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1. SUMMARY 

 

Excitatory synapses in the mammalian brain are made on small protrusions of the 

postsynaptic cell called dendritic spines. Dendritic spines are highly variable in their 

morphology and in their microanatomy (e.g. presence of subsynaptic organelles). It is 

unclear whether and how variability in spine morphological and anatomical properties 

translates into differences in synaptic function. Using two photon imaging, we analyzed 

how spine properties can affect synaptic signals and the potential for synaptic plasticity at 

single identified spine synapses. We show that synaptic signals can be tightly regulated 

on the level of individual synapses and that differences in spine morphology and 

microanatomy regulate synaptic function. We also provide evidence for the existence of 

functionally distinct populations of synapses in regard to their potential for synaptic 

plasticity. The present thesis is subdivided into three main sections. The first section is 

dedicated to the analysis of the function of specialized subsynaptic organelles in 

regulating synaptic plasticity. In the second section we studied the impact of spine 

morphology on synaptic signals and in the third section we examined whether critical 

proteins can be tagged to individual synapses in response to plasticity inducing stimuli.    

 

In pyramidal cells, only a subset of dendritic spines contains endoplasmic reticulum (ER). 

Spine ER often forms a ‘spine apparatus’, a specialized organelle with unknown function. 

It is unclear whether these specialized subsynaptic structures can affect the function of 

the synapse on the spine head. The possible involvement of spine ER in shaping spine 

calcium transients, a key trigger for synaptic plasticity, raises the possibility that spine 

ER could modulate the potential of a given synapse to undergo activity dependent 

modifications. Using a genetic approach to label the ER in living neurons, we find that 

the ER preferentially localizes to spines containing strong synapses. We demonstrate that 

spine ER represents a specialized calcium signaling machinery required for the induction 

of metabotropic glutamate receptor dependent long term depression at individual 

synapses. We demonstrate that different subsets of synapses exist in regard to their 

potential to undergo specific forms of plasticity. Spine ER represents the anatomical 
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correlate for a mechanism by which strong synapses can be retuned in an activity 

dependent manner.      

 

Dendritic spines are separated from their parent dendrite by a thin spine neck. The spine 

neck slows down diffusion of molecules from the spine head to the parent dendrite, 

allowing spine-specific action of second messengers and activated enzymes. The 

resistance of the spine neck is crucial in determining whether spines can also be 

considered electrical compartments. Only a high enough spine neck resistance leads to 

electrical compartmentalization and activation of voltage gated channels in the spine in 

response to synaptic stimulation. We show that spine neck resistance can change in an 

activity dependent manner. Using single spine calcium imaging as a reporter of NMDA 

receptor activation and spine head depolarization, we show that spines can indeed act as 

electrical compartments. Using pharmacological experiments and modeling, we 

demonstrate that different voltage dependent channels cooperatively participate in 

shaping spine head depolarization and spine calcium transients. We also show that in vivo 

the spine neck resistance is higher compared to the situation in acutely sliced brain tissue, 

demonstrating that in the living animal a higher fraction of spines can be considered 

electrical compartments compared to the in vitro situation. We provide strong evidence 

that the spine neck can profoundly affect synaptic calcium signals. Biochemical and 

electrical compartmentalization is dynamically regulated in an activity dependent way. 

 

Spine calcium signals can activate key signaling cascades responsible for the induction of 

synaptic plasticity. Long term potentiation (LTP) has been shown to require the activity 

of CaMKII, a serine/ threonine kinase. A chemical protocol leading to LTP has been 

shown to induce translocation of CaMKII to dendritic spines. It is however unclear 

whether this molecule acts at single synapses or whether it can spread and modulate 

neighboring synapses in response to more physiological protocols. Using a new optical 

approach to induce LTP at single visualized synapses, we show that LTP induction is 

accompanied by a long-lasting increase of CaMKII at the stimulated synapse. This 

increase was specific to the stimulated spine and did not spread to neighboring spines. 

We provide evidence that CaMKII acts locally, on the micrometer scale, to regulate 
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plasticity. We show that the concentration of proteins involved in regulating synaptic 

plasticity can be tightly regulated at the level of single synapses.   
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2. INTRODUCTION 

 

The brain is thought to be the most complex structure of an organism. The mammalian 

brain contains billions of interconnected cells which drive the organism’s action. 

Currently, we are just starting to elucidate how processes happening on the level of single 

molecules, cells or entire networks can influence and drive behavior. 

The human brain contains about 10
12

 cells, 10% neurons and 90% glial cells. Glial cells 

are thought to support neurons, supply them with nutrients, insulate axons and regulate 

brain immune responses. In recent years it has been proposed that glial cells are also able 

to modulate synaptic function. Neurons, on the other hand, are thought to be the central 

cells for information processing and storage. The outcome of information flow and 

processing within neuronal networks is thought to drive behavior. Synapses are the sites 

where information flows from one neuron to the next. The regulation of synaptic strength 

has been proposed to underlie learning and memory processes and may therefore be 

crucial for driving adaptive behavior. Learning is thought to require plasticity among 

synaptic connections; the maintenance of specific memory traces, on the other hand, is 

thought to require stability at the level of individual synapses. At present it is unclear how 

conflicting requirements such as the regulation of plasticity and stability are regulated. It 

is also unclear whether all synapses have the same potential for plasticity or whether 

different subpopulations of synapses exist in this regard. It is plausible that the structure 

of synapses is strongly correlated with their functional properties and their potential for 

plasticity. The mammalian hippocampus represents a suitable brain area where factors 

regulating plasticity and stability can be studied on the molecular, synaptic, cellular and 

network levels. 

 

2.1 The hippocampus 

The hippocampus is part of the forebrain, it is located in the medial temporal lobe and has 

been shown to play a central role in memory storage and spatial navigation (Rempel-

Clower et al., 1996; Reed and Squire, 1997; Milani et al., 1998; Neves et al., 2008). The 

hippocampus consist of a highly organized network and is subdivided into the subregions 

CA1, CA2, CA3, dentate gyrus, subiculum, parasubiculum, perisubiculum and entorhinal 
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cortex. It receives inputs from many cortical and subcortical regions via subiculum and 

entorhinal cortex. Axons from the entorhinal cortex innervate cells in the dentate gyrus; 

from there the information flows to CA3 and CA1 neurons. Mossy fibers from dentate 

cells innervate CA3 pyramidal cells. CA3 cells innervate CA1 pyramidal cells through 

the Schaffer collateral or the commissural pathway. CA1 cells project outside the 

hippocampus, through subiculum and entorhinal cortex to several cortical and subcortical 

areas (Amaral and Witter, 1989). Due to its highly ordered structure, the hippocampus 

represents an optimal system to study synaptic physiology. The present dissertation 

focuses on analyzing the functional properties of individual synapses between CA3 and 

CA1 pyramidal neurons. 

 

 

 

2.2 Pyramidal neurons 

Pyramidal neurons are present in different forebrain areas such as the cerebral cortex, the 

amygdala and the hippocampus. These neurons consist of a soma, an axon and two 

distinct apical and basal dendritic trees. The basal and proximal apical dendrites of CA1 

pyramidal neurons, mainly receive input from CA3 neurons via the Schaffer collateral 

pathway, whereas the distal apical dendrites mainly receive inputs from the entorhinal 

cortex via the perforant path and from thalamic nuclei (Spruston, 2008). Different 
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inhibitory interneurons target specific cellular domains of pyramidal neurons and are 

selective for the axon, soma or specific dendritic domains (Huang et al., 2007). 

 

 

 

2.3 Dendritic spines  

The majority of excitatory synaptic connections in the mammalian brain are made on 

small protrusions of the dendrite called dendritic spines. Dendritic spines consist of a 

spine head and are separated from their parent dendrite by a thin spine neck (Gray, 

1959a; Harris and Stevens, 1989). The spine head contains the postsynaptic density 

(PSD), an electron dense region where neurotransmitter receptors and many other 

proteins are integrated (Banker et al., 1974).     

 

The function of dendritic spines is still debated (Spruston, 2008). Dendritic spines 

increase the surface of the postsynaptic cell, maximizing the possible number of synapses 

per cell. Spines also isolate the PSD from the dendrite and act as biochemical 

compartments, confining active second messengers and proteins close to the activated 

synapse (Svoboda et al., 1996; Sabatini et al., 2002; Bloodgood and Sabatini, 2005; 

Noguchi et al., 2005; Gray et al., 2006). 
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Whether spines can also act as electrical compartments remains controversial. To act as 

electrical compartments and be able to amplify synaptic signals in a voltage dependent 

manner, the resistance of the spine neck needs to be high (Spruston, 2008). Although it 

has been shown that spine neck resistance can change in an activity dependent manner 

(Bloodgood and Sabatini, 2005), it is still debated whether voltage dependent channels 

can be activated in response to synaptic activity (Svoboda et al., 1996; Bloodgood and 

Sabatini, 2005; Araya et al., 2006b; Araya et al., 2007; Bloodgood and Sabatini, 2007a).  
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2.3.1 The PSD and glutamate receptors 

The postsynaptic density is composed of a large amount of different proteins including 

neurotransmitter receptors, voltage dependent channels, proteins involved in signaling 

cascades and scaffolding proteins. Important proteins such as the scaffolding proteins 

PSD-95 and Shank or glutamate receptors  are thought to turn over at individual synapses 

on the timescale of minutes to hours (Adesnik et al., 2005; Gray et al., 2006; Tsuriel et 

al., 2006). At hippocampal Schaffer collateral synapses, the main neurotransmitter 

receptors are AMPA, NMDA and metabotropic glutamate receptors. 

 

AMPA receptors are ionotropic receptors composed of GluR 1-4 subunits (Madden, 

2002). Each functional receptor is composed of four subunits. AMPA receptors are 

permeable to potassium and sodium ions. AMPA receptors lacking the GluR2 subunit are 

also permeable to calcium (Burnashev et al., 1992). Most AMPA receptors in CA1 

pyramidal cells contain the GluR2 subunit and are therefore impermeable to calcium ions 

(Geiger et al., 1995). 

NMDA receptors are ionotropic receptors composed of NR1 and NR2A-D subunits 

(Madden, 2002). The subunit composition determines the calcium permeability of the 

receptor and is regulated during development. At early developmental stages, NMDA 

receptors are rich in NR2B subunits (high calcium permeability), later in development, 

these receptors are replaced by NR2A-subunit containing receptors (lower calcium 

permeability) (Sheng et al., 1994). The activity of NMDA receptors is highly voltage 

dependent: at resting membrane potential (around -70 mV), NMDA receptors are blocked 

by magnesium ions in the channel pore. Membrane depolarization relieves this block and 

the receptors become permeable to calcium, magnesium and potassium (Nowak et al., 

1984). These receptors are thought to be the main pathway for calcium entry during 

synaptic activity (Mainen et al., 1999; Kovalchuk et al., 2000; Sabatini et al., 2002). 

Differences in the number and subtype of activated NMDA receptors are thought to be 

the major determinants regulating spine calcium signals during synaptic activity (Sabatini 

et al., 2001; Sobczyk et al., 2005). 

Metabotropic glutamate receptors (mGluRs) are members of the G-protein coupled 

receptors and contain seven transmembrane domains. They are subdivided into groups I, 
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II and III (Bortolotto et al., 1999; Fagni et al., 2000). Receptors in the group I are coupled 

to the phospholipase C/ inositol-trishosphate signaling cascade and their activation can 

result in calcium release from intracellular stores. Group II and group III mGluRs are 

negatively coupled to adenylyl cyclase and therefore prevent the formation of cAMP. 

mGluRs can affect different ionotropic receptors and other ion-channels and are thought 

to be involved in different forms of synaptic plasticity (Bortolotto et al., 1999; Nevian 

and Sakmann, 2006). In the hippocampus, Group I receptors (including mGluR1 and 

mGluR5) are thought to be mainly located on the postsynaptic side, whereas Group II and 

III receptors seem to be mostly presynaptic (Shigemoto et al., 1997). 

 

2.3.2 Spine morphology 

Spines have been shown to be highly variable in their morphology. Electron microscopy 

studies have shown that spine volume varies between 0.004 and 0.6 µm
3
 and spine neck 

length can range from 0.1 µm to 2 µm, whereas neck diameter can range from 0.04 to 0.5 

µm (Harris and Stevens, 1989). Spine neck resistance, however, can not be directly 

measured. Electron microscopy data or optical measurements of spine-to-dendrite 

diffusional coupling (such as fluorescence recovery after photobleaching or 

photoactivation) have provided different estimates of spine neck resistance, with 

resistances between 4 and 1200 MΩ (Harris and Stevens, 1989; Svoboda et al., 1996; 

Bloodgood and Sabatini, 2005). Determining the actual spine neck resistance represents a 

key task in elucidating the possible electrical function of dendritic spines.  

 

2.3.3 Impact of spine morphology on synaptic function and plasticity 

Electron microscopy studies have shown that spine volume is correlated with the amount 

of AMPA receptors in the PSD, no correlation was found between spine volume and 

NMDA receptor content (Nusser et al., 1998). More recently, using optical stimulation of 

identified spines, it has been shown that synapses on big spines produce larger synaptic 

currents compared to synapses on small spines, demonstrating a tight correlation between 

spine volume and postsynaptic strength (Matsuzaki et al., 2001). Spine volume also 

seems to affect the ability of a synapse to undergo long term potentiation (LTP), a 
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specific form of synaptic plasticity: small spines seem to be more prone to undergo LTP 

compared to big spines (Matsuzaki et al., 2004).  

 

Spine neck properties have been shown to regulate biochemical compartmentalization of 

second messengers and proteins (Svoboda et al., 1996; Noguchi et al., 2005). It is still a 

matter of debate, whether and under what conditions the spine neck can electrically 

isolate the synapse from its parent dendrite. Likely, spine neck properties, by regulating 

biochemical and electrical compartmentalization, can affect the potential for plasticity of 

a given synapse. However, experimental evidence supporting this hypothesis has never 

been provided.  

 

2.3.4 Spine microanatomy and synaptic function 

Dendritic spines have been shown to contain different types of cellular organelles. The 

presence of these organelles is highly variable between spines. It is unclear whether these 

subsynaptic organelles can influence synaptic function and plasticity.  

 

Mitochondria 

Only a small percentage of spines has been shown to contain mitochondria (Bourne and 

Harris, 2008). The presence of mitochondria in dendritic spines can change in an activity 

dependent way: stimuli which induce LTP have been shown to increase the amount of 

spines containing mitochondria (Li et al., 2004). Whether spine-mitochondria primarily 

play a role in energy production or whether they also play other functions (such as 

calcium buffering during synaptic activity) remains unknown.  

 

Endosomes 

Endosomes are characterized as intracellular tubular compartments and are classified into 

several different types (clathrin-coated vesicles, uncoated vesicles, tubular compartments, 

multivesicular bodies) (Cooney et al., 2002). The exact function of these structures is not 

known, although they have been involved in endo- and exocytotic processes. A major 

function for endosomal compartments has been proposed to be the delivery and removal 

of receptors after synaptic plasticity (Park et al., 2006). 
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Ribosomes and polyribosomes 

Free or ER bound ribosomes are found in a subset of spines (Pierce et al., 2000). These 

structures could serve for synapse specific protein synthesis and therefore play an 

important role in protein synthesis dependent forms of synaptic plasticity. LTP has been 

proposed to redistribute polyrisosomes from dendrites to spines, where they could play a 

central role for the long-term maintenance of synaptic modifications (Ostroff et al., 

2002).  

 

Endoplasmic reticulum and the spine apparatus 

Neuronal ER is thought to form a continuous membrane system of interconnected tubes 

and is present in the soma, axon, dendrites and in a subset of dendritic spines (Terasaki et 

al., 1994; Cooney et al., 2002; Choi et al., 2006). The ER in neurons is thought to be 

involved in protein synthesis and modification, lipid synthesis and calcium signaling 

(Berridge, 1998). Its role in modulating calcium signals has been proposed to affect many 

calcium dependent processes such as synaptic plasticity, gene expression or cell growth 

(Berridge, 1998; Verkhratsky, 2005). Neuronal ER contains calcium releasing channels 

such as the ryanodine receptors (RyRs) or the inositol-trishosphate receptors (IP3Rs), in 

addition to specialized calcium ATPases (SERCA pumps). The ER has been proposed to 

act as a calcium source or as a calcium sink during neuronal activity (Sharp et al., 1993; 

Berridge, 1998; Sala et al., 2005). It is unknown, however, whether the ER in dendritic 

spines participates in regulating spine calcium dynamics and synaptic plasticity. 

 

Different investigators, mainly using electrophysiological techniques and mutant animals 

for specific calcium release channels, have proposed a possible involvement of calcium 

release from the ER in regulating different forms of synaptic plasticity in cortical neurons 

(Svoboda and Mainen, 1999; Rose and Konnerth, 2001). These studies however, could 

not address the location of the required release channels (presynaptic/ postsynaptic; 

subcellular localization). In addition to that, studies using different strains of mutant 

animals often came to contradictory results, possibly reflecting differences in genetic 

compensation mechanisms (Balschun et al., 1999; Futatsugi et al., 1999; Nishiyama et al., 
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2000; Shimuta et al., 2001). New calcium imaging techniques could address more 

precisely the possible involvement of the ER in regulating cellular calcium handling and 

the subcellular location of the involved channels. Using calcium imaging techniques, it 

has been shown that strong synaptic activation evokes a calcium release wave in the 

apical dendrite of pyramidal neurons of different brain areas (Nakamura et al., 1999; 

Power and Sah, 2002; Larkum et al., 2003). These calcium release events are dependent 

on mGluR and IP3R activation and could represent a powerful synapse-to-nucleus 

signaling machinery for the regulation of gene transcription in an activity dependent way 

(Berridge, 1998).  

 

Whether and under what conditions the ER in dendritic spines participates in shaping 

spine calcium transients is highly debated. In cerebellar purkinje cells, where all spines 

contain a thin ER tube, calcium release from spine-ER is involved in the induction of 

synaptic depression in response to strong stimulation (Harris and Stevens, 1989; Finch 

and Augustine, 1998; Miyata et al., 2000). In cortical pyramidal cells, where only about 

20% of dendritic spines contain ER, the possible involvement of the ER in shaping spine 

calcium transients is strongly debated (see next section) (Svoboda and Mainen, 1999; 

Cooney et al., 2002; Bloodgood and Sabatini, 2007c). In these cells, spine ER often 

differentiates into an electron dense structure called the ‘spine apparatus’ (Gray, 1959a). 

