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Abstract

The n-p spin correlation parameter Azx was measured at an energy
of 66.24 MeV and 5 angles in the range of 25o−46o CM with a statistical
accuracy better than 0.01.

In the measured range, Azx is most sensitive to ε1, the mixing pa-
rameter of the deuteron states 2S1 and 2D1. Therefore the measurement
is expected to reduce significantly the uncertainties of the phases in the
energy range below 100 MeV, when a new global Phase Shift Analysis
(PSA) is performed. This should help to find a more accurate answer to
the strength of the tensor force in the NN-interaction.

The experiment was performed in the low energy area C (NEC) of
the Paul Scherrer Institute (PSI) in Villigen, Switzerland.
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1 Introduction

The nucleon-nucleon (N-N) interaction at low energies can be described by the
exchange of mesons [1]. In order to describe the N-N scattering data, potentials
derived from meson theory contain the tensor force, which represents one of the
most important parts. One of the characteristics of this force is the mixing of
states with different angular momenta. The non vanishing deuteron quadrupole
moment and the difference of the magnetic moment from µp+µn were some of
the earliest evidences for the existence of such a force in the N-N interaction [2].
Bethe [3] recognized that the tensor force gives the dominant contribution to
the binding energy of the deuteron.

For 3- and 4-nucleon systems it is still an unanswered question, whether the
binding energy can be understood in terms of a two-nucleon force (including the
tensor force) or if in addition three-body forces contribute [1]. Calculations for
the binding energy of 3H show that without a three-body force the measured
binding energies can only be reproduced when the tensor force is weak [1,4,5].

A further consequence of the tensor force is the presence of the D-state
in light nuclei. The exact contribution of mesonic degrees of freedom (meson
exchange currents (MEC)) to the electromagnetic form factors of these nuclei
can only be determined, when the contribution from the D-state is known [6],
because the MEC and S-D transitions contribute with nearly equal size but
with opposite sign to the form factors. For these reasons, it is necessary to
measure the effects of the tensor force most accurately. One such measurement
is presented in this work.

In a phase shift representation (PS) of the scattering data (see section 2.4
and [7, 8]) the mixing of different angular momenta is described by mixing
parameters εJ . The parameters describe mixing of states with l ± 1 for given
J , where J represents the total spin (angular momentum + spin). The mixing
of such states is a direct consequence of the tensor force and therefore εJ
is a measure of its strength. Below 100 MeV the dominant mixing is the
one between the lowest angular momenta l = 0, 2 described by the parameter ε1.

The measured quantity in this work, the neutron-proton spin correlation
parameter Azx, is most sensitive to ε1, the mixing parameter between the states
3S1 and 3D1. On the other hand, it is insensitive to the phase 1P1, which is
also poorly determined but in many observables strongly correlated with ε1.
Figure 1 shows Azx as a function of the center of mass (CM) scattering angle
for different mixing parameters1 ε1. Especially in the angular region where this
experiment has been performed, Azx shows a strong dependence on the mixing

1The calculation is taken from a phase shift analysis from SAID (Scattering Analysis
Interactive Dial-in) [9, 10], which is available via http://gwdac.phys.gwu.edu).
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Figure 1: Azx for different values of the spin correlation parameter ε1 as a
function of the CM scattering angle. Indicated is also the angular coverage of
the present experiment.

parameter. In figure 2, ε1 from different phase shift analyses (PSA) is plotted
together with three theoretical potentials. The PSA seem to give higher values
for ε1 than the potentials predict, which is an indication for a stronger tensor
force than given by present-day potentials.

The potentials have the following characteristics: The Paris potential [11]
uses a dispersion theoretical approach starting with the knowledge of pion-
nucleon phase shifts and pion-pion interaction for the medium and short range
part down to 0.8 fm. Also 3π exchange is taken into account with a semi-
phenomenological approach using the ω, a 3π resonance. The use of such
resonances takes into account, that the exchange of correlated pions is more
important than the exchange of uncorrelated ones. For the long range part the
interaction is parameterized with the exchange of neutral and charged pions.

The Bonn potential [1] describes the interaction with a field theoretical
approach for all distances. The one boson exchange is described using π, ρ and
ω particles for long, intermediate and short interaction distances. The two pion
contribution is treated in a fully quantum field theoretical way. In contrast to
the Paris potential, the ∆ isobar resonances of the nucleon and ππ correlations
are also taken into account. The tensor coupling can mainly be explained using
the vector-iso-vector meson ρ.
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Figure 2: ε1 as a function of the incident neutron kinetic energy for different
potentials and PSA. The data points represent PSA from Henneck [5]: (2) and
Arndt [12]: (◦)

The Nijmegen potential originates from a pure dispersion theoretical ap-
proach based on using information from N-N scattering (see reference [13]).
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2 The Spin Correlation Parameter Azx

The experiment measures an angle dependent asymmetry in the scattering of
neutrons off protons. It will be shown that the measurement offers the possi-
bility to learn about the spin dependent part of the neutron-proton interaction.
For details see [14, 15]. The polarization of the proton target and the neutron
beam are known as well as the energy distribution of the neutrons in the beam.

2.1 The Coordinate Frame

The definition of a coordinate frame is essential in polarization scattering ex-
periments. Unfortunately there are many different conventions in literature
and some leave still room for interpretation (See [16,17,15]).

In the present experiment all observables are related to the Bystricky-
convention [18]. The nomenclature and coordinate frames defined in that article
are unambiguous. The convention uses the same coordinates for the initially
polarized beam and target. Nevertheless the observables and definition of the
frame axis is done in the usual way, using x y and z, but in a way that it can be
directly identified with the Bystricky-convention, namely x ≡ s, y ≡ n, z ≡ k.

The observables are all defined in the lab frame, nevertheless their depen-
dence on kinematical variables like the momentum and the scattering angles
can very well be described in the center of mass (CM) system. From the trans-

y 
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k 
x 

k 
) f

i

z (
 k 

) i

x

Θ

kf

Figure 3: Coordinate Frame used in the present experiment. Note that the x
and y axes are depending on the final momentum ~kf .

formation tables in [18] it is also easy to convert the observables themselves
from the lab frame into the CM system.
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The present frame is shown in figure 3: the z- axis is in direction of the
incident beam momentum, the y-axis perpendicular to the initial and final
momenta ~ki × ~kf of the neutrons and the x-axis forms a right handed system
with ~ey and ~ez. Note that the x and y axis are depending on the final momenta.
Hence each reaction has its own x and y axis.

2.2 Spin 1/2 Scattering

An arbitrary spin 1/2 one-particle state |Ψ〉 can be expressed with Pauli Spinors
in momentum space as

|Ψ〉 =
∫

Ψ↑(~k) |~k, ↑〉 d3k +
∫

Ψ↓(~k) |~k, ↓〉 d3k (1)

:=

(
Ψ↑(~k)
Ψ↓(~k)

)
. (2)

| ↑〉 and | ↓〉 are states in ~ez, −~ez-direction respectively. The Hilbert space
consisting in a beam and a target particle is

H = (Hspb ⊗H
s
b)⊗ (Hspt ⊗Hst ), (3)

where Hs is the spin- and Hs the spatial-part. This leads to a 2-particle state
in H:

|Ψ〉 = |ψ〉b ⊗ |ψin〉t = |ψb, ψt〉. (4)

The derivation of the cross section is done in the center of mass frame. The
initial momentum of the beam particle and the target in this frame are the
same with opposite sign. The initial relative momentum shall be ~ki and the
final momentum2 ~kf . The system, consisting of a beam- and a target particle
has a Hamiltonian of the form H = H0 + V = Hb

0 + Ht
0 + V , where V is

the interaction between the beam and the target in the center of mass frame.
V is a potential acting on a free 2 particle state. In the unperturbed case
(before scattering (t → −∞) the system shall be in a pure eigenstate of the
Hamiltonian H0 (a plane wave with momentum ~ki):

|Ψi〉 = |ψi〉b ⊗ |ψi〉t = |ψbi , ψti〉. (5)

The propagation from the initial to final states is performed by a unitary time
translation from t = −∞ to t = +∞, which leads to the propagator T:

T |Ψin〉 = |Ψf 〉 (6)
T := V +G0 V + V G0 V G0 V + ... . (7)

2~kf is the direction of observation and not the final momentum of the scattered state
unless when using the Born-approximation
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T is expanded in a Dyson series with the interaction part of the Hamiltonian V
and G0, the free Green’s operator, which is the propagator without interaction
[7]. Finally the differential cross3 section can be represented in terms of T or
F, respectively:

dσ = |〈Ψf | F | Ψi〉|2 (8)

F = c(~k) T.

The difference of F and T is only a momentum dependent normalization factor
c, usually c = −(2π)2/|~k|.

Going to the real case, the target and the beam consist of a statistical
ensemble of incoherent particles. Incoherence reduces the full Hilbert space
to the one introduced in equation 3. The beam-target system in H is best
represented by a density operator ρ with the normalization Trρ = 1. The trace
is taken over the spin and the momentum space. If there are N’ protons in the
target and N neutrons in the beam (per time interval), the full initial operator
ρi can be written as

ρi = ρt ⊗ ρb =
1

N N ′

N,N ′∑
m,n

2∑
s1,s2,s3,s4

|bs
1

m , t
s2

n 〉〈ts
3

n , b
s4

m |. (9)

The indices m and n are particle labels for the beam (b) and the target (t),
respectively, and s1 to s4 are spin labels (↑, ↓). Because ρt and ρb are one
particle operators, the description applies to a two particle problem. The dif-
ferential cross section for an ensemble is the same as in equation 8 but summed
over all initial particles. In terms of the density operator, it is just the trace
taken over the final density operator (t→ +∞) in the spin space (TrΣ).

dσ = TrΣ [ρf ]. (10)

From the calculation of the full trace one would get the total cross section.
In the spin-basis {| ↑〉b| ↑〉t, | ↑〉b| ↓〉t, | ↓〉b| ↑〉t, | ↓〉b| ↓〉t}, where the initial
momentum defines the quantization axis (z-axis), ρi is a 4x4 Matrix with the
coefficients:

ρi =̂
1

N N ′

N,N ′∑
m,n

 |b
↑
m(~ki) t↑n(−~ki)|2 · · · |b↓m(~ki) t↑n(−~ki)|2

...
. . .

