in
the time domain and the contrary in the frequency domain.

Fig. 2.7: The Mexican hat wavelet in the time (left) and frequency (right) domain.

A simple example shall demonstrate the capabilities of the wavelet transform on a artificial
data set before applying to real data.

To demonstrate the jump detection purposes of the Mexican hat wavelet („jump“ means a
sharp decrease or increase in the signal), the wavelet transform has been applied to a signal of
idealized ramps. The ramp time series consists of 7 irregularly spaced ramps of different
amplitudes and duration times between 40 and 80 seconds and is shown in fig. 2.8 and 2.9 at
the bottom. The sampling time interval is supposed to be 1 second.

Fig. 2.8: Wavelet coefficients for scales corresponding to 5, 20, 50 and 100 s and the artificial ramp data set.
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The wavelet coefficients for the different scales show zero-crossovers at the exact times when
jumps occur (fig. 2.8), although a certain scale dependence can be observed. It is obvious that
if the scale s overrides the characteristic duration of the ramp (about 50 s), the zero-crossover
does not any more represent precisely the time of the sharp decrease (the „jump“) in the time
series. Therefore, it is important to evaluate the characteristic timescale of the event of interest
before the detection algorithm is applied. This is done by analyzing the wavelet variance (or
spectrum) according to eq. (2.47).

It is expected that the wavelet spectrum exhibits a peak at the scales that contribute most to
energy of the input signal, in analogy to Fourier spectra. For our ramp time series, the peak
should occur at frequencies that correspond to a time scale around 100 seconds (double the
time of one „elementary“ event, because one has to remember, the wavelet „sees“ the
departures from the mean as well as the cyclic behavior). Indeed, this is the case in fig. 2.9
(middle), where the wavelet spectrum as well as the Fourier spectrum of the ramp time series
is shown. They both peak around a frequency of 0.01 Hz, which corresponds to a time-scale of
100 s. This is also a good example for the advantages of wavelet spectra compared to Fourier
spectra, which has also been mentioned earlier in this chapter. The wavelet spectrum appears
much smoother in the low frequency part and the peak frequency can be determined easily.
However, it must be taken in mind that for large time series the computing time for wavelet
spectra is very high compared to the FFT spectra. In fig. 2.9, the Fourier spectrum is
calculated applying the procedure described in chapter 2.4 with averaging the raw spectrum
into 20 bands. Wavelet transform is done on 35 scales ranging from 1..400 seconds, the time
interval between every data point is assumed to be 1 second.

The top of fig. 2.9 represents the wavelet scalogram according to eq. (2.47). This is a contour
plot of the wavelet coefficients plotted against time (ordinate) and frequency or scale
(abscissa). Light colors represent positive, dark colors negative wavelet coefficients. The
higher the number of scales and the smaller the spacing between scales in the continuous
wavelet transform, the better the resolution of the plot. Fig. 2.9 gives an idea of how to
interpret such a scalogram with respect to the original input signal, which is given by the ramp
time series shown at the bottom of fig. 2.9. Every sharp decrease is represented by a clear
transition from light to dark at scales corresponding to frequencies smaller than 0.5 Hz (a
scale of 2 s). The two ramps approaching each other between 110 s and 160 s are not any
more distinguishable at frequencies below 0.025 Hz (a scale of 40 s) in the scalogram. Low-
amplitude ramps are represented by low amplitudes of the wavelet coefficients, resulting in
more diffuse colors in the contour plot (a smaller slope of the wavelet coefficients at the zero-
crossing point). The black line represents the so called „cone of influence“. When analyzing
finite-length time series, errors will occur at the start and end points of the wavelet spectrum,
because the Fourier transform assumes the data to be cyclic. The region above this line is
subject of errors due to edge effects of the Fourier transformation (Torrence and Compo,
1998).
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Fig. 2.9: Artificial ramp time series (bottom), Fourier (�) and
wavelet (+) spectrum and wavelet scalogram (top).

2.6.4 Conditional sampling
Once we have detected the significant events by the zero crossing method, conditional
averages sampled over a suitable time window ∆t centered on detection points ti are calculated
by
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(2.60)

with t-∆t/2 < t < t+∆t/2, N the number of detection points, σfi  the standard deviation for the
time window for normalization and if the mean value for the time window. Angle brackets
denote the conditional average (Collineau and Brunet, 1993b).

To get an estimate of the contribution of the detected organized structures to the total flux of
momentum and sensible heat, a triple decomposition of the turbulent variables is used
(Bergström and Högström, 1989, Collineau and Brunet, 1993b). Any instantaneous variable
f(u, w, T) can be decomposed into:

sl ffff ++= . (2.61)
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f is the long-term average, fl a perturbation due to large-scale motion and fs the remaining
small-scale fluctuation, with fl+fs=f’, the turbulent fluctuation in the classical Reynolds
decomposition of eq. (2.1). Applying conditional sampling to f’, we get lff =' , assuming

that fs is uncorrelated with the detected large scale motion and thus 0=sf . If two
fluctuations f’ and g’ are considered, we obtain:

ss gfgfgf += '''' . (2.62)

Defining an averaging operator �~� as
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over the detection window ∆t and averaging eq. (2.62) according to eq. (2.63), we obtain:

ss gfgfgf += '''' . (2.64)

�f’g’� should now be close to the conventionally averaged Reynolds flux '' gf , if the detected
structures are reasonably representative of the flow, and the first term on the RHS of eq. (2.62)
then represents the contribution to '' gf  from the organized motions whereas the second term
on the RHS of (2.62) represents the contribution from small scale motions. This method of
conditional sampling is adapted from (Collineau and Brunet, 1993b). Wilczak (1984) and
Bergström and Högström (1989) used a similar method, however they worked with time-
windows of variable length and averaged every window into 31 bins. The conditional average
was then formed by weighting these ‘event’-fluxes according to their individual lengths.
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