The spine apparatus consists of stacks of ER cisterns and is tightly associated with the 

actin binding protein synaptopodin (Deller et al., 2000). Animals lacking this protein 

have been shown to be devoid of spines containing a spine apparatus and to have deficits 

in synaptic plasticity (Deller et al., 2003). Although the role of the spine apparatus is not 

known, it could dramatically influence synaptic function and plasticity. 
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2.3.5 Spine calcium transients and synaptic plasticity of pyramidal neurons 

Stimulation of presynaptic fibers leads to calcium transients which are restricted to the 

stimulated spine. Spine calcium signals are thought to be a key trigger for synaptic 

plasticity (Bloodgood and Sabatini, 2007c). Several studies in the hippocampus and other 

cortical areas have indicated NMDA receptors as the main pathway for fast calcium entry 

(Mainen et al., 1999; Kovalchuk et al., 2000; Sabatini et al., 2002). NMDA receptors, 

mainly blocked near resting membrane potential, get unblocked by AMPA receptor 

activation and spine head depolarization (Nevian and Sakmann, 2004; Bloodgood and 

Sabatini, 2007b). In recent studies it has been suggested that other voltage gated channels 

such as calcium, sodium or potassium channels can play a major role in modulating spine 

head depolarization and spine calcium influx (Ngo-Anh et al., 2005; Araya et al., 2007; 

Bloodgood and Sabatini, 2007b, 2007a).  

 

The possible involvement of spine ER in shaping spine calcium transients during synaptic 

activity remains controversial (Bloodgood and Sabatini, 2007c). Two recent studies 

showed that blockade of ER calcium release had no effect on the amplitude of 

synaptically evoked spine calcium transients (Kovalchuk et al., 2000; Sabatini et al., 

2002). In contrast to these studies, another study showed that RyRs represent the main 

source for spine-calcium during synaptic activity (Emptage et al., 1999). These 

conflicting results could be explained by differences in the preparation used, differences 

in recording/ stimulation technique or by a bias in the spines selected for the experiment 

(ER-containing versus ER-lacking spines). A more established concept, is that spine ER 
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can regulate calcium buffering during neuronal activity (Emptage et al., 1999; Sabatini et 

al., 2001; Noguchi et al., 2005). The fact that only a minority of spines in pyramidal 

neurons contains ER complicates the attempt to define a clear role for these structures. It 

is conceivable that major functional differences exist between spines containing ER and 

spines lacking ER.  

 

Spine calcium signals are thought to be the main trigger regulating different forms of 

synaptic plasticity such as long term potentiation (LTP) and long term depression (LTD) 

(see next section) (Bear et al., 1987; Nevian and Sakmann, 2004). The calcium sources 

regulating the occurrence, magnitude and direction of change in synaptic strength are still 

unclear. Although calcium influx through NMDA receptors is known to play an 

important role in regulating different forms of plasticity, other calcium sources could 

participate in shaping spine calcium signals and regulating plasticity (Bloodgood and 

Sabatini, 2007c).  

 

Spine ER structures could significantly modulate spine calcium signals required for the 

induction of synaptic plasticity. The differential distribution of ER in spines of pyramidal 

cells could therefore be an important aspect for the regulation of functional properties at 

individual synapses.  
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2.4 LTP and LTD 

Long term changes in synaptic strength, such as LTP and LTD, are thought to be cellular 

correlates for learning and memory (Bliss and Collingridge, 1993).  

 

In the CA1 region of the hippocampus, LTP can be induced using different induction 

protocols which elicit strong postsynaptic depolarization and large, NMDA receptor 

dependent postsynaptic calcium transients. These calcium signals are thought to be the 

necessary trigger for plasticity. However, it remains elusive whether other calcium 

sources participate in shaping the triggering signal and which calcium microdomains are 

involved in regulating plasticity (Malenka and Nicoll, 1999; Malenka and Bear, 2004). 

The site of LTP expression at Schaffer collateral synapses is still highly debated. Many 

reports demonstrated a strong postsynaptic component in being responsible for the 

increase in synaptic strength (change in AMPA receptor number and subtype, as well as 

single channel conductance and recruitment of silent synapses). Other reports also 

observed changes in presynaptic properties (increase in release probability) following 

LTP inducing stimuli (Bear and Malenka, 1994; Mainen et al., 1998; Malenka and Nicoll, 

1999; Emptage et al., 2003; Ward et al., 2006).  

 

At least two forms of LTD have been shown to coexist at CA3 to CA1 synapses: one 

form is dependent on mGluR activation and the other on the activation of NMDA 

receptors (Oliet et al., 1997). LTD at these synapses can be induced using prolonged low 

frequency stimulation or by negative pairing of pre- and postsynaptic cell firing (Bear 

and Malenka, 1994; Nishiyama et al., 2000). mGluR dependent LTD seems to require 

postsynaptic group 1 mGluR receptors and rapid local protein synthesis (Huber et al., 

2000; Snyder et al., 2001). Its site of expression is thought to be presynaptic in young 

animals (change in release probability) and mainly postsynaptic in older animals (change 

in AMPA receptor number, subtype and channel conductance) (Bear and Malenka, 1994; 

Snyder et al., 2001; Nosyreva and Huber, 2005). Although several studies reported that 

NMDA receptor dependent LTD requires a rise in postsynaptic calcium (Bear and 

Malenka, 1994), a recent study suggests that spike timing dependent LTD depends on 

presynaptically located NMDA receptors (Rodriguez-Moreno and Paulsen, 2008). 
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NMDA receptor dependent LTD leads to changes in AMPA receptor number and 

properties but has also a strong presynaptic component, leading to changes in release 

probability (Bear and Malenka, 1994; Zhang et al., 2006). 

 

Recent studies have addressed the structural correlates of LTP at the level of individual 

synapses (see later), it is however unknown whether LTD can be induced at single 

synapses and what the structural correlates for this form of plasticity are.  

 

2.5 CaMKII and LTP 

Spine calcium transients can activate various calcium dependent second messenger 

cascades and ultimately lead to the induction of synaptic plasticity.  A major protein 

which has been involved in the induction of LTP is Calcium/calmodulin-dependent 

protein kinase II (CaMKII) (Lisman and Zhabotinsky, 2001).  This protein is highly 

expressed in the nervous system and is enriched in the PSD (Erondu and Kennedy, 1985; 

Miller and Kennedy, 1985). Blockade of CaMKII activity blocks the induction of LTP 

(Malinow et al., 1989). Imaging experiments have shown that CaMKII translocates to 

dendritic spines in response to chemical LTP induction. It has been suggested that 

CaMKII translocation to the spine could be the key step in the induction of LTP 

(Otmakhov et al., 2004). Activated CaMKII could phosphorylate important target 

proteins in the PSD and lead to synaptic potentiation. It is however unclear, whether 

CaMKII translocates to stimulated spines in response to more physiological stimuli and 

whether CaMKII is tagged to the stimulated spine only or whether it can spread to 

neighboring spines.  

 

2.6 Glutamate uncaging and single spine induction of synaptic plasticity 

New advances in technology have enabled the analysis of synaptic function and plasticity 

at individual synapses. Two-photon uncaging of glutamate has become a major technique 

to study synaptic signals on the level of single spines or short dendritic branches 

(Matsuzaki et al., 2001; Carter and Sabatini, 2004; Sobczyk et al., 2005; Gasparini and 

Magee, 2006). This technique consists of the focal release of glutamate from an inactive 

precursor compound (caged glutamate) using a brief and focused laser pulse. The 
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uncaged glutamate mimics the glutamate released by presynaptic afferents and activates 

receptors on the postsynaptic membrane (Matsuzaki et al., 2001). Glutamate uncaging 

has the advantage over conventional electrical stimulation of presynaptic fibers in that it 

allows stimulation of any identified synapse. The observed effects are purely 

postsynaptic, allowing precise analysis of postsynaptic processes. However, care must be 

taken in calibrating the intensity and duration of the laser pulse used for uncaging, the 

evoked responses have to lie within a physiological regime (Bloodgood and Sabatini, 

2007b, 2007c).  

 

Two-photon uncaging of glutamate has been used to characterize AMPA receptor 

mediated synaptic currents at single spines. It has been shown that the content of 

functional AMPA receptors is correlated with spine volume: big spines contain a larger 

amount of AMPA receptors compared to small spines (Matsuzaki et al., 2001). Using a 

similar approach it has been demonstrated that such a correlation does not exist for 

NMDA receptors. NMDA receptor number and subunit composition seems to be 

regulated on the single synapse level, it is not correlated with spine volume and can 

rapidly change in an activity dependent manner (Sobczyk et al., 2005; Sobczyk and 

Svoboda, 2007). 

 

Glutamate uncaging has also been used to induce LTP on single visualized spine 

synapses (Matsuzaki et al., 2004; Harvey and Svoboda, 2007). It has been shown that 

LTP stimuli lead to an increase in the uncaging evoked excitatory postsynaptic current 

(uEPSC) specifically at the synapse receiving the stimulus, with no change in uEPSC 

amplitude at neighboring synapses. The increase in synaptic current is accompanied by 

an increase in the volume of the spine containing the potentiated synapse. The amount of 

potentiation seems to be inversely correlated with spine volume (Matsuzaki et al., 2004), 

a finding which is, however, still debated and inconsistent with another study (Kopec et 

al., 2006). In this study the authors show that chemical induction of LTP leads to 

exocytosis of AMPA receptors at the spine surface. Although the authors found an 

inverse correlation between spine volume and fractional increase in receptor content 

(increase normalized to spine volume), no correlation was observed between absolute 
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amount of exocytosed receptors and spine volume. This finding, which contrasts to the 

Matsuzaki et al. study, provides evidence that both, small and big spines can undergo 

potentiation.  

 

Although the link between spine volume and potential for plasticity is debated and 

remains to be confirmed, the studies performed by the groups of Kasai and Svoboda 

(Matsuzaki et al., 2004; Harvey and Svoboda, 2007) demonstrate that synaptic strength 

can be modulated at individual synapses, that there is a structural correlate for LTP and 

that spines can be considered as the potential smallest memory units. Since synapses on 

big spines appear to be less prone to undergo potentiation (but see Kopec et al., 2006), it 

has been proposed that the plastic synapses on smaller spines are capable of rapid storage 

of new information, whereas synapses on big spines are responsible for storage of 

previously acquired information (Bourne and Harris, 2007). A recent study, using a 

similar approach, showed that the increases in synaptic strength and spine volume have 

been shown to have a fast and a slow component, with the slower component speculated 

to be dependent on new protein synthesis and BDNF signaling (Tanaka et al., 2008). 

 

2.7 Cooperativity between neighboring synapses 

Several studies reported that LTP induction caused structural (increase in spine volume) 

and functional (increase in synaptic currents) changes at the stimulated spines with no 

obvious changes at neighboring spines (Matsuzaki et al., 2004; Harvey and Svoboda, 

2007; Tanaka et al., 2008). A recent study asked whether LTP induction alters the ability 

of neighboring spines to undergo this form of plasticity. The authors found that after LTP 

induction, the threshold for the induction of plasticity on neighboring spines was 

drastically reduced. This form of synaptic crosstalk was found to act over short dendritic 

stretches (~10 μm) (Harvey and Svoboda, 2007). This study demonstrates the existence 

of spatially clustered groups of synapses acting in a cooperative and reciprocally 

reinforcing manner. Ras, a small GTPase, has been proposed to be the responsible 

molecule for this form of synaptic crosstalk. Activated Ras has been shown to diffuse 

from the potentiated spine to neighboring spines, blockade of its activity inhibits synaptic 

crosstalk (Harvey et al., 2008).  
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Recent work from the laboratory of Jeffrey Magee shows that when neighboring synapses 

get simultaneously activated, a dendritic spike can be generated, leading to a supralinear 

summation of synaptic responses (Gasparini and Magee, 2006; Losonczy and Magee, 

2006). These studies demonstrate that synapses on the same branch can actively 

cooperate to increase synaptic signals by generating local spikes. More recently, the 

authors show that repeated generation of dendritic spikes can even lead to potentiation of 

the responses (Losonczy et al., 2008). 

 

In summary, these recent studies show that, although single synapses are capable of 

important computational processes, short dendritic branches can act as cooperative 

computational units and could play major roles in information processing and storage. 

The understanding of the function and plasticity of single synapses, the relationship 

between synapse structure and function and the processes involved in cooperativity 

between neighboring synapses is key for understanding brain function. 
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3. AIM OF THE THESIS 

 

Synapses in the brain undergo activity dependent modifications in their strength; these 

processes are thought to underlie learning. However, in order to keep stable memory 

traces, synapses also need to maintain stability. How these conflicting requirements are 

regulated at individual synapses is unknown. It is plausible that different subpopulations 

of synapses exist in regard to their potential for plasticity and stability and that these 

processes are dynamically regulated at individual synaptic connections.  The morphology 

and microanatomy (e.g. presence of subsynaptic organelles) of dendritic spines has been 

demonstrated to be highly variable. It is conceivable that the differential regulation of 

spine morphology and microanatomy dramatically affects synaptic function and 

plasticity.  

 

The aim of my thesis was to elucidate how plasticity and stability can be regulated at 

single spine synapses and how differences in spine structure influence synaptic function. 

The dynamic regulation of spine properties could be the structural basis for regulating the 

potential of individual synapses in processes underlying learning and memory.  

 

In the first part of my thesis I focused on the possible impact of specialized 

microanatomical structures on synaptic function and plasticity. In the mammalian 

forebrain, only a small subset of dendritic spines contains endoplasmic reticulum (ER), 

which often forms a specialized structure of unknown function called ‘spine apparatus’. 

Using a genetic approach to visualize the ER in living neurons, in combination with two-

photon imaging and uncaging, we show that subsynaptic ER strongly influences synaptic 

plasticity. In ER containing spines we observed a new form of synaptically triggered 

calcium release event and we provide strong evidence that this response triggers synaptic 

depression. We show that only synapses on spines containing ER can undergo a specific 

form of long term depression. In summary, we show how spine microanatomy can 

influence synaptic function and plasticity.  
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In the second part of my thesis, we analyzed how morphological properties of dendritic 

spines can influence synaptic signals. A key function of dendritic spines is to 

biochemically isolate neighboring synapses. It is unclear whether spines also act as 

electrical compartments and amplify synaptic signals. Electrical compartmentalization 

can only be achieved if the resistance of the spine neck, the thin tube connecting the spine 

head to its parent dendrite, is high enough. We demonstrate that the spine neck resistance 

is highly plastic and changes in an activity dependent way. Using single spine calcium 

imaging as a reporter for spine head depolarization, we demonstrate that spines are 

capable of electrical compartmentalization. We identify different channels to be 

responsible for the amplitude of spine head depolarization and spine calcium transients.  

 

Spine calcium signals can activate key signaling cascades leading to synaptic plasticity. 

In the last part of my thesis we studied whether key plasticity-inducing proteins, such as 

CaMKII, can be tagged to single synapses. Using a new, all optical LTP induction 

protocol on the single synapse level, we demonstrate that LTP induces a long lasting 

volume increase of the stimulated spine. We observed that CaMKII translocates to the 

activated spine, but not to neighboring spines. Our study provides evidence for a role of 

CaMKII in regulating plasticity on the level of single synapses and shows that important 

second messenger proteins can be compartmentalized and tagged to individual synapses.  

 

The work described herein sheds light on the function of dendritic spines and shows how 

the modulation of spine properties can regulate biochemical and electrical signals on a 

micrometer scale. We provide evidence that synapses can work as the minimal 

computational units and that spine morphology and microanatomy can regulate the 

potential for plasticity or stability of individual synapses.  

 

 

 

 

 

 



 25 

4. PUBLICATIONS 

Part 4.A:  

Synaptic depression at individual synapses is governed by 

spine microanatomy 
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Submitted Nature Neuroscience 

 

ABSTRACT  

To maintain balance between learning and stable memory traces, the brain has to regulate 

plasticity and stability on the level of single synapses. How this is achieved and whether 

all synapses have the same potential for plasticity is unknown. Here we combine two-

photon imaging and glutamate uncaging to investigate how the presence of endoplasmic 

reticulum (ER) affects synaptic function and plasticity in individual spines of CA1 

pyramidal cells. ER was frequently found in large spines that contained strong synapses, 

but rarely in small spines. Low frequency stimulation of synapses on ER containing 

spines produced delayed calcium release events and mGluR-dependent synaptic 

depression. Both phenomena were dependent on mGluR activation and IP3 signaling and 

were never observed in spines without ER. We conclude that in pyramidal cells, spine ER 

controls the potential for synaptic depression on the single synapse level. 
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INTRODUCTION  

Excitatory connections between pyramidal cells vary greatly in strength due to 

differences in transmitter release and due to the variable number of glutamate receptors in 

the postsynaptic terminal (Schikorski and Stevens, 1997; Koester and Johnston, 2005). 

This heterogeneity of the synaptic population at any given time is thought to reflect a 

large degree of use-dependent plasticity at individual excitatory synapses. Synaptic 

plasticity itself is also subject to regulation, the most prominent example being the 

developmental switch from NR2B to NR2A-containing NMDA receptors that modulates 

long term potentiation (LTP), critical periods and associative learning abilities in many 

vertebrate species (Dumas, 2005). It is less clear whether plasticity can also be regulated 

on the level of individual synapses. Conceptually, this would seem to be an attractive 

feature: Reducing plasticity of a specific set of synapses could be used to protect an 

established neuronal circuit from further changes while the rest of the synaptic population 

would still be available for use-dependent modification (Abraham, 2008). However, few 

studies have addressed the activity-dependent regulation of plasticity or ‘metaplasticity’ 

with single synapse resolution (Matsuzaki et al., 2004; Harvey and Svoboda, 2007). 

There is a general consensus that strong synapses have a reduced ability to undergo 

further potentiation (Debanne et al., 1999; Matsuzaki et al., 2004; Zhang and Oertner, 

2007) and that they can get locked in a state of high strength (O'Connor et al., 2005), but 

the underlying regulatory mechanisms remain poorly understood. 

The morphology of dendritic spines is highly variable and has been shown to be 

correlated with synaptic strength (Matsuzaki et al., 2001). From ultrastructural studies, 

we know that spines also possess a rich internal structure (Gray, 1959a; Cooney et al., 

2002). Spine microanatomy, e.g. the presence of subsynaptic organelles, could potentially 

influence both synaptic function and synaptic plasticity. An organelle that could play a 

major regulatory role is the endoplasmic reticulum (ER). Interestingly, in cortical 

pyramidal cells, only a subset of dendritic spines contains ER, often in the form of a 

specialized structure known as the spine apparatus (Gray, 1959b, 1959a; Cooney et al., 

2002).  The number of spines containing a spine apparatus is regulated in an activity-

dependent manner, as shown by in vivo lesion experiments (Deller et al., 2006). The 

function of these ER structures in spines is unknown at present, although they have been 



 27 

proposed to act as a sink or source for calcium ions during synaptic activity (Emptage et 

al., 1999; Kovalchuk et al., 2000; Sabatini et al., 2002). Here we combine two-photon 

imaging and two-photon glutamate uncaging to compare functional and morphological 

properties of spines with and without ER. We show that spine ER affects electrical and 

biochemical signaling and controls plasticity on the single synapse level. 