...
|b↑m(~ki) t↓n(−~ki)|2 · · · |b↓m(~ki) t↓n(−~ki)|2

 . (11)

b↑m(~ki) is a spinor in the beam and t↑n(−~ki) one in the target space. The
spinors are momentum dependent. But each particle in the beam or the target

3The differential cross section dσ
dΩ

is written as dσ for simplicity.



2.2 Spin 1/2 Scattering 7

is assumed to be free and the cross section is derived for a single momentum
ensemble. ρi can therefore be split into the spin and the momentum part,
where the latter is just δ(~k − ~ki). Further ρ̂i shall denote the density in the
spin space and ρ̃i the density in the momentum space.

The initial polarizations of the beam and the target (~Pb and ~Pt) are cal-
culated from the expectation values of the usual Pauli matrices acting in the
subspace of the beam and the target, respectively. They are known from the
measurement of elastic 12C(~p, p)-scattering and from the spin transfer in the
D(~p, ~n)pp-reaction (see section 4).

~Pb = 〈 ~σb ⊗ 1t〉ρ̂i = TrΣ [ρ̂i ( ~σb ⊗ 1t)] (12)
~Pt = 〈~σt ⊗ 1b〉ρ̂i = TrΣ [ρ̂i (~σt ⊗ 1b)]. (13)

For simplicity the unity operator 1 is omitted below, whenever it is obvious
in which space the operators act. Building the trace in equation 12, 13 the
polarization has the form

~Pb =
1

2N

N∑
m=1

 b↑m b↓∗m + b↑∗m b↓m
2 Im (b↑m b↓∗m)
|b↑m|2 − |b↓m|2

 . (14)

Hence the initial density operator can be expressed in terms of the target and
the beam polarizations:

ρi = 1/4 ρ̃i (1 + ~Pb ~σb + ~Pt ~σt + ~Pb ~σb ⊗ ~Pt ~σt). (15)

The operator connecting initial and final states, introduced in equation 7, is
again a 4x4 matrix in the basis chosen above:

F (~k,~kf ) :=

 F ↑↑↑↑ · · · F ↓↓↑↑
...

. . .
...

F ↑↑↓↓ · · · F ↓↓↓↓

 . (16)

The superscript arrows show the spin transfer of the beam particles, where the
subscript arrows describe the spin transfer of the target. F is also depending
on initial (~k) and final (~kf ) momenta. In this frame the final density operator
can be written as

ρf = FρiF
+. (17)
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ρf can again be expressed in terms of the initial polarizations as the initial
density in equation 15:

ρf = 1/4 (F ρ̃i F
+ + F [ρ̃i ~Pb ~σb] F+

+ F [ρ̃i ~Pt ~σt] F+ + F [ρ̃i ~Pb ~σb ⊗ ~Pt ~σt] F+). (18)

Since the polarizations are scalers and the initial momentum is fixed, the final
density can be written as

ρf = 1/4 (F ρ̃i F
+ + ~Pb F [ρ̃i ~σb] F+ + ~Pt F [ρ̃i ~σt] F+

+ (~Pb F [ρ̃i ~σb] F+)⊗ (F [ρ̃i ~σt] F+ ~Pt) (19)

= 1/4
3∑

i,j=0

P ib P
j
t F [ρ̃i (σib ⊗ σ

j
t )] F

+, (20)

where σ0 denotes the unity 2 × 2 matrix and P 0
b and P 0

t are set to 1. To
resolve the momentum part (ρ̂i) of the density ρf one has to integrate over the
initial momenta of the target and the spin particles, which leads to the initial
momenta in F:

F = F (~ki,~kf ) =
∫
F (~k,~kf ) δ(~k − ~ki) d3k. (21)

Finally the differential cross section can be expressed as a function of the initial
polarizations. With the initial momentum ~ki dσ writes

dσ = TrΣ [F ρi F
+] (22)

= 1/4 (
3∑

i,j=0

P ib TrΣ [F σib ⊗ σ
j
t F

+] P jt ) (23)

= 1/4 (TrΣ [F F+] + ~Pb TrΣ [F ~σb F
+] + ~Pt TrΣ [F ~σt F

+]

+ ~Pb TrΣ [F ~σb ⊗ ~σt F+] ~Pt). (24)

2.3 Definition of Azx

The splitting in equation 24 has important consequences for cross section mea-
surements with polarized particles. The parts have the following meaning: The
first term is the cross section for zero target and beam polarization, because
the initial density for such an ensemble is just ρi = 1/4 ρ̂i(1 ⊗ 1). It will be
written as dσ0. The second term is independent of the target- and the third
independent of the beam polarization. These parts of the cross section are
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measurable, when the target or the beam (or both) are polarized. The last
part is only measurable if one has both, polarized beam and polarized target.
The terms have usually the following names:

~Ab = 1
dσ0

TrΣ [F ~σb F
+] The analyzing power of the beam particles

(neutrons).

~At = 1
dσ0

TrΣ [F ~σt F
+] The analyzing power of the target particles

(protons).

A = 1
dσ0

TrΣ [F ~σb ⊗ ~σt F+]The spin correlation matrix of the beam
and target particles (neutrons and protons).

A is a 3x3 Matrix with the components:

[A]i,j =
1
dσ0

TrΣ [F σib ⊗ σ
j
t F

+]. (25)

Azx ≡ [A]z,x is therefore the part of the interaction for which the spin of the
neutron has the direction in ~ez- and for the proton in the target in ~ex normalized
to the unpolarized cross section. In the Bystricky-notation Azx would be A00ks.

With these definitions the cross section has the well known form:

dσ = dσ0 (1 + ~Pb ~A
b + ~Pt ~A

t + ~Pb A ~Pt) (26)

Assuming that the interaction conserves parity and is rotationally invariant,
only a few components of the analyzing powers and the spin correlation matrix
are non zero: namely Ayt , Ayb , Axx, Ayy and Axz, Azx. If in addition the
interaction is iso-spin invariant: Ayt = Ayb and Axz = Azx.
To determine Azx the asymmetry of the cross section is needed with the
neutrons polarized parallel (dσ↑) and antiparallel (dσ↓) to ~ez, while the target
is polarized parallel to ~ex.

All the parameters mentioned play a more or less important role for the
correction of the measured asymmetry: Because the target magnetic field axis
is turned by 12o away from the x-axis, the polarization of the target has a com-
ponent in z-direction and therefore the cross section has a term with Azz. The
beam has additional polarization components in x and y, due to the precession
of the neutron spin in the Faraday Cup magnetic field (see chapter 4.3) and in
the polarized proton target field. (x′,y′,z) are coordinates in the fixed coordi-
nate frame, which is defined by the beam axis and the target polarization. φ is
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the angle between this plane and the scattering plane in the coordinate frame
shown in figure 3. The z-axis is the same for both systems.

Because of the vertical size of the neutron detector, the effective target and
beam polarizations are subject to small mean reductions. Since the center of
the neutron detector is slightly higher than the beam, the angular average of
terms with sin(φ) do not fully vanish. The polarization in x′ and y′ of the
beam and the target need to be projected and averaged over the acceptance
of the neutron detector for the 5 measured angles. The target (~Pt) and beam
polarization (~Pb) have the following components ϑ = 12o:

~Pb =
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)(
P x
′

b

P y
′

b

)
(27)

~Pt =
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)(
Pt cos(ϑ)

0

)
. (28)

The target has only polarizations in x and z direction in the fixed frame.
The angular average (〈f〉θ) of a function f, that depends on φ or the scat-

tering angle θ (e.g. (f(φ) = sin(φ)) is:

〈f〉θ =

∫
V (θ)

f(φ(~xd)) d3xd∫
V (θ)

d3xd
. (29)

(~xd) is a coordinate vector on the neutron detector and V (θ) the volume of the
neutron detector acceptance at the measured mean angle θ.

With these definitions the cross sections (dσ↑) and (dσ↓) can be written as

dσ↑ = dσ0 (1 + (a1 + a2)Ay + a3 Axx + a4 Ayy + a5 Azz

+ (a6 + a7)Azx (30)
dσ↓ = dσ0 (1 + (a1 − a2)Ay − a3Axx − a4 Ayy − a5 Azz

− (a6 + a7)Azx, (31)

with the factors:

a1 = ∓ cos(ϑ) 〈sin(φ)〉θ |Pt| (32)
a2 = 〈sin(φ)〉θ |P xb | ∓ 〈cos(φ)〉θ |P yb | (33)
a3 = ± cos(ϑ) |Pt| (−〈cos2(φ)〉θ |P xb | ∓ 〈cos(φ) sin(φ)〉θ |P yb |) (34)
a4 = cos(ϑ) 〈sin(φ) cos(φ)〉θ |P yb Pt| (35)
a5 = ∓ sin(ϑ) |P zb Pt| (36)
a6 = ± cos(ϑ) 〈cos(φ)〉θ |P zb Pt| (37)
a7 = sin(ϑ)|Pt| (±〈cos(φ)〉θ |P xb |+ 〈sin(φ) 〉θ |P yb |). (38)
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Pt cos(ϑ) is the target polarization in x-direction and Pt sin(ϑ) the target
polarization in z-direction. The upper signs are for positive target-, the lower
for negative target polarization.