 

RESULTS 

A genetic approach to identify ER containing spines in CA1 pyramidal cells 

To visualize the ER in intact hippocampal tissue, we constructed a green ER label by 

fusing EGFP with ER-targeting and ER-retention sequences (Fig. A1a). Organotypic 

hippocampal slice cultures were biolistically co-transfected with the ER label and a 

cytoplasmic red fluorescent protein to visualize cell morphology (Fig. A1a). Two-photon 

microscopy allowed us to image transfected CA1 pyramidal cells at high resolution (Fig. 

A1b) and to identify ER containing (ER+) and other (ER-) spines on oblique dendrites 

(Fig. A1c). Analysis of several transfected CA1 cells showed that 18.7% ± 2.3% of 

spines were positive for the ER label (n = 318 spines, 8 cells; Fig. A1d). A similar 

fraction of ER containing spines has been reported in CA1 cells of perfusion fixed 

hippocampus and in dissociated hippocampal cell culture (Cooney et al., 2002; Toresson 

and Grant, 2005).  



 28 

 

 

ER-containing spines have large heads and often contain a spine apparatus 

Quantification of spine morphology showed that ER+ spines had significantly (P < 

0.001) larger cytoplasmic volumes (0.058 µm
3
 ± 0.005 µm

3
, n = 49) than the rest of the 

population (0.028 µm
3
 ± 0.002 µm

3
, n = 91, Fig. A2a). Since we used the fluorescence 

intensity of a cytoplasmic marker to estimate spine volume (see methods), the volume of 

the ER itself was excluded. Including the ER volume would have made the volume 

difference between the populations even larger. From ultrastructural studies, it is known 

that the ER in the spine head is connected to the dendritic ER by a thin tube passing 

through the spine neck. Therefore, ER could affect the diffusional coupling between 

spine head and parent dendrite by physically obstructing the spine neck (Bloodgood and 

Sabatini, 2005). To address this issue, we measured time constants (τ) of fluorescence 

recovery after photobleaching (FRAP) in ER containing and other spines by bleaching 
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the cytoplasmic RFP. The recovery time constants of the two groups of spines were not 

significantly different (τER+ = 235 ms ± 40 ms, n = 26; τER- = 218 ms ± 20 ms, n = 35, 

Fig. A2b), demonstrating that the ER did not block diffusion between spine head and 

dendrite. In fact, due to the larger head volumes of ER+ spines (Fig. A2a), these would 

be expected to have longer time constants assuming identical neck properties (Bloodgood 

and Sabatini, 2005; Biess et al., 2007). The similar time constants therefore suggest that 

the necks of ER+ spines provided an even weaker diffusional barrier compared to spines 

lacking ER. 

In spines of pyramidal cells, ER often forms a specialized organelle consisting of stacked 

membrane discs, the spine apparatus (Gray, 1959b; Cooney et al., 2002). To assess which 

fraction of ER+ spines in our sample contained this organelle, we combined live ER 

imaging with post-hoc immunohistochemistry against synaptopodin, a protein associated 

with the spine apparatus (Deller et al., 2000) (Fig. A2c). We found that the majority 

(78%) of ER+ spines were also positive for synaptopodin (Fig. A2d) and thus very likely 

contained a spine apparatus. 
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Synapses on ER-containing spines are strong  

To assess the functional properties of spine synapses, we stimulated individual spines by 

two-photon glutamate uncaging. First, we identified ER+ spines on oblique dendrites 

(Fig. A3a). After spine pre-selection, cells were patch-clamped and uncaging evoked 

currents (uEPSCs) were measured. On average, uEPSCs had amplitudes of 11.4 pA ± 0.7 

pA (n = 74 spines, 23 cells), similar to the amplitude of miniature EPSCs in these cells. 

Stimulation of ER+ spines evoked significantly (P < 0.001) larger uEPSCs (17.1 pA ± 

1.9 pA, n = 30) than stimulation of other spines (7.5 pA ± 0.5 pA, n = 44; Fig. A3b, c). 

To exclude systematic differences in stimulation intensity, we consistently stimulated 1-2 

ER+ and control spines on the same dendrite. Furthermore, we compared the amount of 

Alexa Fluor 594 bleaching by the uncaging laser pulse (Bloodgood and Sabatini, 2007b), 

which was identical in ER containing and other spines (see Supplementary Fig. A1). 

This control verified that both groups of spines were stimulated by equal amounts of 

photoactivated glutamate. In our sample of spine synapses, uEPSC amplitude was 

positively correlated with spine volume (R
2
 = 0.46, n = 62; Fig. A3d), which is in line 

with previous studies (Matsuzaki et al., 2001). Thus, ER containing spines are not only 

morphologically distinct by their larger volume, but also carry stronger synapses (Fig. 

A3d). 
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NMDA receptor mediated calcium transients are similar in ER+ and ER- spines 

The ER could potentially modulate the time course of postsynaptic calcium transients, 

which are an important trigger for synaptic plasticity (Brocher et al., 1992; Nevian and 

Sakmann, 2006). To compare calcium transients in spines with and without ER, we filled 

transfected CA1 pyramidal cells with a mixture of a green calcium-sensitive dye (Fluo5F) 

and a red calcium-insensitive dye (Alexa Fluor 594). At the excitation wavelength used in 

the calcium imaging experiments (810 nm), GFP and RFP fluorescence was negligible. 

Glutamate uncaging evoked spine calcium transients with short latencies (CaTs; Fig. 

A4a). These CaTs were blocked by 10 µM dCPP (22.8% of control amplitude, n = 4), 

confirming that NMDA receptors were the main pathway for fast calcium entry 

(Bloodgood and Sabatini, 2007c). When we compared peak amplitudes in different 

spines (Fig. A4b, c), we found a small but not significant difference between ER 

containing spines (ΔG/R = 26% ± 6%) and other spines (ΔG/R = 19% ± 3%). The decay 

time constants (τdecay, Fig. A4d) were also very similar (ER+ τdecay = 164 ms ± 19 ms; ER- 

τdecay = 179 ms ± 34 ms). How the amplitude of these rapid calcium transients is regulated 

is still an open question, although differential activation of NMDA receptors and other 
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voltage-sensitive channels are known to play a major role (Sabatini et al., 2002; 

Bloodgood and Sabatini, 2007c; Sobczyk and Svoboda, 2007). Our data suggest that 

spine ER is not a major modulator of NMDA receptor mediated calcium transients during 

the EPSP. 

 

 

 

ER containing spines actively release calcium 

In all spines tested, glutamate uncaging triggered fast rising calcium transients (average 

time to peak: 47 ms) with a slow decay (τdecay  = 173 ms ± 21 ms). In addition, in some 

spines, we observed a second, delayed rise in calcium concentration (average delay: 470 

ms ± 41 ms; Fig. A5a). This second calcium transient (CaT2) reached much higher 

amplitudes than the fast, NMDA-R mediated transient (CaT1: ΔG/R = 22% ± 3%, CaT2: 

ΔG/R = 141% ± 26%; Fig. A5b). Delayed CaTs were observed in 7 out of 19 ER+ 

spines, but never in ER- spines (n = 26; Fig. A5e). Our best estimate for the frequency of 

spines with delayed CaTs is 0.368, so assuming a binomial distribution, the probability of 

observing no delayed CaTs in ER- spines is 6.6 x 10
-6

. Therefore, ER+ and ER- spines 

represent two distinct populations with respect to their calcium signaling. 

Delayed CaTs never preceded uncaging stimulation (Fig. A5c), but appeared to be 

triggered by the stimulation in a stochastic fashion (Fig. A5a). In the spines that showed 

delayed CaTs, they occurred in ~20% of the individual stimulations (range 6% - 43%). 

Simultaneous voltage clamp recordings revealed that delayed CaTs had no electrical 

correlate, ruling out the possibility that they were caused by voltage-gated calcium influx 
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(Fig. A5c). In many cases, delayed CaTs were also detected in the dendrite (Fig. A5c), 

but the higher amplitude and fast kinetics of spine calcium transients argues for a trigger 

inside the spine rather than diffusion of calcium from the dendrite into the spine. 

Blocking group I metabotropic glutamate receptors (mGluRs) with a cocktail of mGluR1 

and mGluR5 antagonists (LY367385 and MPEP, n = 9; Fig. A5d, e) or blocking IP3 

receptors with intracellular heparin (4 mg/ml, n = 12; Fig. A5e) abolished delayed CaTs 

in ER+ spines. Whole cell perfusion with 100 µM IP3, on the other hand, increased the 

fraction of ER+ spines showing delayed CaTs (n = 5; Fig. A5e). The amplitude of 

uEPSCs was not affected by these pharmacological manipulations (see Supplementary 

Fig. A2). In summary, our data suggest that delayed CaTs are IP3 receptor mediated 

calcium release events, triggered by mGluR activation and restricted to ER+ spines. 

 

 

 

Synapses on ER-containing spines express mGluR-dependent depression 

Using electrophysiological approaches, it has been suggested that IP3 mediated calcium 

release is involved in the induction of LTD in several cortical areas (Reyes and Stanton, 

1996; Nishiyama et al., 2000; Bender et al., 2006). However, it is unclear whether this 

form of plasticity is restricted to specialized synapses or whether all synapses have the 

potential to undergo LTD. At Schaffer collateral to CA1 synapses, at least two different 
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forms of LTD have been described, one dependent on NMDA receptors and one 

dependent on mGluR activation (Oliet et al., 1997). mGluR dependent LTD has been 

shown to have a strong postsynaptic component (Zhang et al., 2006). The specificity of 

mGluR → IP3 mediated spine calcium signals (Fig. A5) raised the possibility that 

synapses on ER+ spines are preferential sites for this form of synaptic depression. We 

tested this possibility by comparing the effects of low frequency stimulation, a classical 

LTD induction protocol, on ER+ spines. To isolate mGluR dependent effects, NMDA 

receptors were blocked with dCPP. In a series of control experiments, we verified that 

delayed CaTs were still present under NMDA receptor block. The strength of synapses 

on spines of interest was measured before and after low frequency uncaging stimulation 

(LFU, 0.2 Hz, 15 min; Fig. A6a). Indeed, low frequency glutamate uncaging induced 

depression of the uEPSC in ER+ spines (average depression: 27.6% ± 4%, n = 20, P < 

0.001; Fig. A6b, c). This depression was long-lasting (n = 3, Fig. A6a) and could not be 

evoked in spines lacking ER (n = 11, Fig. A6b, c). The depression of uEPSCs at ER+ 

spines was completely blocked by group I mGluR antagonists (n = 7; Fig. A6c) and by 

the IP3 receptor antagonist heparin (4 mg/ml, n = 9; Fig. A6c). The identical 

pharmacology of synaptic depression and delayed CaTs in ER+ spines (Fig. A5e) 

suggests that calcium release from the spine apparatus is a key trigger for the induction of 

depression at these synapses. 
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DISCUSSION  

Our results show that ER containing spines on CA1 pyramidal cells are preferential sites 

for mGluR-mediated LTD. For the first time, we demonstrate the existence of defined 

subpopulations of spines with regard to their potential for synaptic plasticity. 

Furthermore, we show that ER containing spines frequently generate large mGluR 

dependent calcium transients, which we interpret as calcium release from intracellular 

stores (Fig. A5). It is highly likely that these calcium release events act as a trigger for 

synaptic depression, since pharmacological manipulations that prevented the occurrence 

of calcium release events also blocked synaptic depression after low-frequency 

stimulation (Fig. A6). In addition to its function in calcium signaling, it is very possible 

that ER contributes in additional ways to synaptic function and plasticity, e.g. by 

providing a substrate for local protein synthesis and modification (Huber et al., 2000). 

The complete absence of mGluR-dependent LTD in spines lacking ER highlights a level 

of functional diversity that was impossible to discover by electrophysiological methods 

alone. 

At least 78% of the ER containing spines in our sample contained a fully developed spine 

apparatus, which we identified by its immunoreactivity against synaptopodin (Fig. A2). 

The spine apparatus has been implicated in calcium homeostasis and synaptic plasticity 

on the basis of synaptopodin
-/-

 mice, which develop no spine apparatus and show reduced 

LTP. Here we show that in CA1 pyramidal cells, the spine apparatus governs the 

potential for synaptic depression with single spine specificity. In Purkinje cells of the 

cerebellum, IP3 signaling has been shown to be involved in LTD of parallel fiber 

synapses (Finch and Augustine, 1998; Miyata et al., 2000). In these cells, however, there 

is no indication of a regulation of plasticity on the single synapse level, a functional 

uniformity that is reflected in the homogenous morphology of Purkinje cell spines. 

Furthermore, much stronger stimulation was needed to elicit calcium release events in 

Purkinje cell spines, possibly connected to the simpler, tube-like morphology of ER in 

these spines. In our experiments, a single quantum-like stimulation of a single synapse 

could trigger calcium release events (Fig. A5). Therefore, although the general 

mechanism of mGluR→IP3 mediated depression seems to be conserved in different cell 
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types and brain areas, the selective targeting of the ER to strong synapses (Fig. A3) and 

the low activation threshold might be a specific feature of pyramidal cells. 

Our results have important implications for the distribution of synaptic weights in 

populations of synapses. Several theoretical studies have pointed out a central problem of 

Hebbian and spike-timing dependent plasticity: Strong synapses contribute more often to 

postsynaptic spiking and thus will get even more potentiated over time (Song et al., 2000; 

van Rossum et al., 2000; Sjostrom et al., 2008). This positive feedback mechanism would 

result in a bimodal distribution of synaptic weights, which is not what has been observed 

experimentally (van Rossum et al., 2000). Various homeostatic mechanisms have been 

postulated to prevent runaway excitation and to keep synapses in a state of dynamic 

equilibrium (Kepecs et al., 2002). Here we show that large spines with strong synapses 

contain specialized machinery for synaptic depression. Is it possible that the ER is 

actively moving into large spines? Dynamic movements of the ER in and out of spines 

have been demonstrated using sequential imaging (Toresson and Grant, 2005). 

Overexpression of the postsynaptic adaptor proteins Shank and Homer leads to spine 

enlargement and also recruits ER and IP3 receptors into spines (Sala et al., 2001; Sala et 

al., 2005).  Thus, regulated ER motility could be the structural basis of a metaplasticity 

mechanism that allows strong synapses to become depressed in an activity-dependent 

way. In this context, it is interesting to note that in the intact animal, spines that are stable 

over days and weeks often contain a spine apparatus (Knott et al., 2006). Altered sensory 

experience, for example sensory deprivation, can lead to destabilization and removal of 

these stable spines (Holtmaat et al., 2006). The mechanism we describe here might be 

critical for the weakening and the eventual disappearance of initially stable synaptic 

connections.  

In summary, we show that not only the outside shape of spines (Matsuzaki et al., 2001), 

but also their organelle content has to be considered to understand the relation between 

structure and function of synaptic connections. Differences in spine microanatomy, which 

have been noted already in the very first ultrastructural studies of synapses half a century 

ago (Gray, 1959b, 1959a), play a crucial role in determining the competence of individual 

synapses for long-term plasticity. 
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

METHODS 

Slice preparation and plasmid construction 

Organotypic hippocampal slices were prepared from Wistar rats at postnatal day 5 as 

described (Stoppini et al., 1991). After 3-5 days in vitro, cultures were transfected with 

synapsin-GFP-ER and synapsin-RFP (tdimer2, R. Y. Tsien), using a Helios Gene Gun 

(BioRad). GFP-ER was constructed by fusing EGFP to the ER targeting sequence of 

calreticulin and the ER retention sequence KDEL. 
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Two-photon imaging and uncaging 

Imaging experiments were performed between 1 and 2 weeks after transfection. We used 

a custom built two-photon imaging and uncaging setup based on an Olympus BX51WI 

microscope equipped with a LUMFL 60x 1.1 NA objective controlled by ScanImage 

(Pologruto et al., 2003). Two ultrafast IR lasers (Chameleon-Ultra, Coherent) controlled 

by Pockel's cells (350-80, Conoptics) were combined by polarizing optics (Thorlabs) for 

2-photon imaging (930 nm for GFP / RFP imaging, 810 nm for Alexa Fluor 594 / Fluo5F 

imaging) and uncaging of MNI-glutamate (725 nm). Fluorescence was detected in epi- 

and transfluorescence modes using 4 photomultiplier tubes (R3896, Hamamatsu). To 

measure calcium signals, green and red fluorescence was collected during 250 Hz line 

scans across the spine head and parent dendrite (7-15 trials/ spine). Fluorescence changes 

were quantified as increases in green fluorescence from baseline normalized to the red 

fluorescence (ΔG/R). For each imaging trial, photomultiplier dark noise was measured 

before shutter opening and subtracted from the dataset. Fluorescence was monitored 640 

ms before the stimulus and 640 ms after the stimulus.  

 

Glutamate uncaging was achieved using a 0.5 ms laser pulse for experiments analyzing 

synaptic properties and a 1 ms pulse for experiments looking at synaptic depression. 

Mushroom-shaped spines well separated from neighboring spines were used for the 

experiments. Standard uncaging location was ~0.5 µm from the spine center, in direction 

away from the parent dendrite. These uncaging parameters minimized the possibility of 

activation of dendritic channels. Laser intensity was ~50 mW for 0.5 ms pulses and ~40 

mW for 1.0 ms pulses, measured in the back focal plane of the objective. The same laser 

pulse, if directed to the center of the spine, bleached 30% of the Alexa Fluor 594 

fluorescence. We used this control to ensure equal stimulation strength for ER+ and ER- 

spines. 

 

Analysis of calcium transients 

We wrote analysis software in MATLAB to extract amplitude and decay time constant of 

NMDA-R mediated calcium signals by fitting the difference of two exponentials to the 

average fluorescence transient (ΔG/R) for each spine. Traces with non-monotonous 
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fluorescence decay (i.e. delayed calcium transients) were excluded from the average. A 

delayed calcium transient was defined as a response with a second peak larger than 10 

times the standard deviation of the baseline. Calcium signal delay was defined as the 

difference between the peak of the fluorescence transient and the onset of stimulation.  

 

Spine volume measurements 

To determine absolute spine volume, we measured the integrated fluorescence intensity 

of the spine in the red channel, which is proportional to its cytoplasmic volume (Svoboda, 

2004; Zhang et al., 2008). For each cell, a calibration measurement was taken by focusing 

the laser into the proximal apical dendrite, a cellular compartment large enough to 

contain the entire point-spread function (PSF) of our microscope, to get the maximum 

fluorescence intensity (fmax). The volume of the PFS (VPSF = 0.30 μm
3
) was determined 

using fluorescent beads (0.1 μm, Molecular Probes). 