Finally Azx can be calculated by building the cross section asymmetry from
equations 30 and 31

Azx =
1

a6 + a7
(ε± − a2 Ay − a3 Axx − a4Ayy − a5 Azz) (39)

ε± =
dσ↑ − dσ↓

2 dσ0
. (40)

By building the sum of equations 30 and 31 the unpolarized cross section dσ0

can be extracted:

dσ0 = 1/2
dσ↑ + dσ↓

1∓ a1 Ay
. (41)

The careful discussion of the orientation of the polarizations and their signs is of
importance, because it is not obvious from theory if Azx is positive or negative
in the angular region of the experiment. Therefore it is necessary to know the
absolute polarization orientations to calculate Azx with the correct sign. In
equation 30 to 38, the signs are already correctly anticipated. A detailed study
of the signs is done in sections 4.3 ff.

So far it was assumed, that all the incident neutrons have the same mo-
mentum. In the most general case, the beam- as well as the target-particles
are distributed in momentum. In this experiment the neutrons have a distri-
bution of their initial momentum ki, which depends on the applied cut (see
chapter 4.4), while the target is at rest in the lab frame. It will be shown that
not only the interaction is momentum dependent but also the incident beam
polarization. The mean of the beam polarization has to be calculated from
the incident energy distribution n(ki). The cross section asymmetry εpm is
assumed to be nearly constant within the applied cuts. with the normalized
distribution

∫
n(ki)dki = 1, the beam polarization the beam polarization is:

~Pb =

highcut∫
lowcut

n(ki) ~P ′b(ki) dki, (42)

where ~P ′b(ki) is the unweighted beam polarization.

2.4 Phase Shifts and Mixing Parameters

In general, the states of the two-nucleon-system are expanded in the basis of
given angular momenta (l) and spin (s) or total spin (J). For comparison with
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theoretical predictions or with other data through a phase shift analysis, Azx
has to be decomposed into phase shifts and mixing parameters.
Often the S-matrix is used for description of scattering [8, 9]. S is defined in
terms of T or F (see equation 7):

S = 1 + 2 i T = 1 +
2i

c(~k)
F. (43)

From this definition Azx can be written as a function of S instead of F (see
equation 25). The phase shifts are usually represented as a function of angular
momentum l, the spin s, the total spin J and its z-component mJ . The con-
version of S to this representation is explained in [19,20,21]. It allows to write
the S matrix for example in the Blatt-Biedenharn form [22]:

S = eiδ e2iε eiδ, (44)

where δ is a diagonal matrix with the matrix elements of the phases δl and ε
a symmetric matrix with zeros on the diagonal and the mixing parameters εJ .
For a transition from states with fixed J , the S matrix has the form:

SJ =
(
eiδj−1,j 0

0 eiδj+1,j

)(
cos(2εJ) i sin(2εJ)
i sin(2εJ) cos(2εJ)

)
×

(
eiδj−1,j 0

0 eiδj+1,j

)
. (45)

From this relation Azx can be directly written as a function of the phase shifts
δl and the mixing parameters εJ . The knowledge about the phases and the εJ
from theoretical predictions allows us to compare them directly to Azx. On
the other hand, this formalism can be used to take Azx into a PSA data base
to fit the phases and mixing parameters together with other data available.
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3 Experimental Setup

The measurement is performed at the low energy area C (NEC) at the Paul
Scherrer Institute (PSI) in Villigen, Switzerland. Transversally polarized pro-
tons (+~ey or −~ey) are produced in an atomic beam ion source [23] and injected
into the Phillips Cyclotron. The sign of the polarization of the beam is changed
every second to eliminate temporal variations of the beam polarization. The
Cyclotron is working with a radio frequency (rf) of 50.6 MHz to produce a
beam of 71 MeV protons. The beam is transferred into the experimental area
NEC.

The layout of the experimental setup in the hall is shown in figure 4.

Spin−Rotating
Solenoid

Liquid D  −
Target

Proton−
Polarimeter

Bending−
Magnet

n−Beam 
Collimator

Polarized p−
Target

Neutron−

Detector

Faraday
Cup

p

n

C12

LD2

n
2

x

Dipol− Magnet

z

Figure 4: Experimental setup of the experiment

The beam enters the polarimeter chamber, where a 200 µm carbon foil
scatters protons to two Na-I detectors placed symmetrically left and right at
44o with respect to the beam direction. Due to the polarization flip, the po-
larization can be obtained from the cross section asymmetry of the detectors.
This setup allows to measure polarization continously with high precision (see
reference [24] and section 4.1). A plastic scintillation detector is placed at 30o

below the beam axis to monitor the time structure of the beam. The proton
beam is then deflected by a dipole magnet and enters a solenoid, where its spin
is rotated by 90o from the vertical into the horizontal direction. The experi-
ment is performed with the magnetic field direction of the solenoid parallel and
antiparallel to the beam to be insensitive to systematic effects.

After the spin rotation the beam enters the neutron production chamber,
where it first passes a carbon collimator and a secondary electron emission
monitor (SEM) [25]. The carbon collimator serves as a protection unit for the
target. The SEM is a device for measuring the deviation of the beam position
from the center. Its output currents can be used to directly adjust the steering
magnets of the beam.
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A liquid deuterium target (LD2) is used to produce polarized neutrons via
the d(~p, ~n)pp - reaction (see section 4). The neutrons finally pass through a
dipole magnet to turn their spins parallel (or antiparallel) to the beam axis. In
addition the magnet deflects the remaining protons to a Faraday Cup (FC) to
measure the beam current. The neutrons are taken through a brass collimator
which leads to a beam spot of 19.2 mm diameter on the polarized proton target
which is 3.6 m away from the LD2 - target. The “neutron facility” at PSI is
described in [26].

The scattered neutrons are measured by a segmented neutron detector 2.03
m away at an angle of 16.92o (see section 3.2). The recoil protons are measured
in coincidence in the polarized target, which consists of a doped plastic scintil-
lator serving as a polarized proton target and as a recoil detector (see section
3.1).

3.1 Scintillating Polarized Proton Target

Figure 5: Polarized proton target

The polarized proton target is used as target and detector. This allows the
measurement of the scattered neutrons in coincidence with the recoil protons.
The background can significantly be reduced in comparison to previous single
arm measurements [24].

The polarized proton target, built and operated by the polarized target
group at PSI [27,28], consists of a 5 x 18 x 18 mm3 plastic organic scintillator
doped with TEMPO, a free nitroxyl radical. The target is embedded into a
He-cryostat to cool it down to 100 mK (figure 6). Coils of a superconducting
magnet are defining the polarization direction of the target. With a concentra-
tion of 2x1019 paramagnetic centers per gram and a magnetic field of 2.5 T at
a temperature of 100 mK, the target reaches a polarization up to 69% in the
present experiment. The polarization is measured every 10 minutes by nuclear
magnetic resonance (NMR) directly at the target. The polarization measure-
ment via NMR has a systematic uncertainty of 2%, which is not significant
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Figure 6: Polarized target cryostat

for the final results. The mean polarizations measured in the two parts of the
experiment are shown in table 1.

The recoil protons have to be detected down to 2 MeV. It is necessary to

Polarization [%] Error
Azx 99 57.04 2.00
Azx 00 68.00 2.00

Table 1: Mean target polarization of the two experimental runs Azx 99 and Azx
00

obtain a sufficient light output to the detector, because the TEMPO reduces
the light output of the target to a fifth of an undoped sample. The doped
scintillator is glued to a fishtail shaped light collector. A 1 m long and 12 mm
diameter plexiglass tube transports the light to a photomultiplier at the top of
the cryostat (see figure 5). The diameter of the light-guide was limited by the
design of the cryostat. In the two parts of the experiment the polarization was
chosen once parallel to ~ex and once antiparallel to avoid systematic effects.

Geometric restrictions made it necessary to turn the cryostat by 12o to the
neutron detector in order to have the scattered neutrons not hit one of the coils
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of the magnet. Thus the target polarization has not only a component in x
direction but also in z.

3.2 Neutron Detector

Figure 7: The left picture shows the neutron detector from the front. On the
right side the neutron detector in the lead house is shown from the front

The neutron detector consists of an array of 20 scintillator bars of size
10× 10× 50 cm3. They are vertically arranged with a width of 5 and depth of
4 bars (5 columns and 4 rows) as can be seen in Figure 7. On each side of the
bars a light-guide collects the scintillation light to transport it to a photomulti-
plier (PM). The two-sided readout allows for a vertical position measurement,
because the difference in time between the bottom and the top PM in a bar
depends on its position. This was used in experiments at the Mainz Microtron
in Mainz (MAMI) (see reference [29]). For the present experiment a position
measurement is not necessary.

In front of the bars there are two layers of totally 9 thin (1 cm thick)
scintillation detectors (∆E-detectors) for discriminating protons from neutrons.



3.2 Neutron Detector 17

The detector is shielded from the hall background by 2×5 cm thick lead plates
(except for a 50× 50 cm2 window at the front). On the backside the shielding
is performed by a massive concrete block. The front of the bars is 203.3 cm
away from the pivot, where the ∆E’s have a distance of 193.3 cm. The center
of the detector is 5.5 cm higher than the beam, which leads to slightly different
scattering angles than in the symmetrical case.

The arrangement allows a measurement at 5 different angles: from 9.91o

(minimal lab angle) to 25.2o (maximal lab angle), with a mean solid angle of
10 msr. The mean lab angles for the bars are: 12.41o, 15.03o, 17.56o, 20.10o

and 22.41o.

The neutrons in the bars undergo a scattering or a reaction with hydrogen
or carbon in the scintillator before being detected. See [30] for a detailed
description of the processes involved. A measurement of the energy of the
individual neutrons via the light output of the scintillators is therefore not
possible. The energies detected in the bars range up to the maximal energy,
that can be deposited in the bars. In figure 8 such a spectrum is shown for
one bar. The measurement of the time of flight (TOF) is the only possibility
to distinguish between different neutron energies.

Figure 8: Typical ADC neutron spectrum from a PM of the neutron detector
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4 Analysis

The analysis section covers the determination of the proton beam polarization,
which is necessary to calculate the polarization of the neutrons. The determi-
nation of the absolute direction of the final neutron polarizations for the two
spin directions (0) and (1) is shown. The main analysis is discussed in two
parts: first the neutron energy distribution, which is essential for the knowl-
edge of the proton- neutron spin transfer and the spin rotation in the Faraday
Cup (FC) magnetic field. The second part explains the main cuts applied to
the target time and the time of flight from the target to the neutron detector.
Further, dead time and beam current corrections are discussed as well as false
asymmetries arising from them. An asymmetry investigation of the background
is done and finally a short discussion of the scattering of neutrons off 12C is
given.

Note that all values presented in % are absolute as long as not otherwise
mentioned.

4.1 Beam Polarimeter

The beam polarization is measured by determining the polarization asymmetry
of the cross section from the 12C(~p, p)-reaction for two different polarization
states. As mentioned in section 3 the protons are detected in Na-I scintillation
detectors left and right of the beam axis at an angle of 44o where the analyzing
power of the reaction [31] is maximal. The outputs of the Na-I detectors are fed
into analog to digital converters (ADC) after amplification. The signals of the
ADC’s, which are proportional to the input energies of the protons, are then
collected in Borer Buffers. In addition a pulser signal is added to the input. By
recording this pulser in a scaler at the same time, the yields can be dead time
corrected. This is done for each polarization state independently (see figure 9).
Figure 10 shows the energy spectrum of the left Na-I detector for the two spin
states. The elastically scattered protons are detected with the highest energy
and show a strong asymmetry due to the spin-orbit coupling, while scattering
from the first excited state (4.4 MeV lower) is independent of the spin.

There is a slight shift visible in the pulse hight of the two spin states, which
is an indication that there is a small left-right asymmetry of the beam position.
For the polarization measurement this effect is not of any importance (except
for the adjustment of cuts), but it has some relevance for false asymmetries
explained in chapter 4.7.

For obtaining cross sections, the counts in the elastic peak are, for each spin
state separately, normalized to the signal of the Faraday Cup (FC) which is
proportional to the integrated beam current.

The polarization of the protons can be calculated as follows: If σ(0) denotes
the cross section with spin in +~y- and σ(1) in −~y-direction, the cross sections
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Cs−I left
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Scaler
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Cs−I right

Amplifiers ADC’s Borer− Buffers

Figure 9: The trigger electronic setup from the proton polarimeter.

Figure 10: Energy spectrum of the left Na-I for the two spin states in the proton
polarimeter. Black: spin state 0; Red: spin state 1

can be written as (see section 2.2):

σi(0) = σi0 (1 +Aiy P (0)) (46)

σi(1) = σi0 (1 +Aiy P (1)) (47)

=⇒ σi0 = 1/2 (σi(0) + σi(1)). (48)

σi0 denotes the unpolarized cross section, and i the number of the detector.
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The calculation of the polarization can be done for each detector separately
or by using the super-ratio method. The former method is straight forward:
Assuming that the polarizations of state 0 and 1 are the same (with opposite
sign P (0) = −P (1), P can be calculated from equations 47 and 48 to:

P =
1

2 Aiy

σi(0)− σi(1)
σi0

. (49)

The super-ratio method takes the polarization measurement of both detectors
into account. From parity invariance of the scattering process the analyzing
powers for the right and the left detector have equal strength: Ay(+44◦) =
−Ay(−44◦). From the ratios of the cross sections the polarization can be
extracted:

σl(0)
σl(1)

· σ
r(1)
σr(0)

=
1 +Ay P (0)
1 +Ay P (1)

· 1−Ay P (1)
1−Ay P (0)

. (50)

Thus the norm of the polarization is given by:

| P | =
1
Ay

w − 1
w + 1

(51)

with w =

√
σl(0)
σl(1)

σr(1)
σr(0)

. (52)

The super-ratio method allows to determine the polarization with smaller sta-
tistical error than the normal method, but it is not sensitive to a difference
in polarization of state 0 and 1. The first calculation indicates whenever
P (0) 6= P (1) from a difference in the left-right asymmetry:

P l =
1
Ay

σl(0)− σl(1)
σl(1) + σl(0)

=
P (0)− P (1)

2 +Ay(P (1) + P (0))
(53)

P r =
1
Ay

σr(1)− σr(0)
σr(1) + σr(0)

=
P (0)− P (1)

2−Ay(P (0) + P (1))
(54)

The difference in the polarization states can be directly calculated from the
ratio P l/P r:

∆P :=| P (0) | − | P (1) |= 2
1− P l/P r

1 + P l/P r
. (55)

The mean relative difference (∆P/P ) in the experiment is in the order of 0.5%.
This relatively small asymmetry allows to use the mean polarization obtained
via the super ratio method. This difference is not important for Azx, because
the asymmetry is small and goes with 1/P (see equation 39).

Although the measurement is nearly free of background the polarization is
calculated in three different ways in order to be independent of the method:
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Figure 11: Polarization as a function of the run numbers from the two experi-
mental periods Azx 99 and Azx 00.

Super-ratio ∆Pstat ∆Psys
Azx 99 67.717 % 0.0099 % 0.186 %
Azx 00 64.606 % 0.0088 % 0.166 %

Table 2: Beam polarization of the Experiment from the two run periods Novem-
ber ’99 and March ’00

The first calculation is made without any background subtraction, the second
is done with a straight line background subtraction (no fit) and the third is
achieved with fitting a Gaussian with linear background. The polarization
is slightly reduced by the background, as expected, by 0.4%. The difference
between the fit and the straight line subtraction is smaller than 0.2%. Figure
11 shows the polarizations calculated with the super-ratio method for the two
different run periods. In table 2 the mean polarizations from the super-ratio
method are taken for the calculation of Azx with the statistical error ∆Pstat and
the systematical error ∆Psys resulting from the difference in the polarization
states discussed above.

4.2 Electronic Setup

The signals, coming either from the neutron detector or from the target, carry
information about the energy and the time at which the particle was detected.
One part of the signals is fed into ADC’s (Analog to Digital Converter) after
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multiplexing with linear Fan’s and appropriate delay, the other part is converted
into logical signals by discriminators to define the time (see figure 12). Because
the signals are relatively small and noisy in the target detector a constant
fraction discriminator (CFD) is used to make sure that the time is independent
of the signal hight. One output is used to stop the TDC’s (Time to Digital
Converter), another one to feed the scalers, which count each incoming signal.

The upper and lower PM of each bar of the neutron detector are taken in
coincidence to reject low energy background and noise. All 20 bars are linked
together with a logical OR. To assure that the target time is taken as the
coincidence time, the neutron detector time width is 42 ns, where the target
signal is only 2 ns broad. This opens the possibility to measure coincidences
with different beam bunches, which are 20 ns apart from each other. These
coincidences are only accidental and can therefore be used for background mea-
surement. An additional coincidence with the cyclotron RF signal is taken to
reduce accidentals which are not correlated with the beam bunch. This signal
defines the so called “pre-trigger” which is fed into a scaler. The RF signal it-
self is taken in coincidence with the signal from the Faraday Cup to make sure
that only triggers are generated, when the beam is on. To define a time zero
a further coincidence with the RF is performed, to make sure that the lead-
ing edge of the RF-signal is really the start for the TDC’s. This coincidence
is vetoed by the “computer busy” and is the “trigger” signal for all Camac
modules. It is possible to measure the dead time of the data acquisition by
comparing the counts from the scalers of the pre-trigger and the trigger. With
an additional coincidence with a signal which is set, when a run is started, the
frontend computer is forced to read out the modules. The veto detectors (∆E)
are only read out and have no share in the trigger.
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4.3 Determination Of The Sign Of The Neutron Beam
Polarization

Since the Azx is small, it is not clear from existing phase shift analyzes, if its
value is positive or negative. Only the knowledge of the polarization direction
for the two spin orientations can determine the correct sign.

From elastic 12C(~p, p) scattering in the polarimeter, the spin orientation of
the proton can be determined. The proton is polarized perpendicular to the
scattering plane either to the ceiling or the floor. In terms of the coordinate
frame introduced in figure 3, the scattering to the left detector shall be consid-
ered (looking in direction of the incident proton momentum). Thus the y-axis
(~ey = ~ki × ~kf ) is pointing to the ceiling. Since the neutron detector is on the
left side as well, that frame provides a good choice. Scattering to the right
detector is described by a negative scattering angle θ.

Because the spin-orbit force is attractive in 12C(~p, p), Ay is positive for the
left Na-I detector. The spin orientation in +~ey is thus the one with bigger cross
section (see equation 47).