 

Measurement of diffusional coupling 

Fluorescence Recovery after Photobleaching (FRAP) experiments were performed on 

spines of transfected cells. A brief laser pulse was used to bleach ~30% of RFP (5 trials 

per spine). Fluorescence recovery was fit by a single exponential function. The average 

recovery time constant for each spine was taken as a measure of diffusional coupling 

between spine and parent dendrite. 

 

Electrophysiology 

Slice cultures were superfused with artificial cerebrospinal fluid (ACSF) at 30-32° C 

containing (in mM): 127 NaCl, 25 NaHCO3, 25 D-glucose, 2.5 KCl, 1 MgCl2, 2 CaCl2, 

1.25 NaH2PO4, 0.05 chloroadenosine, 0.01 serine. For uncaging experiments, 5 MNI-

Glutamate (Tocris) was added to the ACSF. For plasticity experiments, serine was 

replaced by 0.01 dCPP in the ACSF. To block mGluR1 and mGluR5 receptors, we added 

LY367385 (0.1) and MPEP (0.01). Whole-cell recordings were made with an Axopatch 

200B amplifier (Axon Instruments), using 4-6 MΩ electrodes filled with (in mM): 135 K-

gluconate, 10 HEPES, 10 sodium phosphocreatine, 3 sodium ascorbate, 4 MgCl2, 4 Na2-

ATP, 0.4 Na-GTP and 0.015 Alexa Fluor 594 (pH 7.2). For calcium imaging 
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experiments, 0.3 Fluo5F (Molecular Probes) was added. Calcium imaging experiments 

were performed under current clamp conditions, measurements of postsynaptic currents 

in voltage clamp. uEPSC peak amplitude was extracted by fitting the difference of two 

exponentials to the average electrical response for each spine (5 trials / spine). To allow 

for dye and drug diffusion, we started the stimulation 15-20 min after break-in. 

 

Induction of synaptic depression at single spines 

We attempted to mimic a conventional low frequency LTD stimulation protocol (15 min, 

1 Hz, 900 pulses). Since in contrast to the reliable uncaging stimulus, the average release 

probability of Schaffer collateral synapses is only ~0.2, we used a 5 times lower 

frequency for the low frequency uncaging stimulation (LFU: 15 min, 0.2 Hz, 180 pulses). 

To optimize signal to noise ratio of the electrical recording only spines with an average 

uEPSC > 7 pA were selected for the experiment. To quantify synaptic response 

amplitude, spines were stimulated before and after LFU with 5 test pulses spaced 30 s 

apart. To quantify depression, the average response after LFU was divided by the average 

response before LFU. For long term recordings after LFU, spines were stimulated with 

test pulses at 0.03 Hz. Cells were held in voltage clamp at -65 mV. 

 

Immunohistochemistry 

Transfected cells were imaged and subsequently patched with an intracellular solution 

containing neurobiotin (1mg/ ml). Slices were then fixed in 4% paraformaldehyde and 

incubated with PBS containing 0.3% Triton X-100, 10 μg/ml Alexa Fluor 594 conjugated 

streptavidin, 4% horse serum for 3h at room temperature (RT). The fixed slices were 

incubated in blocking solution (20% horse serum in PBS) at RT for 4 h and then 

incubated with anti-Synaptopodin antibody (1:2000, Sigma-Aldrich) in PBS overnight at 

4
o
C. Next, the slices were incubated in Alexa Fluor 488 goat anti-rat secondary antibody 

(1:200, Invitrogen) for 3 h at RT. The stained slices were mounted in Aquatex media 

(Merck) and imaged using a two-photon laser-scanning microscope tuned to 780 nm.  
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Statistical analysis 

Data are reported as mean ± SEM. To test for significance we used the Mann-Whitney 

rank sum test (unpaired data) or the Wilcoxon signed-rank test (paired data). 
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ABSTRACT  

Dendritic spines have been proposed to function as electrical compartments for the active 

processing of local synaptic signals. However, estimates of the resistance between the 

spine head and the parent dendrite suggest that compartmentalization is not tight enough 

to electrically de-couple the synapse. Here we show in acute hippocampal slices that 

spine compartmentalization is initially very weak, but increases dramatically upon 

postsynaptic depolarization. Using NMDA receptors as voltage sensors, we provide 

evidence that spine necks not only regulate diffusional coupling between spines and 

dendrites, but also control local depolarization of the spine head. In spines with high 

resistance necks, presynaptic activity alone was sufficient to trigger calcium influx 

through NMDA receptors and R-type calcium channels. We conclude that calcium influx 

into spines, a key trigger for synaptic plasticity, is dynamically regulated by spine neck 

plasticity through a process of electrical compartmentalization.  
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INTRODUCTION  

In hippocampal pyramidal cells, the induction of synaptic long-term plasticity is 

associated with changes in shape and size of dendritic spines (Toni et al., 1999; 

Matsuzaki et al., 2004; Zhou et al., 2004; Harvey and Svoboda, 2007). How spine 

morphology affects synaptic function, on the other hand, is less clear. The narrow necks 

of mushroom-shaped spines form diffusional barriers that slow down the exchange of 

second messengers between spine heads and dendrites (Muller and Connor, 1991). As a 

consequence of the partial biochemical isolation of synapses on neighboring spines, 

changes in synaptic strength can be induced with single-synapse specificity (Matsuzaki et 

al., 2004; Harvey and Svoboda, 2007; Zhang et al., 2008). A second potential function of 

dendritic spines is more controversial: Since spines are equipped with different types of 

voltage-gated channels (Bloodgood and Sabatini, 2007b), they could in principle serve as 

active electrical amplifiers (Segev and Rall, 1988). According to this theory, active spines 

could locally boost synaptic currents at minimal metabolic cost, providing a substrate for 

information storage as well as information processing (Koch and Poggio, 1985; Koch, 

1999). Whether or not electrical amplification plays a role in synaptic transmission 

depends critically on the amplitude of the excitatory postsynaptic potential (EPSP) inside 

the spine (Koch and Zador, 1993). Unfortunately, it is not yet possible to measure spine 

EPSPs or the electrical resistance of individual spine necks directly. What can be 

assessed in live neurons is the diffusional coupling between spine head and dendrite, 

using photoactivation or fluorescence recovery after photobleaching (FRAP). Diffusion 

time constants can in principle be used to estimate spine neck resistance, since current 

propagation in neurons is mediated by electrodiffusion. Estimates from different 

preparations, however, did not reach agreement about the typical resistance of a spine 

neck (Harris and Stevens, 1989; Svoboda et al., 1996; Bloodgood and Sabatini, 2005). In 

brain slice cultures, it has been demonstrated that spine neck properties change 

dynamically, dependent on the level of activity (Bloodgood and Sabatini, 2005). This is 

an alarming finding, since the level of spontaneous activity in the most popular model 

system for synaptic physiology, the acute brain slice, is very low. Low spontaneous 

activity provides a conveniently quiet baseline for electrophysiological studies, but might 

have unexpected effects on synaptic function.  
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In this study, we revisit the question of electrical compartmentalization using two-photon 

calcium imaging of synaptically triggered calcium transients (CaTs) in spines. The strong 

voltage dependence and high calcium permeability of synaptic NMDA receptors 

(NMDARs) provided us with a natural sensor for spine head depolarization during the 

EPSP. However, the relationship between calcium current and depolarization is not 

linear, and in addition, depolarizing currents through NMDARs and other voltage-

dependent channels provide positive feedback. To estimate spine head depolarization 

from the amplitude of synaptically evoked CaTs, we therefore simulated the interplay of 

different ion channels using an active compartmental model of a CA1 pyramidal cell. We 

show that the spine neck resistance tightly controls NMDAR unblocking and spine 

calcium transients, but has little effect on the amplitude of somatic EPSPs. This might 

explain how the dramatic neck resistance changes we demonstrate here could go 

unnoticed in many years of electrophysiological experiments. 

 

RESULTS 

Prompted by a study reporting changes in spine neck resistance after pharmacological 

modulation of activity (Bloodgood and Sabatini, 2005), we set out to test whether 

depolarization of a single cell affects the diffusional coupling between its spines and 

dendrites. To measure FRAP time constants (τFRAP) of individual spines, we filled CA1 

pyramidal cells with Alexa Fluor 594 (Fig. B1a) and bleached spine heads on oblique 

dendrites by two-photon excitation at 810 nm. To our surprise, shortly after a 4 min 

depolarizing pulse to 0 mV, τFRAP was increased by a factor of 10, on average (Fig. B1b, 

c). The increase in τFRAP built up gradually during the depolarizing pulse, as shorter 

pulses induced smaller changes. The diffusional coupling also changed in response to 

bursts of backpropagating action potentials. A theta-burst protocol (three trains (0.1 Hz) 

of ten bursts (5 Hz) of five bAPs at 100 Hz) induced a 5.4-fold increase, on average 

(before stimulation: median τFRAP = 30 ms, range, 8-130 ms; after theta-burst: median 

τFRAP = 162 ms, range, 82-475 ms, n = 16). To exclude possible damage to the spine by 

the first bleach pulse, we also compared spines on step-depolarized and unstimulated 

cells in the same slice (Fig. B1d). The difference in τFRAP between the two groups was 
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12-fold, indicating that the changes were not induced by spine photodamage during the 

bleaching pulse (before depolarization: median τFRAP = 43 ms, range, 16-159 ms, n = 

23; 5-10 min after depolarization: median τFRAP = 524 ms, range, 177-778 ms, n = 22). 

One hour after step depolarization, spine neck resistances were still significantly 

increased (median τFRAP = 500 ms, range, 250-650, n = 7). Switching to nominally Ca
2+

-

free saline prior to depolarization completely prevented the increase in τFRAP, indicating 

that Ca
2+

 influx during the step depolarization triggered the change in diffusional 

coupling (Fig. B1d). The time a dye molecule stays inside a spine depends on spine neck 

diameter and length, but also on the volume of the spine head (Bloodgood and Sabatini, 

2005; Biess et al., 2007). However, we did not detect significant changes in spine head 

volume after step depolarization (Fig. B1e). Therefore, rapid calcium-induced 

remodeling of the spine neck seems to be responsible for the dramatic changes in 

diffusional coupling.  
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After step depolarization, τFRAP in individual spines ranged from 177 to 778 ms (Fig. 

B1d). We wanted to test whether the corresponding variability in the electrical resistance 

of the spine necks had measurable effects on spine head depolarization during the EPSP. 

To measure spine head depolarization, we made use of the fact that postsynaptic NMDA 

receptors (NMDARs) are blocked by Mg
2+

 ions in a strongly voltage-dependent fashion 

(Jahr and Stevens, 1990). NMDARs are highly permeable for Ca
2+

 and we could monitor 

NMDAR activation in individual spines by two-photon calcium imaging (Fig. B2a, 

Supplementary Fig. B1). However, there is no simple relation between spine 

depolarization and spine calcium levels: Number and subunit composition of NMDARs, 

as well as spine head volume, are heterogeneous, leading to differences in absolute 

calcium concentrations in individual spines even for identical EPSP amplitudes (Sobczyk 

et al., 2005). We developed an experimental protocol to compensate for this variability: 

Synaptically evoked Ca
2+

 transients (CaTs) were measured under two conditions: 

Depolarized to the synaptic reversal potential in voltage clamp (here denoted as ‘0 mV’) 

and free running (current clamp, denoted as ‘CC’) (Fig. B2b). The ratio between the 

calcium signal amplitude in CC and at 0 mV we call the fractional Ca
2+

 transient (fCaT). 

The stronger the spine depolarizes during the EPSP, the larger the fCaT will be. In 

control experiments at 0 mV, we verified that calcium influx was indeed mediated by 

NMDARs (97% block of CaTs by 10 μM dCPP, n = 3, data not shown). In a sample of 

33 synaptically stimulated spines, the amplitude of fCaTs ranged from 0.02 – 0.51, 

pointing to large differences in spine head depolarization. These differences were not 

reflected by the somatic EPSP (R
2
 = 0.12, n = 21, Supplementary Fig. B2). Since we 

used extracellular stimulation and typically activated more than one synaptic connection, 

the compound EPSP could not be used as a reporter of depolarization of the spine under 

scrutiny. If spine depolarization were controlled by the spine neck, we would expect the 

spines with the largest fCaTs to have the highest neck resistances and the longest 

diffusion time constants. As a measure of spine neck diffusional resistance, we used the 

decay time constant of the calcium signal at 0 mV (τdecay, Fig. B2b). This measure was 

highly correlated to the FRAP time constant (Fig. 2C) and was used as a proxy to avoid 

the additional photodamage caused by FRAP experiments. Indeed, we found a positive 

correlation between spine head depolarization and diffusional resistance (R
2
 = 0.42, Fig. 
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B2d). Spines with fast time constants generated small fCaTs, indicating weak 

depolarization of the spine head. As discussed in the previous section, diffusion time 

constants depend both on the geometry of the spine neck and on the volume of the spine 

head. Spine volumes, however, were not different in fast and slow spines 

(Supplementary Fig. B2). Together, these findings point to the spine neck as the main 

variable controlling diffusion speed and electrical coupling of spines. 

 

 

 

Next, we tested the electrical interactions between different channels pharmacologically. 

For these experiments, we used synaptically stimulated spines that were identified under 

depolarized conditions and, in addition, produced sizable CaTs in current clamp. Spines 

that did not show CaTs in current clamp (Ca
2+

-silent spines, see Fig. B2d) were not 

further investigated. As expected, blocking NMDARs strongly reduced the spine CaTs in 
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current clamp to 9% of the control amplitude (Fig. B3a). Blocking AMPARs also had a 

very strong effect on CaTs, reducing them to 16% of the control amplitude, on average. 

Clearly, AMPAR-mediated depolarization was needed to enable NMDAR-mediated Ca
2+

 

influx. Voltage-gated Ca
2+

 channels of the R-type have been identified as the main spine 

Ca
2+

 source triggered by back-propagating action potentials (Yasuda et al., 2003). We 

found that blocking R-type channels by SNX-482 reduced CaTs to 44% (Fig. B3b), 

indicating that EPSP amplitude in most spines was sufficiently high to open these high-

voltage activated channels. SNX-482 application did not affect the probability of 

observing CaTs (pCaT) after presynaptic stimulation (control: pCaT = 0.45 ± 0.19; SNX: 

pCaT = 0.45 ± 0.21, n = x), indicating that R-type channels are not involved in the 

regulation of glutamate release at these synapses. Another commonly used R-type 

antagonist, Ni
2+ 

ions at low concentration, did affect pCaT in some experiments. Therefore, 

we did not use wash-in of Ni
2+

, but compared fCaT amplitudes of spines recorded in 

ACSF containing  10 μm Ni
2+

 to fCaTs recorded in standard solution. The group 

comparison indicated that Ni
2+

 reduced the amplitude of CaTs to 58% of control (Fig. 

B3d). Compared to wash-in of SNX-482, this was a slightly weaker effect, but 10 μm 

Ni
2+

 is a sub-saturating concentration for R-type channel block (Foehring et al., 2000). 

We used the same group comparison strategy to test for the activation of fast Na
+
 

channels during the EPSP. Blocking Na
+
 channels in the postsynaptic cell by intracellular 

loading with QX-314 did not lead to significant suppression of spine Ca
2+

 signals (Fig. 

B3d). Sodium channels are known to be present in spines on basal dendrites of mouse 

neocortical pyramidal cells (Araya et al., 2007), but are either absent or were not 

activated during the EPSP in the spines we investigated. In summary, we concluded that 

at least three types of channels contributed to the depolarization of the spine head: 

AMPARs, NMDARs, and R-type calcium channels.  
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In current clamp experiments, blocking a single type of channel will affect depolarization 

and thus change the amplitude of all other currents. The best way to dissect the relative 

contributions of different channels to spine depolarization and spine calcium is 

biophysical modeling. We used the NEURON simulation environment to set up a model 

spine equipped with AMPA, NMDA and R-type channels and connected it to the oblique 

dendrite of a passive CA1 pyramidal cell model (Hines and Carnevale, 1997; Golding et 

al., 2001) (Fig. B4b). The voltage-dependent blocking function of synaptic NMDARs 

was experimentally determined (Supplementary Fig. B1) and implemented in the 

NEURON mechanism. Channel densities and spine neck resistance (Rneck) were adjusted 

to reproduce the relative amplitude of fluorescence transients measured in our 

pharmacological experiments (Fig. B4a, Supplementary Fig. B3, and Supplementary 

Table B1). The strong effect of AMPA receptor block on calcium signal amplitude was 
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only reproduced in simulations with Rneck > 1 GΩ. We were pleased to see that not only 

the amplitude, but also the time course of the calcium transients under various 

pharmacological conditions was faithfully reproduced in our simulated spine (Fig. B4c), 

indicating that the simple model captured the essential mechanism of spine calcium 

transient generation. From the simulation, we could extract the individual currents (Fig. 

B4d) and the typical EPSP in the spine head (Fig. B4e), which had an amplitude of 55 

mV and lasted ~10 ms (full width at half maximum). Depolarization was actively 

amplified and prolonged by the joint activation of NMDARs and R-type calcium 

channels. At the soma, the EPSP was attenuated to ~1 mV (Fig. B4e, insert, 

Supplementary Table B2). 

 

In a second set of simulations, we run the same model with a 10-fold lower spine neck 

resistance (Rn = 120 MΩ), to simulate spine neck properties before step depolarization 

(see Fig. B1). The EPSP in the spine decreased by ~20 % in peak amplitude and was also 

much briefer (Fig. B4e, dotted line). As a consequence, only a small fraction of NMDAR 

became unblocked and no R-type channels were activated in the 120 MΩ spine, leading 

to a 82% reduction in the simulated CaT (Fig. B4f, dotted line). Expressed as fractional 

calcium transient, the simulated 120 MΩ spine produced in current clamp only 4.5% of 

its maximum calcium signal at 0 mV and would have been classified as a ‘Ca
2+

 silent’ 

spine in our imaging experiments (see Fig. B2d). In summary, our simulation suggested 

that an increase in spine neck resistance from 120 MΩ to 1.2 GΩ would lead to a slight 

reduction (~20%) of somatic EPSP amplitude (Fig. B4e, insert), but would strongly 

enhance voltage-gated calcium influx into the spine head, boosting spine calcium 

transients by a factor of 5.6.  
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We tested the predictions of our model by measuring EPSPs in CA1 cells evoked by 

Schaffer collateral stimulation (Fig. B5a). The same step depolarization protocol that 

induced 10-12 fold changes in spine neck resistance had no consistent effect on the EPSP 

amplitude measured at the soma. This was no surprise given the large body of literature 

about pairing protocols: Postsynaptic depolarization of CA1 pyramidal cells alone has not 

been reported to induce lasting changes in EPSP amplitude. Thus, spine neck resistance 

controls local postsynaptic signaling independent of electrical signaling to the soma.  
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Our spine model suggested that even in a spine with Rn = 1.2 GΩ, synaptic activation will 

not trigger runaway depolarization, i.e. activation of all voltage-gated channels. 