A different explanation can be given looking directly at the spin orbit Hamil-
tonian. With ~L and ~S the angular momentum and the Spin- operators Hs−o
is:

Hs−o ∝ −~L · ~S. (56)

For the left Na-I ~L = ~r×ki points to +y (ceiling), because the protons going to
the left would pass the 12C- nucleus from the right side (see this argumentation
in [32]). With the spin orientation parallel to +~ey (and therefore parallel
to ~L), Hs−o would be negative. In this case the elastic cross section would
be larger than for the antiparallel situation. This implies that the spin in y
direction is the one with bigger cross section in the left detector (see figure
10). The same argument holds for the right detector, but there with opposite
sign. The proton ensemble with orientation in +~ey direction will be called spin
state 0 (ρpy) and in −~ey direction 1 (ρp−y) in the experiment (see chapter 4.1).

The spin of a particle with magnetic moment ~m will be turned in a magnetic
field due to the torque ( ~M) acting on the magnetic moment (see also the
calculation in Appendix A):

~M = < ~mi >ρi × ~B =
d < ~S >ρi

dt
(57)

~mi := gi µk ~S, i ∈ {p, n} (58)

~m can be proportional or anti proportional to the spin depending on its g-factor
(gi), which is positive for the proton and negative for the neutron.

After the proton beam has left the polarimeter it is turned by 90o passing
a solenoid (see figure 4). Its magnetic field direction points either in ~ez or −~ez.
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It has been switched several times during the experiment to avoid systematic
effects.

Thus the resulting orientations for the two settings of the solenoid field and
the spin orientations in the proton ensembles ρpy and ρp−y are presented in table
3. In the neutron production target the proton polarization is transferred to the

Proton pol.
+~ey −~ey

Sol.- +~ez +~ex −~ex
field −~ez −~ex +~ex

Table 3: Orientation of the proton spins after passing the Solenoid field

neutrons in opposite direction (see section 4.4 for details). The polarization
is turned further in the Faraday Cup magnetic field, which is pointing to +~ey.
Because the neutron has a negative g-factor, the magnetic moment ~m is in
opposite direction of its polarization. From equation 58 the torque is in −~ez
direction for initially in +~ex polarized neutrons and vice versa.

Taking the information from table 3, the negative spin transfer of the proton
to the neutron and the neutron spin rotation together, the resulting neutron
polarization from initially polarized protons is presented in table 4

Proton pol.
+~ey −~ey

Sol.- +~ez +~ez −~ez
field −~ez −~ez +~ez

Table 4: Spin direction of the neutrons after the FC-field as a function of the
initial proton polarization and the solenoid field direction

The magnetic field of the target has a large influence on the final polarization
orientation of the neutrons, because it is nearly oriented perpendicular to the z-
y plane. The B-field is ~Bt = |Bt|(± cos(ϑ),∓ sin(ϑ)) in the x-z plane, with ϑ =
12o. The upper signs are for positive, the lower for negative target polarization.
The Helmholtz-shaped field distribution has nearly a constant B-field over a
range of 10 cm, with a strength of |Bt| = 2.49T , which results in a significant
contribution of a y-component of the neutron polarization at the target, see
section 4.5.



26 4 ANALYSIS

4.4 The Neutron Energy Distribution

The neutrons produced in the reaction D(~p, ~n)pp at zero degrees have a momen-
tum distribution with a low energy tail due to the three body breakup reaction
of the d+p system, even if the initial protons are nearly monoenergetic. The
momentum distribution is known [26] and can be adapted by a Monte Carlo
(MC) simulation to the given experimental conditions. The momentum depen-
dent spin transfer from the initial protons to the neutrons Kx′

x (≡ K0s′′s0 in
the Bystricky notation) at 0o has been measured to an accuracy of 1.1% [33].
Figure 13 shows both, the energy distribution of the reaction D(~p, ~n)pp and
Kx′

x .

Figure 13: The n-p spin-transfer Kx′

x (2) and the neutron distribution n(T ) (1)
as a function of the neutron kinetic energy T.

The neutron flight time from the production target to the proton target
is not directly measured; instead, the time between the cyclotron RF and the
target is registered. The time resolution for the neutrons is broadened by
experimental effects like the PM time resolution and the photon transit time
from the detector to the PM. The resolution can be accounted for using a MC
simulation in order to fit the measured timing resolution in the experiment (see
figure 14). The simulation gives a total resolution of 1 ns “full width half max”
(FWHM) . Thus the MC allows to simulate the time or energy distribution of
the neutrons for any cut in the experimental target time spectrum and with it
allows to extract the corresponding spin transfer.

The resulting polarization of the neutrons is not only determined by the
initial proton polarization and a correct Kx′

x but also by the energy dependent
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Figure 14: Target time spectrum (black) and Monte Carlo simulated spectrum
(red dashed line).

spin rotation in the FC- and the target-magnetic field. In this chapter the focus
is mainly on the spin rotation in the FC field.

From the knowledge of the field (By = 0.476 T ) and the length over which
it is acting (∆z = 1.95 m), the corrected polarization can be calculated. The
polarization rotation of an initially in +~ex or −~ex polarized beam depends on
the rotation angle Λ := 1

2 h̄ gn µk By ∆t with negative g-factor gn for the
neutron (see Appendix A):

~Pb = ± | Px |

 cos2 Λ− sin2 Λ
0

2 sin Λ cos Λ

 (59)

The time ∆t during which the neutrons are in the field can also be expressed
as a function of the kinetic energy T. Relativistically it follows that:

∆t =
∆z
c

√
m2
n + T 2 + 2 T mn

T 2 + 2 T mn
, (60)

where mn is the neutron rest mass in MeV and c the speed of light in the
vacuum. In figure 15 the neutron polarization in x and z direction of a 100%
polarized neutron beam in −~ex is shown as a function of T . Note that the sign
is the same for Px and Pz for energies below < 68 MeV. A cut of 3 ns around
the peak in the target TDC in figure 14 corresponds to an energy distribution
shown in figure 16. The beam is polarized to 100% in ~ez- direction at an energy
of 67.9 MeV, where the peak maximum in the distribution function n(T ) (see
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Figure 15: Neutron polarization in ~ez- (top) and in ~ex-direction (bottom) after
the FC field from a 100% polarized beam as a function of the kinetic energy T
after passing the Faraday Cup magnetic field. The dotted vertical line indicates
the mean neutron energy.

figure 15) is 1 MeV lower. Nevertheless Pz is slowly decreasing to lower energies
and therefore the weighted polarization is still near 100%.
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Figure 16: MC-simulated energy distribution from a 3 ns target time cut.
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4.5 The Effect Of The Target-Magnetic Field

The magnetic field of the polarized proton target plays an important role for
the final polarization direction of the neutron beam, because the field is nearly
perpendicular oriented to the polarization. In figure 17 the map of the field
is shown in the frame of the target. As explained in section 3.1, the target is
turned by 12o in the x-z plane, so that the neutrons do not have a symmetry
axis as flight path, but a path indicated by the blue line. The magnetic field

Figure 17: Target magnetic field. The arrow lengths are proportional to the field
strength. x and y are coordinates in the target frame. The blue line indicates
the flight path of the neutrons.

strength in x and z direction (Bx and Bz), which the neutrons see, flying
towards the target, are shown in figure 18. For a positively (+~ez) polarized
neutron after the FC field, the spin is first turned towards −~ey until the beam
reaches the inner part of the coils at 10 cm, where it is forced towards +~ey
with a field of 2.4 T.

In order to calculate the neutron polarization, the Schrödinger’s equation is
integrated numerically, taking into account the target field at each point of the
path. The calculation is done in the frame of the neutron, flying with energy T .
The relation between position, time and energy is already explained in equation
60, so that the target field operator can be expressed time dependently:

d

dt
|ψ(t)〉 = − i

h̄
H|ψ(t)〉 (61)

H = −gnµkSx Bx(t) + Sz Bz(t)). (62)
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Figure 18: The field strengths Bx (solid line) and Bz (dashed line) of the target
as seen from the neutrons along their flight path (along the blue line of figure
17).

As initial state (|ψ〉0) for the numerical integration, the neutron polarization
after the FC field is taken, which is given in equation 89 or 90. The integration
procedure is explained in appendix B.

The polarization at the target is again depending on the incident energy
after the D2-target. The energy dependence is shown in figure 19 for a 100% in
−~ex polarized neutron beam before the FC-field, with the magnetic field of the
target in +~ex. The main effect of the target field is the polarization component
py and a small reduction in pz. The polarization in px is small at the measured
mean energy, but depends strongest on the applied time cut of the target time.

The energy weighted (nb(T )) polarization of the neutron beam, taking into
account the energy dependent spin transfer Kx′

x (0o) in the deuterium target,
the energy dependent rotation in the FC field By and the energy dependent
rotation in the target field, is therefore obtained by folding all functions and
multiplying with the proton polarization P :

~Pb = P

∫ highcut

lowcut

nb(T ) Kx′

x (0o)

 〈ψ(T ) | σx | ψ(T )〉
〈ψ(T ) | σy | ψ(T )〉
〈ψ(T ) | σz | ψ(T )〉

 dT (63)

The energy dependent state |ψ(T )〉 is the spin state at the target.
Not only the polarization ~Pb is depending on the cuts, but also Azx. The

upper cut (“highcut”) is varied around the typical 3 ns value for obtaining the
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Figure 19: Polarization of a neutron beam, initially 100% polarized in −~ex
after the D2-target as a function of the energy. (1) px, (2) py, (3) pz. The
target has positive polarization.

mean. Because Azx is energy dependent itself, the uncertainty is given in the
standard deviation of the distribution n(T ) from figure 16 (see Appendix C).