Increasing the AMPAR current, however, could lead to such a ‘spine spike’ 

(Supplementary Fig. B3). Cyclothiazide is known to increase both amplitude and 

duration of synaptic AMPA currents. Using the 1.2 GΩ spine model and published 

measurements of cyclothiazide modulation of AMPA currents (Rammes et al., 1996), we 

predicted a 4.1 fold increase of CaT amplitude. When we applied cyclothiazide (40 μM) 

during synaptic stimulation in current clamp, we indeed observed a dramatic increase in 

the amplitude of spine calcium signals (Fig. B5b). In several spines, calcium transients 

under cyclothiazide reached or even exceeded the amplitude of transients recorded at the 

reversal potential, possibly due to the generation of calcium spikes in the spine head. On 

average, CaT amplitude increased by a factor of 4.2 (Fig. B5b). These experiments also 

suggest that additional dendritic depolarization, e.g. by coincident backpropagating APs 

or by simultaneously active neighboring synapses, would strongly boost spine 

depolarization. The previously reported linear summation of uncaging-evoked potentials 

on spines (Araya et al., 2006a) can be explained by such an active amplification process 

(Supplementary Fig. B3). A third insight from the model was that in low neck resistance 

spines, EPSPs in the spine head are relatively brief (Fig. B4e). In such spines, AMPAR 

block should have a weaker effect on postsynaptic calcium transients, since much of the 

calcium influx is due to the ‘leakiness’ of the NMDA receptor at the resting potential. To 

test this prediction, we sorted our AMPAR block experiments into two groups: Spine that 

had a fast decaying calcium signal (τdecay < 1 s) at 0 mV, indicating low resistance necks, 

and spines with τdecay > 1 s. In diffusionally isolated spines (τdecay > 1 s), AMPAR block 

reduced the calcium signal to 8% of the control amplitude, on average, indicating that 

92% of the control calcium transient was dependent on AMPAR-mediated depolarization 

(Fig. B5c). In spines with faster decay of the calcium signal, AMPAR block reduced the 

calcium signal to 43% of the control amplitude, on average, indicating that 57% of the 

original calcium signal amplitude was due to AMPAR activity. The remaining Ca
2+

 

influx after AMPAR block was abolished after wash-in of dCPP, consistent with a leak 

current through NMDARs (Fig. B5c).  
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Our calcium imaging experiments demonstrate the complex interactions between ligand- 

and voltage-gated channels in the spine head. However, all functional imaging was 

preceded by a depolarized period of at least 4 min, which, as we show in Fig. B1, alters 

spine neck properties. To find out how the results of our slice study would compare to the 

in vivo situation, we performed spine FRAP experiments through the thinned skull of a 

thy1-YFP mouse (Fig. B6). We found a large range of diffusional time constants (range, 

0.27 – 2.42 s; median, 0.62 s). In acute cortical slices cut from the same transgenic line, 

we measured much faster time constants in layer I spines (range, 0.01 – 0.54 s; median, 

0.23 s), suggesting lower spine neck resistances. Since the different imaging conditions in 

vivo and in slices could have introduced a selection bias, we also compared the 

fluorescence intensity of layer I spines relative to the parent dendrites in vivo and in 

perfusion fixed slices of thy1-YFP mice. Relative spine head intensity was 1.05 ± 0.04 (n 

= 124 spines) in vivo and 1.07 ± 0.06 (n = 138 spines) in perfusion fixed slices. 

Therefore, we can exclude a systematic bias towards larger spines as a reason for the 

longer time constants measured in vivo.  
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The activity-dependence of spine-dendrite coupling seems to be conserved in mouse 

neocortical and rat hippocampal pyramidal cells. For a quantitative comparison between 

YFP and Alexa FRAP experiments, we determined a conversion factor by filling YFP-

expressing cells with Alexa Fluor 594 and measuring τFRAP of both fluorophores 

simultaneously (conversion factor = 4.85). After this correction for fluorophore size, 

spine neck time constants were comparable in acute slices from rat hippocampus and 

from mouse cortex, indicating similar compartmentalization properties (Fig. B6c). 

Interestingly, the broad distribution of FRAP time constants we found in vivo partially 

overlapped with the distributions from both naïve and depolarized cells in acute slices. 

This indicates that a subset of spines in vivo is in a state of high neck resistance, possibly 

reflecting the history of synaptic activity. 

 

 

 

DISCUSSION 

In this study, we show that the amplitude of postsynaptic calcium transients during the 

EPSP is correlated with the diffusional resistance of the spine neck. In addition, we 
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demonstrate dramatic changes in spine neck resistance following step depolarization of 

the postsynaptic cell. For the first time, we integrated the information gained from 

calcium imaging experiments under various pharmacological conditions in a quantitative 

biophysical model. The modeling study suggests that after postsynaptic depolarization, 

spine neck resistance typically exceeds 1 GΩ. Estimates of the Ohmic resistance of spine 

necks have been previously derived from diffusion measurements (Svoboda et al., 1996). 

However, these estimates depend critically on assumptions about specific resistivity (Ri) 

and viscosity of the cytoplasm, parameters that are not well known and might even be 

different inside the thin spine neck and elsewhere in a cell. Here, we used a different 

approach, relying on voltage-gated calcium influx as a measure of spine head 

depolarization. In cells that were depolarized for several minutes, a large fraction of 

NMDARs became activated during the EPSP in the majority of spines (Fig. B2d). 

Compartmental modeling of depolarization and diffusion of Ca
2+

-bound dye pointed to 

surprisingly high EPSP amplitudes and electrical amplification in spines (Fig. B4). 

 

We provide six lines of evidence for an electrical function of the spine neck. First, we 

show that spine head depolarization is strongest in spines that are well isolated from the 

dendrite (Fig. B2d). Second, calcium influx was localized to the spine head, and no fast 

rising calcium signals were seen in the parent dendrite (Fig. B2a). Since the dendrites of 

CA1 pyramidal cells are equipped with a variety of voltage-gated calcium channels 

(Magee et al., 1998; Bloodgood and Sabatini, 2007b), the strict localization of the 

calcium signal can only be explained by a steep voltage drop along the spine neck. Third, 

in addition to NMDARs, we could detect the activation of high-threshold voltage-gated 

calcium channels the spine head during the EPSP (Fig. B3). Forth, we directly measured 

the voltage-dependence of synaptic NMDARs following the calcium imaging strategy 

pioneered by (Kovalchuk et al., 2000). In these experiments, we blocked K
+
 channels and 

AMPARs to improve voltage clamp (Supplementary Fig. B1). The steep voltage 

dependence we found indicated that significant unblocking of synaptic NMDARs 

requires a strong and long-lasting depolarization of the spine head (Fig. B4e). 

Experiments with AMPA receptor antagonists provided a fifth line of evidence for the 

electrical function of spine necks: NBQX blocked spine calcium transients more 
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effectively in spines with high resistance necks (Fig. B5c). This is consistent with the 

idea that spines with a low neck resistance cannot efficiently unblock their NMDARs. In 

these spines, a large fraction of the calcium influx during the EPSP is due to the 

imperfect Mg
2+

 block of NMDARs at rest and is thus less affected by AMPAR block. 

Finally, the long diffusion time constants we measured after step depolarization are 

consistent with an electrical neck resistance of 1.2 GΩ, on average. 

 

Individual Schaffer collateral synapses have been documented to produce up to 40 pA of 

current (Conti and Lisman, 2003), but the number of active AMPARs in our model spine 

(Supplemental Table 1) is still higher than most previous estimates (Matsuzaki et al., 

2001; Nimchinsky et al., 2004). When we tuned our model, we used only data from 

spines that did produce sizable calcium transients in current clamp. The ‘Ca
2+

 silent’ 

spines that we also frequently encountered in our calcium imaging experiments (Fig. 

B2d) are likely to have fewer AMPARs. Furthermore, an important difference between 

our experimental measurements and our single spine model is the frequent stimulation of 

additional synapses outside the field of view of our imaging experiments, reflected in 

somatic EPSPs of 4.7 mV, on average (Supplementary Fig. B2). Simultaneous 

activation of multiple synapses leads to local dendritic depolarization, which in turn 

reduces the number of AMPARs per spine head needed to explain our experimental 

results. A dendritic EPSP of 10 mV generated by other stimulated synapses, for example, 

reduced the number of AMPARs needed to generate sufficient depolarization in the spine 

of interest by a factor of 3. Thus, the absolute number of AMPARs in the spine head can 

not be derived from our experiments which were not performed under conditions of 

minimal stimulation. The interaction of multiple inputs we have only started to explore 

(Supplementary Fig. B3), and it remains a challenge to design experiments to address 

the complex nonlinear effects resulting from the synchronous activation of multiple 

synapses (Schiller et al., 2000; Gasparini and Magee, 2006). 

 

In terms of ion channel types, our spine model is intentionally minimalist. Reality is 

likely to be both more complex and more diverse, with other types of voltage-gated 

channels contributing to the EPSP in many spines. To aid further refinement of the model 
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as more information becomes available, we have deposited it in the NEURON database. 

In its current form, the model allowed us to explore functional consequences of the fast 

and dramatic changes in spine neck resistance we observed experimentally after 

postsynaptic depolarization (Fig. B1). We show that spine neck resistance controls 

calcium influx at the spine head, but has little effect on somatic EPSPs, which might 

explain why this form of structural plasticity has been overlooked for many years.  

 

Understanding the functional impact of activity-induced changes in spine neck resistance 

might help to resolve several long-standing controversies in the field of synaptic 

physiology. First, the voltage-dependence of postsynaptic calcium signals has been tested 

in several studies by AMPAR blocking experiments, abolishing the fast component of the 

EPSP. However, while some laboratories reported a weak effect of AMPAR block on 

postsynaptic calcium signals (Koester and Sakmann, 1998; Kovalchuk et al., 2000), 

others studies demonstrated nearly complete block of calcium transients after AMPAR 

block (Emptage et al., 1999; Yuste et al., 1999; Nevian and Sakmann, 2004). To 

understand this discrepancy, it is important to point out that in calcium imaging 

experiments using synaptic stimulation, the search for responsive spines is greatly 

facilitated by clamping the membrane potential of the postsynaptic cell to 0 mV (Yasuda 

et al., 2004). This procedure will, as we show here, dramatically alter spine neck 

properties. Thus, subtle differences in the experimental strategy used by different 

laboratories could have considerably altered the outcome of AMPAR blocking 

experiments (Fig. B5c) and thus changed the estimate of NMDAR conductance at the 

resting potential.  

 

Second, very different diffusion time constants have been reported in different 

preparations, leading to a debate about the typical electrical resistance of the spine neck 

(Harris and Stevens, 1989; Svoboda et al., 1996; Majewska et al., 2000; Bloodgood and 

Sabatini, 2005). Here we show that in non-stimulated acute brain slices, diffusional 

coupling between spines and dendrites is significantly stronger that in vivo (Fig. B6c). 

Potential reasons are the formation of novel spines during the incubation period (Kirov et 

al., 1999) and the absence of spontaneous activity in acute slices. Furthermore, we 
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demonstrate the strong activity-dependence of spine neck resistance in acute slices (Fig. 

1), consistent with previous reports from organotypic slice cultures (Bloodgood and 

Sabatini, 2005). From the broad range of spine neck time constants found in vivo (Fig. 

B6c), we conclude that EPSP amplitude and duration are likely to be highly variable 

between individual spines, although we studied only 2 examples from this broad 

spectrum in detailed simulations (Rneck = 120 MΩ and 1.2 GΩ, Fig. B4e). Nevertheless, it 

became clear that the biophysical properties of spines reflect the history of neuronal 

activity and are thus expected to be different in different preparations. 

 

Third, for the activation of multiple inputs on the same dendrite, different modes of 

integration have been reported: sublinear, linear, and supralinear (Polsky et al., 2004; 

Araya et al., 2006a; Gasparini and Magee, 2006; Sjostrom et al., 2008). Integration has 

been shown to depend on the activation of voltage-gated channels and NMDA receptors 

and is therefore an active process (Cash and Yuste, 1999; Carter et al., 2007). In 

simulations of two simultaneously active spine synapses, we could readily reproduce 

different integration modes just by changing the resistance of the spine necks 

(Supplementary Fig. B3). When we removed NMDARs and R-type channels from the 

model to simulate ‘passive’ spines, integration of neighboring inputs became sublinear 

(Supplementary Fig. B3). Apparently, dendritic integration of EPSPs depends on the 

gain of the spine amplifier, which is regulated by the electrical resistance of the spine 

neck. Taking into account the dynamic changes in spine neck resistance (Fig. B1), this 

suggests a novel mechanism by which local dendritic calcium spikes could change the 

dendritic integration mode in a branch-specific manner. 

 

As a fourth point we would like to discuss the potential impact of spine 

compartmentalization on long-term potentiation (LTP). LTP is classically induced by 

pairing of presynaptic activity with postsynaptic depolarization.  It has been noted, 

however, that pairing is only effective at the end of a long depolarizing pulse, but not at 

its beginning (Chen et al., 1999). This finding points to a slow, Ca
2+

-dependent process in 

the postsynaptic neuron that is triggered by depolarization and enables functional 

plasticity. Other stimuli that induce high postsynaptic calcium levels, e.g. dendritic 
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calcium spikes, have also been shown to facilitate LTP induction (Kampa et al., 2006). 

Could spine neck changes be an essential first step in the process of LTP induction? The 

10-fold change in diffusional resistance we report here leads to increased Ca
2+

 influx 

during the EPSP, but will in addition prolong the residence time of Ca
2+

-activated second 

messengers, e.g. αCaMKII, in the active spine. We suggest that electrical and chemical 

isolation induced by high spine neck resistance cooperate to facilitate the induction of 

long-term plasticity at spine synapses. Therefore, although spine neck changes have little 

direct impact on EPSP amplitudes at the soma, they could be a key mechanism for 

synaptic metaplasticity. 

SUPPLEMENTARY FIGURES 
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SUPPLEMENTAL TABLES 

Supplementary Table B1: Number of channels used in simulation 

 AMPA receptor NMDA receptor R-type VGCC 

# of channels present in spine 240 110 230 

maximum # of channels open 

during EPSP  

240 18 9 

 

Supplementary Table B2: Electrotonic attenuation of EPSC and EPSP (1.2 GΩ spine 

neck) 

 EPSC amplitude (Voltage clamp) EPSP amplitude (Current clamp) 

spine head 41 pA 54.8 mV 

spine base n/a 22.2 mV 

soma 24 pA 1.1 mV 

 

 

METHODS 

Slice preparation  

Acute hippocampal brain slices were prepared from Sprague Dawley rats (postnatal day 

16-20) in accordance with the animal care and use guidelines of the Veterinary 

Department Basel-Stadt. Horizontal slices (350 μm) were cut on a vibroslicer (Leica) in 

ice-cold solution containing (in mM): 110 choline chloride, 25 NaHCO3, 25 D-glucose, 

11.6 sodium ascorbate, 7 MgSO4, 2.5 KCl, 1.25 NaH2PO4 and 0.5 CaCl2. Slices were 

incubated at 34°C for 30-45 min in oxygenated artificial CSF (ACSF), containing (in 

mM) 127 NaCl, 25 NaHCO3, 25 D-glucose, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaH2PO4 

and then stored at room temperature until used. Experiments were performed at 32° C in 

ACSF containing 10 μM bicuculline, 30 μM serine and 2 μM thapsigargin to block 
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GABAA receptors, glycine-dependent desensitization of NMDARs, and intracellular Ca
2+

 

stores.  

 

Electrophysiology 

Whole-cell recordings from CA1 pyramidal cells were made with a Multiclamp 700B 

amplifier (Axon Instruments), using 3-6 MΩ pipettes filled with (in mM): 130 K-

methylsulfonate (or  cesium methanesulfonate), 10 HEPES, 10 sodium 

phosphocreatine, 3 sodium ascorbate, 4 MgCl2, 4 Na2-ATP, 0.4 Na-GTP, 0.6 fluo-5F and 

0.03 Alexa Fluor 594 (pH 7.2). Schaffer collaterals were stimulated with a monopolar 

glass electrode filled with 1M NaCl, positioned 15-25 m from an oblique dendrite, using 

short hyperpolarizing pulses (0.2 ms, -3 to -5 V) delivered by a stimulus isolator (NPI 

Electronics). The synaptic reversal potential was determined by first depolarizing the cell 

at the soma until the synaptic currents reversed, then slowly repolarizing until synaptic 

stimulation evoked zero current. This procedure provided precise compensation for 

unavoidable space clamp errors. In K
+
 based internal solution, current reversal was 

typically achieved with the soma clamped between +25 and +30 mV. If the synaptic 

currents could not be reversed, the experiment was aborted.  

 

Two-photon imaging and data analysis  

Two-photon imaging was performed as previously described. For FRAP experiments, we 

bleached Alexa Fluor 594 (Molecular Probes) with a 0.5 ms laser pulse at 810 nm. The 

fluorescence recovery was fit with a single exponential function. For calcium imaging 

experiments, we used a mixture of fluo-5F and Alexa Fluor 594. Responsive spines on 

oblique dendrites 100-200 m (average 170 m) from the soma were identified using 

frame scans (4 Hz). For quantitative measurements, line scans (500 Hz) were used. We 

subtracted the PMT dark current and evaluated the ratio of green/red fluorescence 

intensity (G/R) (Yasuda et al., 2004). To quantify the amplitude of spine calcium 

transients, we first generated a response template for each spine by fitting the difference 

of two exponentials to the average response. This response template was scaled in 

amplitude to fit each individual response (scaling factor * template amplitude = response 

amplitude).  
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Using calcium signal decay to estimate spine diffusional coupling 

Under our experimental conditions, removal of free calcium ions from the cytoplasm was 

compromised for the following reasons: i) the membrane potential was always above the 

calculated reversal potential of the sodium/calcium exchanger ENCX = 3ENa – 2ECa = -103 

mV (Torok, 2007), ii) SERCA pumps were blocked by thapsigargin, iii) plasma 

membrane Ca
2+

 pumps had to compete for free Ca
2+

 ions with the high added buffer 

capacity of 600 µM fluo-5F (Kd ~ 0.8 µM). Under these conditions, the decay of the 

fluorescence signal in the spine was mainly due to diffusion of calcium-bound dye 

molecules into the dendrite, which we verified by combining two-photon uncaging of 

MNI-glutamate and FRAP experiments. 

 

Spine volume measurements 

Spine volume measurements were performed as previously described (section 4.A). 

 

In vivo FRAP measurements  

Transgenic mice expressing yellow fluorescent protein (B6.Cg-Tg(Thy1-YFPH)2Jrs/J, 

Jackson Laboratory) were anesthetized by IP injection (17 mg/ml ketamine, 1.7 mg/ml 

xylasine). The skull was exposed and thinned with a dental drill as described 

(Grutzendler et al., 2002). For imaging and photobleaching, an Ultima 2-photon 

microscope (Prairie Technologies) with a 60x/1.1NA Objective (Olympus) was used at 

920 nm excitation wavelength (Mai Tai HP, Spectra Physics). Of each spine, 40 images 

(64x64 pixels) were taken at 13 Hz according to the following protocol: 10 frames 

baseline, bleach pulse (0.5 s), 10 frames, 5 s wait, 10 frames, 10 s wait, 10 frames (Fig. 

6). Laser power was adjusted to bleach the spine to 30-40% of its baseline intensity. 

Custom-written software (Matlab) was used to measure the spine fluorescence intensity, 

compensating for small movements by centering the region of interest (ROI) on the spine 

in every frame.  
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Estimation of spine neck resistance 

In our simulations, the strong effect of AMPA receptor block on calcium signal 

amplitude was only reproduced with Rneck ~1.2 GΩ. Is such a high neck resistance 

consistent with the decay time constants measured in the calcium imaging experiments? 

The average fluorescence decay time constant of all spines with a clear calcium response 

at resting membrane potential (excluding ‘calcium-silent’ spines) was τ = 0.9 s (Fig. 

B2d). Based on these measurements, we calculated the spine neck length to cross section 

ratio (L/A) according to the equation (Bloodgood and Sabatini, 2005) 

 L/A = τ · D / V = 900 ms  · 0.1 μm
2
/ms  / 0.11 μm

3
 = 818 μm

-1
 , 

where D is the diffusion coefficient of fluo-5F in cytoplasm (100 μm
2
/s) (Michailova et 

al., 2002) and V is the average spine volume of our sample  (0.11 μm
3
). 

We estimated the resistance of the spine neck according to the cable equation 

 Rneck = Ri · L / A = 150 ·10
4 

Ω μm  · 818 μm
-1

 = 1.2 · 10
9 

Ω  

assuming an internal resitivity Ri = 150 Ωcm.  

Thus, the spine neck resistance that produced realistic interactions between AMPA, 

NMDA and R-Type channels in the NEURON simulation (1.2 GΩ, Fig. B4c) is also 

consistent with the decay time constants we found experimentally (Fig. B2d).  
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Part 4.C:  

Optical induction of plasticity at single synapses reveals input-

specific accumulation of CaMKII 

Yan-Ping Zhang, Niklaus Holbro and Thomas G. Oertner 

Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12039-44. 

 

ABSTRACT 

Long-term potentiation (LTP), a form of synaptic plasticity, is a primary experimental 

model for understanding learning and memory formation. Here we use light-activated 

channelrhodopsin-2 (ChR2) as a tool to study the molecular events that occur in dendritic 

spines of CA1 pyramidal cells during LTP induction. Two-photon uncaging of MNI-

glutamate allowed us to selectively activate excitatory synapses on optically identified 

spines while ChR2 provided independent control of postsynaptic depolarization by blue 

light. Pairing of these optical stimuli induced lasting increase of spine volume and 

triggered translocation of CaMKII to the stimulated spines. No changes in CaMKII 

concentration or cytoplasmic volume were observed in neighboring spines on the same 

dendrite, providing evidence that CaMKII accumulation at postsynaptic sites is a 

synapse-specific memory trace of coincident activity. 
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INTRODUCTION 

Activity-dependent changes in synaptic strength are generally considered to be the 

cellular basis of learning and memory (Bliss and Collingridge, 1993). Long-term 

potentiation (LTP), the most extensively studied form of such synaptic plasticity, can be 

triggered within seconds by coincident activity in pre- and postsynaptic cells. The 

possible structural modifications that occur at synapses where LTP has been induced are 

poorly known due to the difficulty of simultaneously measuring functional and 

morphological parameters at individual synapses. Furthermore, it is controversial whether 

neighboring synapses can be modified independently (Engert and Bonhoeffer, 1997; Bi 

and Poo, 2001; Matsuzaki et al., 2004). In a recent report, it has been shown that spatially 

clustered synapses can cooperate in the induction of plasticity, and that cytoplasmic 

factors are responsible for this functional crosstalk (Harvey and Svoboda, 2007). The 

identity of these diffusible factors, however, has not been clarified. 

 

A key player in the LTP signaling cascade is CaMKII, which is thought to function as a 

molecular switch: Following activation by Ca
2+

-calmodulin, it can stay active for 

prolonged periods of time via autophosphorylation (Giese et al., 1998; Lisman and 

Zhabotinsky, 2001). Reports that brief application of glutamate or NMDA to cultured 

hippocampal neurons induces CaMKII accumulation in spines (Shen and Meyer, 1999; 

Shen et al., 2000; Merrill et al., 2005) have created much interest because CaMKII 

activation is both necessary and sufficient to induce synaptic plasticity (Lledo et al., 

1995; Giese et al., 1998). It has been suggested that postsynaptic accumulation of 

CaMKII could be responsible for the synapse-specificity of LTP, because it localizes 
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the putative activated kinase close to its substrates, e.g. AMPA receptors (Soderling and 

Derkach, 2000; Lisman and Zhabotinsky, 2001), and protects it from dephosphorylation 

(Mullasseril et al., 2007). However, a crucial prediction of this hypothesis, namely that 

CaMKII accumulates specifically and exclusively at synapses that undergo LTP, has 

never been tested experimentally.  

 

To address whether CaMKII accumulates specifically in spines experiencing coincident 

activity, we developed an all-optical pairing protocol to induce synaptic plasticity at 

identified spines, combining two-photon uncaging of MNI-glutamate (Matsuzaki et al., 

2001) with postsynaptic channelrhodopsin-2 (ChR2) activation. Thus, we could avoid the 

wash-out problems typically associated with whole-cell patch clamp (see supplementary 

Fig. C1) while maintaining precise temporal control over the postsynaptic depolarization. 

Spine morphology and CaMKII concentration were monitored by two-photon 

ratiometric measurements. We show that paired stimulation of a single synapse can 

induce long-lasting CaMKII accumulation at that synapse, but not at neighboring spines 

that were not exposed to glutamate. 

 

RESULTS 

A novel strategy for non-invasive LTP induction 

In the classical electrophysiological pairing protocol, presynaptic action potentials are 

paired with postsynaptic depolarization that is provided by current injection via a somatic 

patch electrode (Chen et al., 1999). Using this technique, plasticity has to be induced 

within 5-10 min after break-in, because important signaling molecules, e.g. CaMKII, are 
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rapidly washed out (supplementary Fig. C1). Since our goal was to optically monitor 

the concentration of fluorescently labeled αCaMKII during the induction of plasticity, it 

was essential not to disturb the cytoplasm during the experiment. We therefore used the 

light-gated cation channel Channelrhodopsin-2 (ChR2) (Boyden et al., 2005) to 

depolarize individual postsynaptic cells in a non-invasive fashion. 

 

Comparing protein concentrations in dendrites and spines presented a second challenge. 

Most dendritic spines were substantially smaller than the point spread function of our 

microscope. As a result, the fluorescence intensity of labeled CaMKII in individual 

spines was determined by two unknown variables: The concentration of CaMKII in the 

spine, and the volume of that spine. Thus, fluorescence intensity measurements in a 

single color channel were not sufficient to quantify differences in protein concentration 

between spines and dendrites. We solved this problem by co-transfection with a freely 

diffusible dimeric RFP, which served as a marker of cytosolic volume. We then used a 

ratiometric approach (green/red fluorescence intensity ratio) to compare the concentration 

of αCaMKII in spines of different size. The level of αCaMKII overexpression was 

generally low in our experiments (~13% of endogenous αCaMKII, supplementary Fig. 

C2). 

 

A fluorescently labeled version of ChR2 would have resulted in staining of the cell 

membrane and thus interfered with our αCaMKII measurements. To assess the 

expression level of ChR2 in individual cells, we combined unlabeled ChR2 and soluble 

RFP in a single plasmid with separate promoters, which resulted in very reliable co-
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expression. Using particle-mediated gene transfer, we co-transfected hippocampal 

neurons with 2 vectors encoding 3 different proteins: ChR2 / RFP, and Dronpa-αCaMKII 

(Fig. C1a). In response to blue light illumination (200 ms, 470 nm LED), transfected 

cells produced large inward currents (1395 pA  115 pA at peak and 804 pA  89 pA at 

steady-state, n = 21). In current clamp mode, the same blue light stimulation induced 

robust spiking (5.4  0.5 spikes, Fig. C1c).  

 

We next examined whether the light stimulation technique could be used to induce long-

term potentiation of Schaffer collateral synapses. We performed dual patch-clamp 

recordings of connected pairs of untransfected CA3 and transfected CA1 pyramidal cells 

(Fig. C1b). Our induction protocol consisted of repetitive pairing of single presynaptic 

action potentials in a single CA3 cell with brief postsynaptic bursts induced by 200 ms 

light pulses from a high-power blue LED (Fig. C1c). To compensate for the propagation 

delay from CA3 to CA1 (Zhang and Oertner, 2007), we started the light pulse with a 

delay of Δt = 6 ms relative to the presynaptic current injection. After 20 pairings at 0.1 

Hz in current clamp, excitatory postsynaptic currents (EPSCs) increased to 274 %  76 % 

(Fig. C1d). Previously, we and others have shown that light-induced spiking is 

accompanied by calcium influx through voltage-gated calcium channels and through 

ChR2 itself (Nagel et al., 2003; Zhang and Oertner, 2007). Therefore, it was important to 

test whether light-induced spiking could trigger synaptic plasticity in the absence of 

presynaptic activity. In control experiments in which repetitive blue light stimulation was 

not paired with presynaptic activation, postsynaptic response amplitudes remained 

unchanged (107 %  16 %, Fig. C1d). We conclude that coincident stimulation was 
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needed to induce LTP on cells expressing ChR2 and αCaMKII, analogous to the classical 

electrophysiogical pairing protocol (Petersen et al., 1998; Debanne et al., 1999; Zhang 

and Oertner, 2007).  

 

Spine volume changes induced by pairing of glutamate uncaging and blue light 

Having established that postsynaptic depolarization by optical activation of ChR2 is 

sufficient for pairing-induced LTP, the next step was to replace the electrophysiological 

stimulation of CA3 axons by 2-photon glutamate uncaging at individual spines. For this 

purpose, we combined two Ti:Sapph lasers for simultaneous 2-photon uncaging and 2-

photon imaging (Fig. C2a). Uncaging laser power (725 nm) was adjusted such that 

uncaging-evoked excitatory postsynaptic currents (uEPSCs) had amplitudes of 15.2 pA ± 

1.8 pA (laser power, ~50 mW, pulse duration, 0.5 ms), similar to spontaneous miniature 

EPSCs  (mEPSC = 18 pA ± 3 pA, n = 7 cells, data not shown). To induce LTP at 
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individual spines of transfected cells, we paired single glutamate uncaging pulses with 

200 ms blue light pulses (20 pairings at 0.1 Hz, Δt = 0). In a set of cells that were not 

used for morphometric analysis, we verified by patch clamp recording that this optical 

pairing protocol, but  not glutamate uncaging without simultaneous ChR2 activation (20 

pulses at 0.1 Hz),  resulted in a lasting increase in uEPSC amplitude (Fig. 2b). To 

monitor spine morphology in 3D, we acquired stacks of 20 image planes at 5 min 

intervals. The integrated intensity of the spine head was used as a measure of spine 

volume. Stimulated spines responded with a rapid volume expansion by a factor of 2.4, 

on average (Fig. 2c). Spine volume partially decreased during the following 15 min, but 

most stimulated spines (11/16) remained enlarged 30-40 min after stimulation. In a 

separate set of control experiments, using identical pairing of blue light and uncaging 

laser pulses in the absence of MNI-glutamate, we did not detect any spine enlargement 

(Fig. 2c) and thus could rule out any unspecific effects induced by the uncaging laser 

pulse itself.  
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CaMKII concentration in dendritic spines 

By calculating the fluorescence intensity ratio between GFP- CaMKII and RFP on a 

pixel-by-pixel basis (G/R), we were able to compare the concentration of CaMKII in 

spines of different size (Fig. C3a). To pool spine data from cells with different relative 

expression levels of GFP- CaMKII and RFP, we normalized the G/R ratio in the spine 

by G/R ratio in the dendrite (S/D ratio). The S/D ratio is a measure of CaMKII 

enrichment in spines independent of spine volume. Under baseline conditions, CaMKII 

in spines was enriched by a factor of 1.32 relative to the dendrite (Fig. 3b), suggesting 

that about 24% of total CaMKII in spines was bound to postsynaptic sites. To test for 
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potential measurement artifacts due to the different signal-to-noise ratio in spines and 

dendrites, we also determined S/D ratios of soluble EGFP/RFP. S/D ratios were normally 

distributed with a mean of 1.01, indicating that our ratiometric approach was indeed 

volume-independent. 

 

An alternative method to distinguish bound and soluble fraction is fluorescence recovery 

after photobleaching (FRAP)(Shen and Meyer, 1999). For these experiments, we co-

transfected cells with RFP and YFP- CaMKII, which could be readily bleached using 2-

photon excitation at 910 nm. After a brief laser pulse that bleached 70-80% of the 

fluorescent molecules in the spine, fluorescence in the red color channel recovered 

rapidly (median  = 0.28 s, n = 80) to its initial value, indicating free diffusion of the 

dimeric RFP (Fig. C3c). YFP- CaMKII fluorescence, on the other hand, did not fully 

recover, indicating a fraction of CaMKII molecules that were bound to postsynaptic 

sites. To quantify the unrecoverable fraction, we fit a single exponential function to the 

normalized fluorescence recovery data F(t): 

 

t

SU efftF 1)(  

where fU and fS are the unrecoverable and soluble fraction of total CaMKII, 

respectively, and   is the recovery time constant. For wild-type YFP- CaMKII, the 

unrecoverable fraction was 21% ± 12% (mean ± SD). To test whether binding was 

dependent on the phosphorylation state of CaMKII, we generated a double mutant 

(TT305/6VA) where two inhibitory autophosphorylation sites were removed. The 

threshold for kinase activation and for LTP induction is known to be lowered in the 

TT305/6VA mutant (Hanson and Schulman, 1992; Elgersma et al., 2002; Thalhammer et 
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al., 2006). Indeed, cells transfected with mutant CaMKII had a significantly higher 

unrecoverable fraction of 42% ± 28% (p < 0.05). Time constants of recovery, on the other 

hand, were not significantly different for WT and mutant CaMKII (median WT = 12.5 

s; TTVA = 14.3 s), suggesting that the mobility of the soluble fraction was not influenced 

by the mutation. As expected, the S/D ratio and the unrecoverable fraction were 

correlated in individual spines, but individual measurements deviated from the expected 

relationship (curve in Fig. C3d). The deviation suggests that the assumption of a single, 

uniform population of bound CaMKII molecules was probably an oversimplification. 

More likely, subpopulations of bound CaMKII in the spine head turn over on multiple 

time scales (see N. Otmakhov et al., Soc. Neurosci. Abstr.  788.8, 2007). Based on these 

considerations, we decided to rely on ratio measurements rather than on FRAP to assess 

the effects of LTP on CaMKII binding.  
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Spine enlargement precedes the input-specific accumulation of CaMKII 

CaMKII translocation into spines after global chemical stimulation has been 

demonstrated previously (Shen and Meyer, 1999; Otmakhov et al., 2004; Bayer et al., 

2006). Here, our question was whether CaMKII translocation is detectable, specific, and 

persistent following potentiation of a single synapse. A concern for optical concentration 

measurements of fluorescently labeled proteins is potential bleaching artifacts during 

time-lapse imaging and glutamate uncaging. To minimize this problem, we labeled 
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CaMKII with the photoswitchable GFP Dronpa-Green, which can be reactivated after 

bleaching by brief UV illumination (Ando et al., 2004). From a series of control 

experiments, we estimated that ~95% of bleached Dronpa- CaMKII was reactivated by 

low-power illumination at 405 nm (supplementary Fig. C3). We co-transfected CA1 

pyramidal cells with Dronpa- CaMKII, RFP, and unlabeled ChR2. Image stacks were 

obtained every 4 minutes, and Dronpa fluorescence was reactivated before each 

acquisition. We verified that UV illumination did not induce spiking of ChR2-transfected 

cells (supplementary Fig. C3). Following optical LTP induction, the majority of spines 

(18 / 23 experiments) responded with a rapid increase in spine head volume. Ten out of 

these 18 spines were still enlarged 30-40 min after stimulation (Fig. C4a, right example). 