4.6 Main Cuts

Due to the fact that we measure the protons and neutrons in coincidence, the
background is already reduced by a big amount. Cuts are mainly applied to
the target time (tt) (see last chapter) and to the time of flight of the neutron
(TOF ), where TOF is the difference of the neutron time (tn) and tt. In the
Figures 20 and 21 the yield of the target time and the TOF is shown for one
bar. The two-dimensional view shows all the timing characteristics of this
experiment. The width of 42 ns in the coincidence window of the neutron
detector opens the possibility to measure accidental coincidences from earlier
beam bunches which are 20 ns apart from each other.

The lines with negative slope in figure 20 (1+2) arise from random coinci-
dences, where the neutron time is constant but the target fires at random times,
because of its low threshold in the CFD. The desired n-p coincidences are in
the main peak of the histogram (3), while the low energy neutron tail can be
seen in the line with positive slope (4). The fact that the target is mainly com-
posed of plastic scintillator, not only n-p scattering occurs but also scattering
and reactions of neutrons on 12C. The main reaction 12C(n, np)11B is assumed
to produce the main part of the coincident background (5). Fortunately the
neutrons from this reaction are at least 3 ns slower than from the direct n-p
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scattering and can therefore be separated. See chapter 4.8 for a discussion of
this background. The desired n-p events can be directly chosen by cutting on

Figure 20: Neutron TOF versus target time: (1) accidental coincidences from
the same beam bunch, (2) accidental coincidences with an earlier beam bunch,
(3) n-p coincidences, (4) n-p elastic line, (5) n-12C scattering.

peak (3) for each polarization state and each column of 4 bars in the neutron
detector. Typically a cut 3 ns wide in the target time and 3 ns in the TOF is
used. These cuts can be applied to the target energy spectrum. Depending on
the scattering angle (or the column), the recoil protons have different energies
(see figure 22). The low energy background in the ADC spectra is mainly a
consequence of the random coincidences discussed. A cleaner 2-dimensional
time spectrum results (see figure 23) when cutting the low energy background
away. The remaining background below the n-p peak can directly be subtracted
using the random coincidences with an earlier beam bunch (2).

Charged particles which could also trigger the neutron detector are discrim-
inated against neutrons by demanding, that the ∆Es in front of the bars do
not fire.

To improve the time resolution in the TOF, very low energy events are
cut in the neutron bar ADC’s to ensure that amplitude walk effects [34] are
minimized. A typical neutron ADC spectrum has been shown already in figure
8.

In 0.6% of the cases it happens that the bars from several columns fire and
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Figure 21: TOF versus Target time (same histogram as figure 20).

fulfill the conditions defined by the cuts. These events are excluded. But as
long as the multiple hits occur in the same column, the events are taken and
counted as a single event for this angle.

4.7 Normalization, Dead Time Correction and False
Asymmetries

The yields resulting for the two polarizations after applying the cuts discussed
in the last section have to be normalized to the individual currents for each
polarization. In addition the trigger (tr) and pre-trigger (ptr) values (see section
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Figure 22: Target ADC spectra for the 5 neutron detector angles after cutting
on the n-p elastic peak.

4.2) can be used to correct for computer dead times:
If Ni is the uncorrected yield for polarization i = 0 and 1, the corrected

yields Ñi are given by:

Ñi = d(i)
Ni

FC(i)
(64)

d(i) :=
ptr(i)
tr(i)

. (65)

Here FC are the charges integrated in the Faraday Cup. These values are used
to calculate the asymmetry ε (see equation 39):

ε = (1∓ a1 Ay)
Ñ1 − Ñ0

Ñ1 + Ñ0

(66)

Because of the small expected value for Azx it is important to check and correct
the experiment for false asymmetries arising from minimal deviations in the
beam for the two polarizations or from big dead-time corrections. For the
investigation of this problem the asymmetries of the corrections themselves are
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Figure 23: TOF versus target time with a low energy cut in the target ADC.

taken, e.g. the dead-time correction asymmetry4

Ad =
d(1)− d(0)
d(0) + d(1)

. (67)

Ad would be directly the systematic shift in the asymmetry, when ε is zero.
As can be seen in figure 24, the corrections are in the order of 0.05% per run,
but uniformly spread around 0, while the dead-time itself is 2%. The total
dead-time asymmetry correction (summed over all runs) for Azx is therefore

4The dead-time is actually defined as 1− tr
ptr

, where the lifetime is tr
ptr

and the dead

time correction 1/lifetime
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smaller than 0.01%.

Figure 24: Pre-trigger to trigger asymmetry in %.

Although the FC is not very sensitive to small shifts in the beam position,
it still could be a candidate for producing false asymmetries when using it for
normalization. As can be seen in figure 10 there is an indication that the beam
position is slightly different in the horizontal direction, because Na-I detectors
show different pulse heights for spin up and spin down. Instead of using the
FC for beam current measurement, one can take the single trigger rate of the
proton target (ST). Because the target single rate is not too high ( 140kHz), it
can be taken for beam current normalization. If the FC would be correct, the
relative asymmetry of the ST and the FC (AST/FC) (see equation 68) should
be zero.

AST/FC =
ST (1)
FC(1) −

ST (0)
FC(0)

ST (0)
FC(0) + ST (1)

FC(1)

(68)

In figure 25 the inverse asymmetry of the FC (A1/FC) is plotted as well as
AST/FC . AST/FC is indeed not zero. While the FC seems to be not sensitive
to the change of the solenoid field, the ST (resp. ST/FC) shows a stronger
dependence.

AST/FC gives a direct measure for the false asymmetry, when using the FC
for normalization: The systematic effect would be in the order of 0.6%, while
the beam current correction itself is in the order of 1%.
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Figure 25: FC asymmetry (black crosses) and AST/FC (red circles) as a func-
tion of the run number.

A further check for false asymmetries can be made using the background
(see figure 20 (1) and (2)), which should not depend on the polarization of the
neutron.

Another possibility is the coincident “background” from the carbon reac-
tions. The scattering process 12C(~n, np) is also independent of the neutron
polarization (at least with the present polarizations in z-direction). In figure
26 the asymmetries from the areas (1), (2) and from the carbon background
(5) are summarized with the corrections from above. The asymmetries are
zero within the errors. When there is a small overall asymmetry, it is negative,
which can be understood from the trigger setup: Because the neutron detec-
tor registers neutrons with a much lower single trigger rate than the target,
it happens that an elastic neutron from the desired reaction is in coincidence
with the background from the target. Of course it is also possible to have a
good target proton event with background in the neutron detector from an-
other bunch (2). From all the uncorrelated background, these events would
produce an asymmetry due to the main n-p reaction.

4.8 The Carbon Background

The coincident background in figure 20 (5) is mainly resulting from neutron
scattering on 12C. Elastic scattering off carbon is not detected, because the
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Figure 26: Asymmetry from the background: black: Azx99 and red: Azx2000
as a function of the 5 scattering angles in numbers. For better visibility the
red and black points are separated. The labels are from figure 20 and z (-z)
indicates the direction of the solenoid.

recoil carbon has an energy of about 1.5 MeV which is undetectable due to the
strong reduction in the light output of heavier particles [34].

The background must result from inelastic scattering. There are not many
scattering data available at such low energies. Especially not differential cross
section data. One can get a rough idea of the cross sections from [30,35], where
the different channels are studied in detail. Best detected in the scintillating
recoil detector are protons, all other particles need much more energy to be
detected. The best candidate is the reaction: 12C(n, n′p)11B with a total
cross section of about 90 mb at an energy of 90 MeV, which is not too far
from what one would infer from this experiment. The neutron energies from
other reactions like 12C(n, n′3α) are similar to inelastic scattering with the
corresponding Q-value, because the reaction is assumed to be indirect.

Assuming that 12C(n, n′p)11B is a quasi free reaction the kinematics of
the scattering process can be calculated. In figure 27 the TOF of the fastest
neutrons without any restrictions in the recoil proton angle is shown. For
comparison the solid line shows the TOF for the slowest neutrons from the
main H(n, np)-reaction, which have a flight time of 22.4 ns taking the mean
incident neutron energy of 66.24 MeV.
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Figure 27: Reaction on 12C. The dashed vertical line corresponds to the thres-
hold for detecting protons. The solid line represents the slowest neutrons from
the H(n, np)-reaction for the mean incident neutron energy. The scattered neu-
trons have an energy of 56.4 MeV corresponding to a flight time of 22.4 ns.
The solid line shows the maximal neutron energy from a 3 body calculation of
the reaction 12C(n, n′p)11B.