Persistent spine enlargement has been linked previously to successful LTP induction at 

the spine synapse (Matsuzaki et al., 2004; Harvey and Svoboda, 2007). Therefore, we 

split our sample of stimulated spines in 2 different groups, spines that responded with a 

persistent volume increase to the pairing protocol and spines that did not (Fig. C4b). We 

also analyzed neighboring spines on the same dendrite that were not directly stimulated 

(average distance from the stimulated spine: 5.5 μm). We then compared CaMKII 

enrichment (spine/dendrite) in the three groups (Fig. C4c). Only in the group of spines 

with persistent volume increases did we detect a significant increase in the concentration 

CaMKII at t = 13 min after the onset of stimulation (p < 0.05, see also supplementary 

Fig. C4). Interestingly, all groups had the same CaMKII concentration before 

stimulation, indicating that the initial CaMKII level had no predictive value for the type 

of volume change (transient vs. persistent) induced by the pairing stimulation. In 

neighboring unstimulated spines, we did not detect an increase in CaMKII 
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concentration, indicating high spatial specificity of CaMKII enrichment. We noted that 

spine enlargement preceded the input-specific accumulation of CaMKII: Whereas spine 

volume reached its maximum immediately after stimulation, CaMKII concentration 

reached its peak ~10 min later. Using the spine/dendrite ratio before stimulation as a 

starting point, we calculated changes in the amount of bound and soluble CaMKII in 

stimulated and non-stimulated spines (Fig. C4d). This analysis revealed that in the spines 

with a persistent increase in volume, the absolute amount of bound CaMKII in the spine 

had approximately doubled 30-40 min after stimulation. The bound fraction, on the other 

hand, peaked transiently ~10 min after stimulation, but later returned to baseline (29% 

before stimulation, 33% 30-40 min after stimulation). These experiments suggests that 

paired stimulation moved 10 out of 23 spines to a new stable state, characterized by an 

increased amount of both soluble and bound CaMKII and a larger volume. No 

significant volume or CaMKII changes were detected in neighboring spines on the same 

dendrite. 
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Induction of long-term plasticity by synaptic activation 

Glutamate uncaging is a convenient way to stimulate individual dendritic spines, but the 

glutamate concentration in the synaptic cleft depends on intensity and duration of the 

laser pulse (Harvey and Svoboda, 2007). If our observations following optical pairing 

(Fig. C3, C4) were indeed characteristic for LTP, similar changes would be expected 

following high frequency electrical activation of Schaffer collaterals; another well 

established LTP induction protocol. To identify synaptically stimulated spines, we used 

post hoc calcium imaging: Firstly, spiny dendrites of transfected CA1 pyramidal cells 

were imaged while stimulating Schaffer collateral axons at high frequency (3 x 1 s, 100 

Hz). Following time-lapse imaging of a transfected cell for ~40 min, we patch-clamped 

the same cell to infuse a calcium sensitive dye (Fluo 4FF) and Alexa-Fluor 594. Although 

the plasticity-inducing tetanic stimulation was applied under blind conditions, we could 

re-activate the same set of synapses by applying short bursts (3 APs) to the stimulation 

electrode. In 4 experiments, we successfully identified synaptically stimulated spines by 

post hoc Ca
2+

 imaging (supplementary Fig. C5). Analysis of the volume-filling RFP 

fluorescence in the synaptically stimulated spines revealed that the LTP protocol induced 

a rapid volume increase with a large persistent component. The total amount of CaMKII 

also increased in the stimulated spines, peaking 5 min after stimulation. Analysis of the 

soluble and bound fraction in the tetanized spines revealed that 25-35 min after 

stimulation, the amount of bound CaMKII was increased by a factor of 2.0 

(supplementary Fig. C5). In summary, the physiological and morphological 

consequences of high frequency stimulation were remarkably similar to the changes we 

observed after pairing of glutamate uncaging with postsynaptic depolarization by ChR2. 
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This indicates that persistent spine volume increase and synapse-specific binding of 

CaMKII are hallmarks of LTP in CA1 pyramidal neurons. 

 

DISCUSSION 

Here we show that paired activation of a single synapse on a single cell leads to long-

lasting enrichment of αCaMKII at that synapse. Our study highlights several advantages 

of plasticity induction by optical pairing. Unlike chemical LTP and zero Mg
2+

 protocols 

(Fong et al., 2002; Otmakhov et al., 2004; Sharma et al., 2006), optical pairing does not 

lead to unspecific activation of the entire tissue. Therefore, activity-induced changes at 

individual synapses can be studied in an unperturbed cellular environment. The spatial 

resolution is clearly superior to local perfusion approaches, which have been used 

previously to probe the input specificity of LTP and CaMKII translocation (Engert and 

Bonhoeffer, 1997; Thalhammer et al., 2006). Degrading electrical access or cell health, 

which limits the duration of electrophysiological recordings, is not an issue in all-optical 

experiments. Most importantly, the intracellular milieu of the postsynaptic cell is not 

affected, permitting detection of subtle changes in protein concentration. 

 

Two previous studies have established the tight correlation between lasting increases in 

spine volume and LTP of uncaging-evoked EPSPs (Matsuzaki et al., 2004; Harvey and 

Svoboda, 2007). Moreover, spine shrinkage was reported following the induction of long-

term depression (Zhou et al., 2004). Here we report lasting spine volume increase 

following LTP induction by tetanic activation of Schaffer collaterals (supplementary 

Fig. C5) and in response to optical pairing (Fig. C2 and C4). To minimize photodamage 
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and bleaching in our pairing experiments, we used a relatively weak induction protocol 

(20 uncaging pulses at 0.1 Hz, 0.5 ms pulse duration, 3-5 postsynaptic APs) compared to 

previously used uncaging protocols (60 pulses at 1 Hz in zero Mg
2+ 

solution (Matsuzaki 

et al., 2004); 30 pulses of 4 ms at 0.5 Hz, Vm = 0 mV (Harvey and Svoboda, 2007)). As 

expected, our protocol induced lasting volume increases only in a subset of spines. This 

variability in the plasticity of CA3-CA1 connections was also apparent in our 

electrophysiological experiments using the same number and frequency of paired 

stimulations (Fig. C1d) and is consistent with previous studies (Petersen et al., 1998; 

Debanne et al., 1999; Zhang and Oertner, 2007). Since glutamate uncaging bypasses the 

presynaptic terminal, the differential sensitivity to optical pairing can be attributed to 

postsynaptic differences. We show that neither the initial spine volume nor the initial 

αCaMKII concentration could be used to predict the response of a spine to pairing 

stimulation (Fig. C4b,c). Nevertheless, optical pairing provides the first non-invasive 

approach to investigate which biological parameters control the threshold for plasticity 

induction at individual synapses. 

 

Translocation of CaMKII to postsynaptic sites has been previously reported after 

extracellular glutamate application or ‘chemical LTP’ (Shen and Meyer, 1999; Otmakhov 

et al., 2004; Merrill et al., 2005; Thalhammer et al., 2006). Here our goal was to 

investigate whether this enrichment is restricted to synapses that experience plasticity-

inducing stimulation. We show that the concentration of αCaMKII increased significantly 

only in those spines that underwent lasting volume changes (Fig. C4). High frequency 

synaptic stimulation (100 Hz, 1s) induced very similar increases in both soluble and 
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bound αCaMKII (supplementary Fig. C5), indicating that αCaMKII enrichment was not 

an artifact of uncaging stimulation. Spines that were not directly stimulated sometimes 

increased or decreased their volume spontaneously, but on average, no significant 

αCaMKII loss or gain was detected. In a previous study, it has been shown that following 

plasticity induction at individual spines, the threshold for LTP induction is lowered in 

neighboring spines (Harvey and Svoboda, 2007). Although αCaMKII can maintain its 

activation state for some time by autophosphorylation and is thus a potential candidate 

for a short-range communication system (Lisman and Zhabotinsky, 2001), we found no 

indication of functional crosstalk between neighboring spines on the level of αCaMKII. 

 

Given the time constant of CaMKII diffusion measured in our FRAP experiments (  = 

12.5 s), the CaMKII increase in the stimulated spines was surprisingly slow. In a recent 

study, a rapid increase in the diffusional resistance of the spine neck following paired 

stimulation was reported (Bloodgood and Sabatini, 2005), which could conceivably slow 

down diffusion of a large protein like CaMKII and thus limit the number of CaMKII 

molecules available for binding. A second possibility is the slow generation of additional 

binding sites for CaMKII by structural enlargement of the PSD in first 5-10 minutes 

following potentiation. Interestingly, a similarly protracted time course was reported for 

the AMPA receptor subunit GluR1 in a previous study, peaking 6 min after induction of 

chemical LTP (Kopec et al., 2006). The similar time course and the persistent, 2-fold 

increase in the amount of bound αCaMKII we report here is consistent with a structural 

role of αCaMKII in anchoring glutamate receptors to the postsynaptic density (Hayashi et 

al., 2000; Lisman and Zhabotinsky, 2001; Asrican et al., 2007). Under baseline 
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conditions, the amount of bound αCaMKII correlates with spine size and synaptic 

strength, but the ratio between bound and soluble αCaMKII does not (Asrican et al., 

2007). This static picture can be understood in the light of our time resolved study, where 

we show that 30-40 min after the potentiation event, the equilibrium between bound and 

soluble αCaMKII returned to values close to the baseline level, but the absolute amount 

of αCaMKII in potentiated spines had doubled (Fig. C4d, supplementary Fig. C5). For 

the inhibition-deficient mutant TT305/6VA, we measured a significantly higher ratio of 

bound to soluble αCaMKII (Fig. C3d), indicating that this ratio depends on the level of 

αCaMKII activation in the spine. Recently, it has been demonstrated that LTP can be 

partially reversed by blocking CaMKII activity, providing evidence for its role in the 

maintenance of synaptic strength (Sanhueza et al., 2007). In summary, the insertion of 

additional AMPA receptors, which is the accepted structural correlate of LTP at Schaffer 

collateral synapses (Matsuzaki et al., 2004), seems to be linked with a lasting increase in 

spine volume and binding of additional αCaMKII to postsynaptic sites. Here we show 

that these changes can be induced with single spine specificity, validating Hebb’s 

postulate on the micrometer scale. 
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METHODS 

Plasmid construction 

ChR2-YFP, a gift from K. Deisseroth, was modified by inserting a stop codon (TAG) 

after amino acid 309 by PCR and inserted into a synapsin-I (syn) promoter vector (Kugler 

et al., 2001). The fragment of syn-ChR2-SV40-polyA was excised and inserted into a 

second expression vector containing syn-RFP (tdimer2, a dimeric red fluorescent protein 

from R.Y. Tsien), resulting in a single plasmid for neuron-specific co-expression of 2 

proteins. GFP- CaMKII (from T. Meyer) was subcloned into a separate syn promoter 

vector, and new CaMKII fusions were made by replacing GFP with YFP or Dronpa-

Green (MBL, Naka-ku Nagoya, Japan). Mutant CaMKII (TTVA) was generated by 

site-directed mutagenesis (Thr
305

  Val and Thr
306

  Ala) using the QuickChange kit 

(Stratagene). All constructs were verified by DNA sequencing, amplified and purified 

using MaxiPrep Kits (Qiagen). 

 

Slice culture and transfection 

Organotypic hippocampal slices were prepared as previously described. After 7 days in 

vitro, cultures were transfected with syn-ChR2-syn-RFP in combination with syn-

CaMKII fused to GFP, YFP, or Dronpa-Green, as previously described. All 

experiments were performed 2-3 weeks after transfection. At this time, total αCaMKII in 

transfected pyramidal cells was increased by only ~12% relative to neighboring 

untransfected cells (supplementary Fig. C2). 

 

Electrophysiology 

Hippocampal slice cultures were placed in the recording chamber of the microscope and 

superfused with artificial cerebrospinal fluid (ACSF) containing (in mM): 119 NaCl, 2.5 

KCl, 4 CaCl2, 4 MgCl2, 26.2 NaHCO3, 1 NaH2PO4, 11 glucose. Single and dual whole-

cell recordings were performed using Axopatch 200B and MultiClamp 700B amplifiers 

(Axon Instruments). Recording pipettes were filled with K-gluconate based intracellular 

solution containing (see section 4.A). LTP of unitary EPSCs was induced by repeatedly 

pairing  (20 times, 0.1 Hz) presynaptic stimulation (2 nA, 5 ms) with a postsynaptic burst 

of 4-9 action potentials induced by blue light stimulation (200 ms). Glutamate uncaging 
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was performed as previously described. LTP of uncaging-evoked EPSCs was induced by 

repeatedly pairing (20 times, 0.1 Hz) uncaging of glutamate with blue light stimulation 

(200 ms) of the postsynaptic cell. For tetanic stimulation experiments, bipolar electrodes 

(FHC Inc., ME) were placed in stratum radiatum ~200 µm lateral
 
to the recording site, 

and 10 M bicuculline and 4 µM 2-chloroadenosine were added to the ACSF to facilitate 

LTP induction and avoid recurrent excitation. All recordings were performed at 30-32
o
C. 

 

Light stimulation  

A blue LED (470 nm, Cairn Research Ltd.) was coupled into the epifluorescence 

pathway to deliver light pulses for ChR2 activation. Two PMTs below the condenser 

were used to detect red and green emission. During the blue light pulse, they were 

protected by a VS25 shutter (Vincent Associates).  

 

Spine volume measurements 

Spine volume measurements were performed as previously described (section 4.A). 

 

Image analysis 

Off-line analysis was performed using custom routines written in Matlab. We used the 

ratio of green/red fluorescence (G/R, or Y/R in case of YFP-αCaMKII) as a measure of 

αCaMKII concentration. We verified that no pixel in either channel was saturated. To 

display ratio images, we used a hue/saturation/brightness color model, where hue was 

determined by the G/R ratio of every pixel (using a rainbow color table), and brightness 

was set by the intensity in the red (volume) channel. For quantitative analysis, we 

calculated the G/R ratio in a region of interest after subtraction of background 

fluorescence and optical crosstalk. To compensate for differences in the relative 

expression levels of the two constructs in different cells, we normalized the G/R ratio in 

the spine by the G/R ratio in the dendrite to get the spine/dendrite (S/D) ratio 
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To calculate the bound fraction from the S/D ratio, we assumed that the concentration 

difference between spine and dendrite was due to bound CaMKII in the spine: 
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 [CaMKII]spine,bound = [CaMKII]spine - [CaMKII]dendrite  (Eq. 2) 
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or, expressed as a fraction of total [CaMKII]spine 
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Average values are given as mean ± SEM if not indicated otherwise. Significance was 

defined as p < 0.05 and determined using Student’s t test (two-tailed) if not indicated 

otherwise. 
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5. GENERAL CONCLUSIONS AND OUTLOOK 

 

5.1 Microanatomy regulates synaptic function and plasticity 

We have shown that the differential subsynaptic distribution of an organelle can regulate 

the potential for synaptic plasticity at individual synapses. We provide evidence for the 

existence of defined subpopulations of synapses in regard to their potential for a specific 

form of synaptic plasticity.  

 

-Dynamic ER distribution as a major metaplasticity mechanism 

We found that the ER is preferentially localized to big spines containing strong synapses 

and locally regulates the potential for synaptic depression. LTP leads to an increase in 

volume of the spine containing the potentiated synapse (Matsuzaki et al., 2004; Harvey 

and Svoboda, 2007). Toghether these findings suggest that the ER actively moves into 

potentiated spines. Although this hypothesis remains to be tested, dynamic and regulated 

spine ER distribution could represent a powerful mechanism for synaptic metaplasticity.  

The ER has been shown to be dynamic (Toresson and Grant, 2005). However, whether 

ER dynamics is regulated in an activity dependent way and whether LTP induction leads 

to ER dynamics is unknown. Delivery of ER to spines could be under the control of 

specific signaling molecules. 

 

Spine ER has been shown to be tightly associated to the actin cytoskeleton (Capani et al., 

2001). Proteins such as synaptopodin, which are closely associated with spine ER, also 

bind to actin (Deller et al., 2000; Asanuma et al., 2005). LTP leads to increased 

synaptopodin expression and synaptopodin concentration at synaptic sites (Yamazaki et 

al., 2001). Actin is a key cytoskeletal protein required for the induction of LTP (Kim and 

Lisman, 1999; Krucker et al., 2000) and stimuli inducing LTP have been demonstrated to 

induce actin polymerization and accumulation in the spine (Okamoto et al., 2004; 

Honkura et al., 2008). These cytoskeletal rearrangements could be associated with ER 

dynamics and regulate ER delivery during LTP inducing stimuli. Another candidate for 

the regulation of spine ER dynamics is Myosin Va. This protein has been shown to 

regulate spine ER distribution in the cerebellum (Dekker-Ohno et al., 1996). Myosin Va 
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is activated in a calcium dependent manner and could therefore be activated following 

LTP inducing stimuli (Homma et al., 2000). In the hippocampus Myosin Va has been 

involved in the delivery of AMPA receptors following the induction of LTP (Correia et 

al., 2008). This protein, in parallel of regulating receptor delivery, could play a major role 

in regulating spine ER delivery.  

 

In contrast to LTP inducing stimuli, stimuli which induce synaptic depression could lead 

to ER loss from spines (Ng and Toresson, 2008). The possibility that subsynaptic ER 

dynamically follows the state of a synapse is intriguing and remains to be tested.  

 

-mGluR dependent depression as a regulator for synaptic weight distribution  

We found that the ER is preferentially localized to spines containing strong synapses. We 

consider these spines as a functionally distinct group of spines, containing a specialized 

machinery required for mGluR dependent synaptic depression. It is conceivable that 

strong synapses need a mechanism to limit their maximum strength or a mechanism 

which allows them to be weakened in response to new experience (Song et al., 2000; van 

Rossum et al., 2000; Holtmaat et al., 2006; Knott et al., 2006). The mechanism we 

describe could be the process regulating both requirements. 

 

If mGluR dependent synaptic depression is the process regulating the upper limit a 

synapse can reach in its strength, blockade of postsynaptic mGluR→IP3 signaling would 

lead to a bimodal distribution of synaptic weights: strong synapses, which generate spikes 

with a higher probability compared to weak synapses, would get even stronger through 

hebbian mechanisms of synaptic potentiation (Song et al., 2000). This hypothesis could 

be tested by inducing synaptic potentiation in the presence of blockers of the 

mGluR→IP3 pathway; under these conditions LTP should be facilitated and, over a 

prolonged period of time, lead to a bimodal distribution in synaptic weights. Using 

electrophysiological approaches, it has been shown that pharmacological blockade of 

group I mGluRs or postsynaptic IP3 receptors leads to facilitated LTP (Nishiyama et al., 

2000). Although the exact location of the involved receptors has not been assessed, it is 
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plausible that blockade of the depressing mGluR→IP3 pathway in ER containing spines 

is responsible for the increased potentiation.  

 

In addition to setting an upper limit to synaptic strength, spine ER could also be required 

for weakening of strong synaptic connections in response to new experience (Holtmaat et 

al., 2006; Knott et al., 2006). We have shown that strong synapses, containing ER, in the 

absence of stabilizing stimuli (such as for example coincident activity), undergo mGluR 

dependent LTD. It is possible that the mechanism we describe is the basis for the loss of 

initially stable contacts in response to new experience. 

 

-The ER as a general regulator of plasticity 

We show that the ER regulates synaptic depression on the level of individual synapses. In 

previous studies, using electrophysiological approaches, it has been shown that calcium 

release from the ER also regulates the potential for synaptic potentiation: blockade of ER 

calcium release increases the amount of potentiation following an LTP inducing stimulus 

(Nishiyama et al., 2000).  However, it is unknown, whether also this phenomenon is 

regulated at individual synapses. It is plausible that the ER localized to spines containing 

strong synapses, inhibits their potential to undergo synaptic potentiation. This negative 

regulation could involve the activation of the depressing mGluR→IP3 pathway (see 

previous section) or other pathways, such as calcium induced calcium release during the 

LTP stimulus (Nishiyama et al., 2000). It is conceivable that ER-containing spines are 

preferential sites for depression and ER-lacking spines preferential sites for potentiation. 

This hypothesis has to be tested but its eventual confirmation could shed light on the 

mechanism for the differential regulation of plasticity and stability at single synapses.  