In all other bars the H(n, np)-reaction has faster neutrons. For this extreme
case, the difference in the neutron flight times is 1.8 ns. This difference would
be too small to be resolved within the timing resolution of the neutron TOF.
For small neutron angles the energy of the proton is smallest which would cause
a problem. Fortunately the neutron energies are largest and therefore the TOF
is smallest at these angles. For the higher angles, the neutron energy is small,
but on the other hand the energy of the protons is higher (see figure 22). In
figure 28 the TOF as a function of the proton energies is plotted for both the
neutrons scattering off carbon (as in figure 27) and the neutrons from elastic
proton scattering. The time difference is more or less constant over the angular
region of the neutron detector and it has a value of nearly 3 ns. Experimentally
there is a carbon bump visible about 4 ns separated from the elastic peak in
figure 29. Not all the background can be excluded, but by using a cut of width
3 ns on the main TOF peak one can get rid of most of it. The rest has to be
treated as a systematic uncertainty. The dependence on the cut width in the
TOF amounts to 0.4% for the neutrons scattered at 35.32o to 45.68o, 0.6% for
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Figure 28: TOF for neutron-carbon scattering (black dashed line) and for n-p
scattering (red solid line).

the 30.6o CM scattering angle and 1% for the smallest scattering angle, when
not going further than 3 ns. This is acceptable given the contribution of other
systematic errors.
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Figure 29: n-p elastic peak and carbon background. The peak with 4 ns time
difference is assumed to originate from 12C(n, n′p)11B.
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5 Results

With equation 39, the weighted polarization ~Pb from equation 63, the beam
current and dead time corrections discussed in chapter 4.7, Azx can finally be
calculated from the data:

Azx =
1

a6 + a7
(ε± − a2 Ay − a3 Axx − a4Ayy − a5 Azz) (69)

ε± =
dσ↑ − dσ↓

2 dσ0
(70)

dσ0 = 1/2
dσ↑ + dσ↓

1∓ a1 Ay
. (71)

The factors a1 · · · a7 are (see equations 32-38):

a1 = ∓ cos(ϑ) 〈sin(φ)〉θ |Pt| (72)
a2 = 〈sin(φ)〉θ |P xb | ∓ 〈cos(φ)〉θ |P yb | (73)
a3 = ± cos(ϑ) |Pt| (−〈cos2(φ)〉θ |P xb | ∓ 〈cos(φ) sin(φ)〉θ |P yb |) (74)
a4 = cos(ϑ) 〈sin(φ) cos(φ)〉θ |P yb Pt| (75)
a5 = ∓ sin(ϑ) |P zb Pt| (76)
a6 = ± cos(ϑ) 〈cos(φ)〉θ |P zb Pt| (77)
a7 = sin(ϑ)|Pt| (±〈cos(φ)〉θ |P xb |+ 〈sin(φ) 〉θ |P yb |). (78)

The beam polarization in x-direction |P xb | for a 3 ns target time cut is given
by |P xb | = 0.0002 · |P zb |. This allows to neglect all terms with Px for cuts
around 3 ns. Axx, Ayy, Azz and Ay with their errors are shown in table 5.
The uncertainties in the correlation parameters result from a ±1o-variation for
ε1 (taken from a PSA in [9]). The values for Ay are from a measurement of
our group published in [36]. The resulting values for Azx are the mean for

CM-angle [o] Ay Axx Ayy Azz |ε±|
25.32o 0.161(11) 0.19(2) 0.41(3) 0.18(8) 0.01304(16)
30.67o 0.194(11) 0.16(2) 0.44(3) 0.16(8) 0.01563(12)
35.82o 0.223(11) 0.14(2) 0.47(3) 0.14(8) 0.01465(13)
41.00o 0.250(11) 0.12(2) 0.49(3) 0.12(8) 0.01891(12)
45.68o 0.270(11) 0.11(2) 0.51(3) 0.09(8) 0.02032(13)

Table 5: Ay, Axx, Ayy, Azz and |ε±|. The numbers in brackets are the errors
of the last digits. |ε±| is the absolute mean taken over the possible target field
and Solenoid field settings.

different TOF cuts up to 3 ns and different cuts around 3 ns for the target
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time which corresponds to a neutron mean energy of 66.24 MeV. The terms
ε± and a1 · · · a7, which depend on the polarizations are presented in table 9 in
appendix D.

Obviously, the most important corrections to the measured asymmetry ε±
are a2Ay and a5Azz, the former in the order of 0.12, the latter 0.04. They give
both a positive correction, independently of the target polarization. The next
lower correction is a4 Ayy in the order of 0.01. It contributes either negatively
for positive target polarization or positively for negative target polarization.
The other terms are smaller than 0.01.

The final values for Azx with the different target polarization directions and
solenoid field settings are shown in table 6. The final values for each angle, i.e.

Azx(++) Azx(−+) Azx(+−) Azx(−−)
P xb 0.02 0.02 0.00 0.00
P yb 9.54 9.47 9.18 9.05
P zb 26.44 27.23 25.44 25.08
Pt 55.14 58.96 67.50 68.50
25.32o 0.045(25) 0.038(24) 0.049(22) 0.055(17)
30.67o 0.035(18) 0.042(17) 0.059(13) 0.053(14)
35.82o 0.083(18) 0.063(18) 0.070(14) 0.059(17)
41.00o 0.054(16) 0.056(18) 0.043(14) 0.057(18)
45.68o 0.065(17) 0.042(20) 0.047(15) 0.041(19)

Table 6: Beam (Pb) and target (Pt) polarizations and Azx for different settings
of the solenoid and the target polarization as a function of the target angles:
(+ −): Solenoid +~ez and target −~ex. The brackets are the errors of the two
last digits.

the mean values from table 6, are given in table 7: The statistical error ∆statAzx

CM-angle [o] Azx ∆stat ∆sys

25.32o 0.048 0.011 0.019
30.67o 0.049 0.008 0.019
35.82o 0.068 0.008 0.019
41.00o 0.051 0.008 0.019
45.68o 0.050 0.009 0.019

Table 7: Azx at 66.24 MeV with the statistical error ∆stat and systematic error
∆sys.

is the uncertainty due to the number of counts. All other uncertainties arising
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from the corrections of Ay, Axx, Ayy and Azz as well as the polarization errors
are taken into the systematic error ∆sysAzx.

All systematic effects and their consequences for the total systematic error
of Azx are listed in table 8. Azz has the biggest uncertainty. Since Azz has been

Error ∆sysAzx

∆Azz 0.08 0.017
∆Ay 0.01 0.007
∆Pt 0.02 0.004
∆Pb 0.003 0.002
∆Ayy 0.02 0.0007
∆Axx 0.02 0.0005
Total - 0.019

Table 8: Systematic uncertainties

measured with the same setup by our group, the uncertainty in this parameter
will be less than 0.01 after the data have been analyzed. With that information
the systematic error of Azx can be significantly reduced .

The energy distribution n(T ), with its mean energy of 66.24 MeV, is taken
from figure 16. The angle distributions, which give the 5 mean angles, are
shown in figure 32.

6 Discussion

As a comparison with a phase shift analysis from SAID, figure 30 shows the
data and the Azx values calculated with different values of the phase ε1. They
seem to match better with a lower value of ε1. It would be an indication for
a tensor force as predicted from the potentials but in disagreement with the
PSA of Henneck [5].

On the other hand it is dangerous to derive conclusions directly from such a
comparison. It is necessary to perform a PSA with the available data including
the present work and the Azz, because the fitting must be done for all phases
and mixing parameters. The more data there are in the database for a PSA, the
more accurate the results for ε1. The fit to the phases and mixing parameters
within a PSA has to be derived from fitting angle and energy dependences
simultaneously.

Especially the energy dependence causes problems in drawing a conclusion.
Azx is very sensitive to the energy as can be seen in figure 31. But obviously
the data base has no data between 50 and 75 MeV, which manifests itself in a
straight line between these energies. The functional dependence on the energy
is therefore not clear.
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Figure 30: The present Azx-data (◦) and the statistical error as a function of
the CM-angle with different PSA interpolated values for ε1

Figure 31: Azx as a function of the energy. The squares are interpolated points
from a phase shift analysis from the online analysis program SAID [10] for a
fixed CM angle of 36o
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In a recent PSA from D. Arndt [37], he claims that there are no discrepancies
seen between his PSA and the potential calculations, but no data were in
the data-base between 50 and 80 MeV. On the other hand the PSA of D.
Henneck [5] (see figure 2) shows higher values.

7 Conclusion

The goal of this work is to contribute to an accurate determination of the phases
and mixing parameters in the energy region below 100 MeV. Especially the lack
of data between 50 and 75 MeV was problematic and has been improved with
the present measurements.

We expect that this work will significantly reduce the uncertainties of the
phases, when a new global PSA is performed, and help to find a more accurate
answer to the strength of the tensor force in the NN-interaction.
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A Neutron Spin Rotation in the FC-Magnetic
Field

In the reaction D(~p, ~n)pp at zero degrees the neutrons have a broad momentum
distribution, even if the initial proton is monoenergetic. The reason lies in
the three body nature of the breakup reaction of the deuteron-proton system.
The distribution n(ki) is known as well as the polarization distribution of the
neutrons directly after scattering. The neutrons pass the FC-magnet where
their polarization is turned from ~ex into ~ez. But the time ∆t during which
the neutrons are in the magnetic field is obviously depending on their initial
momenta and therefore the spin is differently turned for each momentum
ki. This can also produce a non zero polarization in ~ex and −~ex direction,
respectively. The spin rotation in the magnetic field will be treated non-
relativistically.