 

-Possible heterosynaptic spread of mGluR dependent LTD 

We provide strong evidence that mGluR→IP3 mediated calcium release from the ER 

represents a key trigger for LTD. We show that these signals originate in the stimulated 

spine but can spread to the parent dendrite and possibly to neighboring synapses. The 

potential spread to neighboring synapses could represent a mechanism for the 

heterosynaptic spread of plasticity.  
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Several reports provided evidence that LTD can spread from activated to neighboring 

synapses, this heterosynaptic spread of LTD seems to be dependent on calcium release 

from the ER (Nishiyama et al., 2000; Daw et al., 2002).  Inhibition of IP3 receptors has 

been shown to block heterosynaptic LTD (Nishiyama et al., 2000). Blockade of 

phosphatidilinositol 3 kinase (PI3K), an enzyme involved in the phosphorylation of 

phosphoinosite lipids (among others, PIP2, a precursor of IP3) leads to increased 

heterosynaptic LTD (Daw et al., 2002).  

 

These studies point to a key regulatory role for phosphoinosite lipids and IP3 mediated 

signals in regulating heterosynaptic plasticity. The calcium release signals we observed 

could represent a powerful intersynaptic signaling mechanism to dynamically regulate 

and reciprocally tune synaptic weights on the same dendritic branch.  

 

-ER calcium release as a homeostatic mechanism  

We provide evidence that mGluR dependent calcium release from subsynaptic ER is a 

key trigger for the induction of synaptic depression. Previous studies have shown that ER 

calcium release depends on the filling state of the ER: high ER calcium content leads to 

more frequent calcium release compared to situations with low ER calcium content. ER 

calcium content is thought to be dependent on cell activity: the more active a cell, the 

more calcium flows into the cytoplasm through voltage gated channels in the cell 

membrane, the more calcium gets pumped into the ER (Berridge, 1998; Rae et al., 2000; 

Hong and Ross, 2007).  

 

The depressing mechanism we describe could strongly be dependent on cell activity and 

ER calcium content and act as a homeostatic mechanism. In conditions where a cell is 

hyperactive, activation of mechanisms inducing synaptic depression would reduce the 

strength of synaptic inputs and therefore counterbalance cell hyperactivity. Increased 

mGluR dependent calcium release and synaptic depression would reduce cell firing 

through a selective reduction of synaptic strength at strong synapses.  

 

 



 97 

-Possible modulation of mGluR→IP3 pathway  

We show that only ER containing spines are capable of delayed, mGluR mediated 

calcium release. About 40% of the analyzed ER-containing spines showed this type of 

response. The high variability between spines and between trials on the same spine 

possibly reflects differences in the activation of signaling molecules involved in the 

mGluR→IP3 pathway or differences in ER calcium content. It has been shown that 

Homer proteins dramatically influence mGluR dependent signaling and plasticity 

(Kammermeier and Worley, 2007; Ronesi and Huber, 2008). Also G-proteins have been 

shown to be key factors regulating mGluR mediated signals (Kleppisch et al., 2001; 

Hartmann et al., 2004). Differences in the concentration of these or other factors could 

profoundly modulate the occurrence and frequency of delayed calcium transients, 

providing the basis for the modulation of the depressing mechanism at different levels.  

 

-Spine ER and protein handling  

We show that spine ER plays a crucial role in regulating spine calcium signals. In 

addition to this function, the ER could also play a major role in regulating synthesis, 

modification and delivery of proteins. Although extrasomatic ER is thought to be mostly 

smooth, the occurrence of rough ER in a subset of spines has been demonstrated (Pierce 

et al., 2000). This ER could regulate synapse-specific protein synthesis. Interestingly, 

mGluR dependent LTD has been shown to be dependent on local protein synthesis 

(Huber et al., 2000). The ER, in addition to trigger depression through calcium release, 

could play a major role in regulating the synapse-specific delivery of new proteins. Other 

forms of long term plasticity have been shown to be dependent on protein synthesis and it 

is an intriguing hypothesis that spine ER represents the structural basis for the specific 

delivery of new proteins to modified synapses.  
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5.2 Impact of spine neck on synaptic signals 

 

We have shown that the coupling between spine head and parent dendrite can change in 

an activity dependent way. Strong insulation leads to electrical compartmentalization of 

dendritic spines. We therefore demonstrate how spine morphology dramatically affects 

the function of dendritic spines. We show that spine calcium signals are dependent on 

spine head depolarization and differential activation of voltage sensitive channels. 

 

-Spines can be electrical compartments  

It is highly debated whether spines can be considered electrical compartments (Bourne 

and Harris, 2008; Spruston, 2008). A critical parameter determining the potential for 

electrical compartmentalization is the resistance of the spine neck. Different groups 

provided different estimates for spine neck resistances, laying between 4 and 1200 MΩ 

(Harris and Stevens, 1989; Svoboda et al., 1996; Bloodgood and Sabatini, 2005). 

Recently, studies using 2-photon uncaging of glutamate provided first evidence that 

spines can depolarize enough to allow activation of different classes of voltage dependent 

channels in response to stimulation (Ngo-Anh et al., 2005; Araya et al., 2007; Bloodgood 

and Sabatini, 2007b). However, it remains unclear if spine depolarization is sufficiently 

high to allow electrical compartmentalization in response to presynaptic release of single 

vesicles of glutamate.  

Using electrical stimulation of presynaptic afferents and single spine calcium imaging as 

a reporter for NMDA receptor activation and spine head depolarization, we show that 

dendritic spines can be electrical compartments. In acute slices, after a depolarizing 

voltage pulse, the diffusional coupling between spines and their parent dendrite is low. 

Under these conditions spine head depolarization in response to single afferent 

stimulation is dramatically high and leads to unblocking of NMDA receptors and 

activation of voltage dependent channels. We show that in vivo a large fraction of spines 

are more isolated from their parent dendrite compared to the situation in vitro. These 

finding suggests that in the living animal a large fraction of spines can be considered 

electrical compartments. 
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-Spine neck plasticity as a metaplasticity mechanism  

Using diffusional measurements between spine and parent dendrite, we have shown that 

spine neck resistance is highly plastic. We show that an increase in spine neck resistance 

leads to enhanced biochemical and electrical compartmentalization of synapses. This has 

important consequences for the regulation of the potential of a given synapse to undergo 

synaptic plasticity. Increased biochemical compartmentalization leads to a longer 

residence time of activated enzymes and second messengers in the stimulated spine 

(Bloodgood and Sabatini, 2005; Noguchi et al., 2005; Gray et al., 2006). Increased 

electrical compartmentalization leads to activation of more voltage dependent channels, 

stronger spine depolarization and consequently increased calcium influx into the spine. 

The amplitude of calcium signals has been shown to be correlated with the magnitude of 

change in synaptic strength (Nevian and Sakmann, 2006). Increased spine neck resistance 

could therefore drastically facilitate or even be a prerequisite for the induction of LTP.  

 

-Spine neck plasticity and implications for synaptic crosstalk 

We show that postsynaptic depolarization or cell spiking can lead to a dramatic increase 

in spine neck resistance. Pharmacological experiments showed that this increase is not 

dependent on activation of postsynaptic glutamate receptors but depends on postsynaptic 

calcium influx. It is conceivable that different stimuli which lead to postsynaptic calcium 

transients such as backpropagating action potentials, calcium release waves or dendritic 

spikes, lead to an increase in spine neck resistance at sites experiencing high calcium 

concentrations (Nakamura et al., 1999; Schiller and Schiller, 2001). These phenomena 

could lead to a clustering of spines with similar spine neck resistance. A change in spine 

neck resistance likely affects the potential for the induction of synaptic plasticity (see 

previous section). The eventual clustering of synapses with high spine neck resistances 

would represent a new metaplasticity mechanism for synaptic crosstalk and for reciprocal 

tuning of synaptic weights between neighbors. Although evidence for a clustering of 

spines with similar neck resistances or synaptic weights is missing, there is growing 

evidence for the existence of a high degree of crosstalk between neighboring synapses 

(Losonczy and Magee, 2006; Harvey and Svoboda, 2007; Losonczy et al., 2008). Spine 
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neck plasticity on the level of individual dendritic branches could be a main mechanism 

leading to reciprocal tuning of properties between neighboring synapses.  
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5.3 CaMKII accumulation is input specific  

 

We show that single spine induction of LTP leads to spine enlargement and to the input-

specific accumulation of the plasticity related protein CaMKII. 

 

-New optical approach for the induction of LTP at identified synapses 

We used a new optical approach to induce LTP at single synapses and monitor changes in 

protein concentration in individual spines.  We combined single spine 2-photon glutamate 

uncaging with Channelrhodopsin-mediated depolarization of the postsynaptic cell.  

Channelrhodopsin, a light gated cation channel, can be activated by blue light and allows 

millisecond precise control of cell activity (Boyden et al., 2005). Pairing of glutamate 

uncaging and activation of Channelrhodopsin, allowed us to non-invasively mimic a 

conventional protocol for coincident activity. Two-photon imaging of fluorescently 

tagged proteins allowed us to measure protein dynamics with high spatial and temporal 

resolution.  

The main advantage of our technique is that it is completely non-invasive. In contrast to 

other LTP protocols, where cell patching or alteration of the extracellular milieu is 

required, our protocol does not affect cell viability (Matsuzaki et al., 2004; Harvey and 

Svoboda, 2007). Our protocol, in principle, allows long-term imaging of potentiated 

synapses over several days or weeks.  

 

-CaMKII accumulation is input specific  

Using our optical approach to induce plasticity at single visualized synapses, we showed 

that CaMKII accumulates at stimulated spines with no change in concentration in 

neighboring spines. This result provides the first evidence that key enzymes regulating 

the induction of synaptic plasticity can be tagged to individual synapses. CaMKII seems 

to be a key molecule involved in the regulation of plasticity at synapses experiencing 

coincident activity. At present, we have no evidence for the possible involvement of 

CaMKII in regulating synaptic crosstalk (Harvey and Svoboda, 2007). We think that 

individual synapses represent the minimal computational units and can be independently 

modulated.  



 102 

 

-The need for protein activity sensors  

In recent years FRET sensors have been developed to assess the specific kinetics of 

activated second messengers ((Ting et al., 2001; Heim and Griesbeck, 2004; Okamoto et 

al., 2004; Pologruto et al., 2004; Yasuda et al., 2006; Harvey et al., 2008). Using 

fluorescently labeled CaMKII, we show that this protein can be specifically tagged to 

individual stimulated synapses. It would be of central importance to know how long and 

under which conditions the protein remains in its activated state. The spine neck 

represents a powerful barrier to biochemically isolate dendritic spines from their parent 

dendrite, allowing synapse specific activation of enzymes and second messengers 

(Bloodgood and Sabatini, 2005; Noguchi et al., 2005). The strength of this barrier 

depends on the kinetics of the activated enzymes: enzymes with a relatively slow 

inactivation kinetic are more prone to spread to the dendrite in their activated state 

compared to proteins with fast kinetics. It has been shown that Ras, a small GTPase, gets 

activated in individual spines and spreads to neighboring spines to regulate the potential 

for plasticity (Harvey et al., 2008). It is plausible that CaMKII only affects stimulated 

synapses because its activity has faster kinetics. It is also possible that the enzyme gets 

trapped to the stimulated spine by specific adaptor proteins (Gray et al., 2006).  

 

5.4 Concluding remarks  

In the present dissertation we show that live imaging of single synapse represents a 

powerful tool for studying synaptic physiology. The understanding of how biochemical 

and electrical signaling at the level of single synapses or groups of synapses can regulate 

neuronal computation is of central importance. Single synapse imaging and stimulation 

uncovered new forms of synaptic plasticity and neuronal computation. In contrast to pure 

electrophysiological recordings, live imaging allows to visualize the subcellular 

specificity and the time course of signaling cascades and the structural modifications 

involved in synaptic plasticity. Live cell imaging and single synapse stimulation allowed 

us to describe the existence of defined subpopulations of synapses in regard to their 

potential for plasticity. It also allowed us to describe the existence of important 

metaplasticity mechanisms operating at the level of single dendritic spines. 
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6. APPENDIX:  

 

Two photon glutamate uncaging – practical considerations 

 

Two photon glutamate uncaging opens a new avenue for studying synaptic physiology at 

the level of single synapses or groups of synapses. This technique consists in the focal 

activation (uncaging) of glutamate from an inactive precursor molecule by a two photon 

laser. The uncaged glutamate mimics glutamate released by a presynaptic terminal and 

activates receptors on the postsynaptic cell.  

 

Optical table 

To allow simultaneous two photon uncaging and two photon imaging, two Ti-Sapphire 

lasers have to be combined and aligned. One laser is used for imaging (typical 

wavelength used: 800-980 nm), the other for uncaging (typical wavelength used: 720-730 

nm). Electro-optical modulators (EOMs) allow precise and independent control of pulse 

duration and laser power. The lasers are combined using a polarizing beam-splitting cube. 

For rough laser alignment, removable pinholes or targets are placed after the beam-

splitting cube. Mirrors in one or both laser lines allow spatial adjustments of the laser 

beam and superposition of the two lasers on the targets. For definitive alignment, 

excitation of small fluorescent structures in the focal plane has to be used. By using both 

lasers to image the same structure and by adjusting the laser lines in order to superimpose 

the two images independently given by the two lasers, fine alignment can be achieved.  
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Minimizing the uncaging volume 

The use of a two-photon laser allows uncaging of glutamate in a relatively small volume. 

The focal volume where glutamate is uncaged is proportional to the size of the point 

spread function of the microscope (PSF, ~1 µm
3
). To best mimic glutamate released by a 

single synaptic vesicle (vesicle size: ~40 nm), the smallest possible uncaging volume has 

to be used. Minimizing the size of the PSF represents a key step for physiological 

uncaging. The size of the PSF can be minimized using relatively short wavelengths for 

uncaging (around 720 nm), a high NA objective and overfilling the objectives back focal 

plane. Minimizing the size of the PSF also allows the use of lower average laser powers 

per uncaging event, minimizing photodamage and phototoxicity.    
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Optimizing pulse duration 

To mimic the nearly instantaneous release of glutamate from a presynaptic terminal, a 

relatively short uncaging pulse has to be used. However, shortening pulse duration leads 

to the need of higher laser power for uncaging. Similar to two-photon excitation, the 

amount of two photon uncaging events scales linearly with pulse duration and 

exponentially with pulse power. In order to reconcile short pulse duration with minimal 

photodamage and phototoxicity, pulse duration and laser power have to be carefully 

tuned. Optimal uncaging conditions (with 5 mM bath-applied caged glutamate) are 

achieved with pulse durations of 0.5-1 ms and average laser powers of 40-50 mW 

(measured in the back focal plane).  

 

Application of caged glutamate 

Caged glutamate can be applied locally, through a pipette or bath-applied at a desired 

concentration. Because of the high cost of caged glutamate, local application has the 

advantage of being the cheaper solution, however, in contrast to bath-application, the 

concentration of the compound can not be precisely set. An optimal compound 

concentration for bath-application is 5mM. This concentration allows the use of relatively 

short and low-power laser pulses.   

 

Perfusion system  

To minimize costs, a small total volume of ACSF with caged glutamate has to be used (5-

6 ml). The solution can be bubbled and eventually heated in a small reservoir; the 

reservoir can be connected to the recording chamber through ultra-thin tubing, to 

minimize the needed amount of solution. The solution can be recycled and used for up to 

20 hours. In order to keep the osmolarity constant during the experiment, the evaporated 

water has to be replaced. Calibration experiments can be performed to assess the 

evaporation rate and special syringe pumps can be used to replace the evaporated 

solution. With 6 ml total volume, heated to 32 °C, the evaporation rate is about 0.3 ml/ 

hour.  
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Calibrating the uncaging laser power  

Although the laser power can be set to be constant in the back focal plane, the actual 

amount of photons reaching the sample depends on several factors. Differences in sample 

depth or refractory index of the slice lead to differences in the amount of absorbed and 

scattered photons on the way to the sample. These differences lead to variability in the 

amount of uncaged glutamate, even if the laser power in the back focal plane is kept 

constant. Because of these reasons, it is important to normalize and calibrate the laser 

power used for uncaging at the sample plane. A valuable method to standardize the laser 

power delivered at the focal plane consists in setting the power in order to bleach a 

constant fraction of a fluorophore in the plane of interest (Bloodgood and Sabatini, 

2007b). If laser power is adjusted in order to bleach a constant fraction of fluorophore, 

differences in sample depth and refractory index between experiments have no influence 

on the amount of uncaged glutamate.  

 

Minimizing tissue damage 

In two photon imaging and uncaging, photobleaching, phototoxicity and overheating 

effects have to be taken into account. The relatively long imaging windows used to 

characterize uncaging evoked responses and the uncaging pulse itself can lead to sample 

damage. Care has to be taken in order to minimize the laser power used for imaging, 

trials have to be spaced apart (~0.03 Hz for calcium imaging) and, if high frequency 

uncaging is required, the imaging laser has to be shuttered whenever possible.   

 

Limitations of the technique  

Although two photon uncaging of glutamate represents an extremely powerful technique 

to unravel synaptic physiology, several limitations must be considered. Uncaging of 

glutamate circumvents the need of stimulating presynaptic afferents; the observed effects 

are purely postsynaptic. This fact can be advantageous if the investigator is interested in 

isolating and characterizing postsynaptic signals. However, it has to be kept in mind that 

half of the actual synapse is circumvented. All presynaptic effects and effects depending 

on reciprocal presynaptic-postsynaptic signaling are absent. In addition to that, 

postsynaptic responses purely depend on the amount of uncaged glutamate. Calibration 
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experiments need to be performed to reach physiological response amplitude and time 

course. Another limitation is that the volume where glutamate is uncaged is relatively 

large compared to the volume of a synaptic vesicle, this can result in differences in the 

microdomains where glutamate is active and stimulation of a different set of receptors.  A 

key experiment, which remains to be performed, is the stimulation of the same synapse 

using glutamate uncaging and conventional electrical stimulation of presynaptic afferents.   
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8. Abbreviations 

 

ACSF artificial cerebrospinal fluid 

AMPA α-amino-3-hydroxy-5-methylisoxazole-4- propionic acid  

CA: Cornus Ammoni 

CaMKII: calcium/calmodulin-dependent protein kinase II 

ChR2: channelrhodopsin-2 

DG: dentate gyrus 

EPSCs: excitatory postsynaptic currents 

ER: endoplasmic reticulum 

GFP: green fluorescent protein 

IP3: inositol-triphosphate 

IP3R: inositol-triphosphate receptor 

LTD: long-term depression 

LTP: long-term potentiation 

mGluR: metabotropic glutamate receptor 

NMDA: N-methyl-D-aspartate 

PBS: phosphate buffered saline 

PSD: postsynaptic density 

RFP: red fluorescent protein 

RyR: ryanodine receptor 
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