Because the FC magnetic field BFC is oriented in +~ey the Hamiltonian for
the neutrons is:

H = Ho − gn µk ~S · ~B = Ho − gnµk Sy By (79)

=
k2

2m
− 1/2 gn µk

(
0 −i
i 0

)
(80)

The neutrons are either polarized in +~ex or −~ex. Without loss of generality the
beam density can be replaced by an eigenstate of the spin operator Sx which
signifies that the beam is polarized to 100%. Initially unpolarized neutrons
stay unpolarized passing the magnet.
With

Sx =
1
2

(
0 1
1 0

)
(81)

the spin operator in x-direction and assuming that the neutron is in a space
eigenstate of Ho in front of the magnet (at time t0) the eigenstates are:

|ψ(t0)〉 =
1√
2

(
eikz·z

eikz·z

)
for positive (+~ex) polarization (82)

|ψ(t0)〉 =
1√
2

(
eikz·z

−eikz·z
)

for negative (−~ex) polarization. (83)

The passage through the magnet is a time translation with the full Hamiltonian
H described by the time translation operator U(∆t), where ∆t = t− to:

U(∆t) = exp(−i/h̄ H · (∆t)) (84)
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=̂ exp(−i/h̄ k2

2m
· (∆t)) ·

exp(
i

2 h̄
gn µk By ·∆t

(
0 −i
i 0

)
) (85)

The propagated state |ψ(t)〉 in the magnetic field is simply:

|ψ(t)〉± = U(∆t) |ψ(t0)〉

=
1√
2

exp(
(

0 1
2 h̄ gn µk By · (∆t)

− 1
2 h̄ gn µk By · (∆t) 0

)
)

×
(

exp(i p · z − i/h̄ k2/2m ∆t
± exp(i p · z − i/h̄ k2/2m ∆t

)
(86)

=
1√
2

(
cos(Λ) sin(Λ)
− sin(Λ) cos(Λ)

)
×

(
exp(i p · z − i/h̄ k2/2m ∆t)
± exp(i p · z − i/h̄ k2/2m ∆t)

)
(87)

Λ =
1

2 h̄
gn µk By ∆t. (88)

The + sign in equation 87 is for positive (+~ex) and − for (−~ex) neutron polar-
izations. With φ0(∆t) = 1/

√
2 exp[ipz− i/(h̄2m) p2 ∆t] the propagated states

can be written as:

|Ψ(t)〉+ = φ0(∆t)
(

cos Λ + sin Λ
cos Λ− sin Λ

)
(89)

|Ψ(t)〉− = φ0(∆t)
(

cos Λ− sin Λ
− cos Λ− sin Λ

)
(90)

The polarization of the neutrons and the beam, respectively, at time t for
initially in +~ex polarized and in −~ex polarized particles (~P−(t)) is

~P+(t) =

 cos2 Λ− sin2 Λ
0

2 sin Λ cos Λ

 (91)

~P−(t) = −

 cos2 Λ− sin2 Λ
0

2 sin Λ cos Λ

 . (92)

From equations 91 and 92 it can be seen that in the ideal case where |Λ| = Π/4,
the polarization is turned simply from x to −z or from −x to z. Note that gn
is negative!
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B Neutron Spin Rotation in the Target Field

The calculation of the spin rotation in the target magnetic field doesn’t even
allow to use a perturbative approach, because of high gradients near the tar-
get. The problem can be solved by numerical integration of the Schrödinger’s
equation. The integration is practicable with limited computer resources, but
high accuracy.

The target field is rotationally symmetric around the x-axis and has there-
fore no y-component. With to the time after the FC field and tt the time at
the target, the problem to solve is simply:∫ tt

to

d

dt
|ψ(t)〉 dt =

∫ tt

to

− i
h̄
H |ψ(t)〉 dt (93)

H = −gn µk (Sx Bx(t) + Sz Bz(t)) (94)

=̂ − i gn µk
2 h̄

(
Bz(t) Bx(t)
Bx(t) −Bz(t)

)
. (95)

The time t as a function of the distance z from the target can be calculated
from equation 60 (for a given energy T ). The first integration step, which is
the state after the time dt: |ψ(dt)〉. The ground state (to = 0) shall be the spin
state after the FC field (see equations 89 and 90):

|ψ(dt)〉± =̂
(
ψ↑±(dt)
ψ↓±(dt)

)
(96)

=
1√
2

(
cos Λ± sin Λ
± cos Λ− sin Λ

)
+

1√
2
i gn µk

2 h̄

·
(
Bz(dt) Bx(dt)
Bx(dt) −Bz(dt)

) (
cos Λ± sin Λ
± cos Λ− sin Λ

)
dt. (97)

The upper sign is for initially in +~ex, the lower for −~ex polarized neutrons
(before the FC-field).

The state after the time n · dt is recursively calculated from the state at
time (n− 1) · dt:(

ψ↑±(n · dt)
ψ↓±(n · dt)

)
=

(
ψ↑±((n− 1) · dt)
ψ↓±((n− 1) · dt)

)
(98)

+
i gn µk

2 h̄

(
Bz(n · dt) Bx(n · dt)
Bx(n · dt) −Bz(n · dt)

)
×

(
ψ↑±((n− 1) · dt)
ψ↓±((n− 1) · dt)

)
dt. (99)
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C Error Calculations

The statistical error for all yields (N) in the experiment is obtained from:

∆N =
√
N (100)

The values taken from the scalers like beam current, trigger and pre-trigger
counts are assumed to have no error, since the corresponding numbers are very
large.

The uncertainties for derived quantities are calculated from the first Taylor
expansion in each variable to get the usual error propagation (see [38]):

∆f(x1, · · · , xn) =

√√√√ n∑
i=1

(
∂

∂xi
f(x1, · · · , xn) ∆xi

)2

, (101)

for an arbitrary function f which depends on the variables x1, · · · , xn.

The distributions of the scattering angles dn(θ(xn, yn, zn))/dθ, which de-
pend on the coordinates of the neutron detector (xn, yn, zn) are shown in fig-
ure 32 as a function of the lab angle. The energy distribution of the incident

Figure 32: Distribution of the scattering angle θ in the lab frame for the 5 mean
angles: 12.41 black, 15.03o red, 17.56o green, 20.10o blue, 22.41o yellow

neutrons is taken from the energy distribution presented in figure 16 for a 3 ns
cut in the target time.

The energy- as well as the angular distributions can be taken into account
in a new PSA-fit.
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D Asymmetry and Correction Factors

In the following table the measured asymmetry ε± and the correction factors
of equation 71 are presented for the two settings of the Solenoid field direction
and the target polarizations.

(++) (−+) (+−) (−−)
−0.0130(25) −0.0137(34) 0.0135(35) 0.0124(27)
−0.0170(26) −0.0158(26) 0.0147(22) 0.0154(23)

ε± −0.0125(26) −0.0149(27) 0.0149(23) 0.0164(27)
−0.0183(22) −0.0176(27) 0.0208(23) 0.0183(29)
−0.0181(24) −0.0208(29) 0.0213(24) 0.0219(31)
−0.0075 −0.0080 0.0092 0.0093
−0.0078 −0.0083 0.0095 0.0097

a1 −0.0078 −0.0084 0.0096 0.0097
−0.0077 −0.0083 0.0095 0.0096
−0.0075 −0.0080 0.0091 0.0093
−0.0910 −0.0903 0.0875 0.0862
−0.0925 −0.0917 0.0889 0.0876

a2 −0.0933 −0.0926 0.0897 0.0884
−0.0939 −0.0903 0.0902 0.0890
−0.0942 −0.0917 0.0897 0.0892
−0.0040 −0.0042 −0.0045 −0.0045
−0.0036 −0.0038 −0.0041 −0.0041

a3 −0.0032 −0.0034 −0.0036 −0.0036
−0.0029 −0.0031 −0.0033 −0.0033
−0.0026 −0.0028 −0.0036 −0.0030
0.0039 0.0041 0.0046 0.0046
0.0035 0.0037 0.0041 0.0041

a4 0.0031 0.0033 0.0037 0.0037
0.0028 0.0030 0.0033 0.0033
0.0025 0.0027 0.0037 0.0030
−0.0303 −0.0322 0.0357 0.0357
−0.0303 −0.0322 0.0357 0.0357

a5 −0.0303 −0.0322 0.0357 0.0357
−0.0303 −0.0322 0.0357 0.0357
−0.0303 −0.0322 0.0357 0.0357
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0.1360 0.1443 −0.1602 −0.1603
0.1382 0.1465 −0.1627 −0.1628

a6 0.1394 0.1479 −0.1642 −0.1643
0.1403 0.1488 −0.1652 −0.1653
0.1407 0.1492 −0.1642 −0.1658
0.0010 0.0010 0.0011 0.0011
0.0008 0.0009 0.0010 0.0010

a7 0.0007 0.0008 0.0008 0.0008
0.0006 0.0007 0.0007 0.0007
0.0006 0.0006 0.0008 0.0007

Table 9: Measured asymmetries ε± and correction factors a1 · · · a7 of equation
71 for all 5 angles (the lowest angle is always on top). The settings of the
Solenoid field and the target polarization are indicated by the ± signs; e.g. (+
−): Solenoid +~ez and target −~ex.
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der Universiät Basel

1996 - 2001 Experimente am JLAB, Newport News (USA),
am Mainz Microtron (MAMI) in Mainz (D)
und am Paul Scherrer Institut, Villigen (CH)




	  Abstract
	  Contents
	  List of Figures
	  List of Tables
	1 Introduction
	2 The Spin Correlation Parameter Azx
	2.1 The Coordinate Frame
	2.2 Spin 1/2 Scattering
	2.3 Definition of Azx
	2.4 Phase Shifts and Mixing Parameters

	3 Experimental Setup
	3.1 Scintillating Polarized Proton Target
	3.2 Neutron Detector

	4 Analysis
	4.1 Beam Polarimeter
	4.2 Electronic Setup
	4.3 Determination Of The Sign Of The Neutron Beam Polarization
	4.4 The Neutron Energy Distribution
	4.5 The Effect Of The Target-Magnetic Field
	4.6 Main Cuts
	4.7 Normalization, Dead Time Correction and False Asymmetries
	4.8 The Carbon Background

	5 Results
	6 Discussion
	7 Conclusion
	A Neutron Spin Rotation in the FC-Magnetic Field
	B Neutron Spin Rotation in the Target Field
	C Error Calculations
	D Asymmetry and Correction Factors
	  Bibliography

