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Preface

During my undergraduate studies in Leipzig and Stockholm, astrophysics was a subject
of rare interest to me. It was most likely due to the lack of qualified tuition avail-
able at the University of Leipzig where I started my studies. I made the first contact
with astrophysical processes and their description in a seminar program course at the
Royal Institute of Technology in Stockholm where a student fellow of mine presented
the subject of core collapse supernovae of massive stars on a very general basis. The
subject immediately caught my interest, especially the complex underlying physical
processes that are required to describe such a system. To name only a few, these are
neutrinos, their transport and interactions, matter at extreme conditions, hydrodynam-
ics and general relativity. It was around that time when Matthias Liebendörfer, who
was working at at the CITA in Toronto/Canada, announced Ph.D. position opening
in his new project that was about to start in autumn 2005 in Basel/Switzerland. The
project was content about core collapse supernovae and related topics. Though I had
not quite completed my undergraduate studies in Sweden, I applied for the position.
I was very happy to be the successful candidate. By that time, my interest in astro-
physics had increased tremendously and I picked a topic for my masters thesis related
to the evolution of galactic stellar systems. Due to a lack of time I had to finish my
undergraduate studies while the project in Basel had already started, which left very
little time to make myself familiar with the subject before the beginning of 2006. After
that, I started to investigate more deeply important neutrino matter interactions which
were meant to be important in core collapse supernova simulations but not taken into
account in our model. This branch of our work has continued over the past 4 years of
my doctoral studies.

Furthermore, general relativity and in particular the properties as well as the for-
mation of black holes has always been fascinating to me. For that reason, my under-
graduate studies in Leipzig focused on the mathematical description of axisymmetric
and stationary spacetime. The general relativistic aspects of my doctoral studies did
not come off too badly at all. The numerical model I was able to develop is based on
general relativistic radiation hydrodynamics in spherical symmetry. It can simulate the
dynamical evolution of astronomical objects that will collapse to a black hole due to
the presence of strong gravitational fields until the formation of the apparent horizon.



Although the involved microphysics is highly uncertain, this method provides up to
now the only insight into the state of matter during gravitational collapse until the for-
mation of a black hole. Generally, the emitted neutrino signal is of particular interest
in modeling core collapse supernovae.

Neutrino detector facilities such as Super-Kamiokande and SNO might resolve a
future event at high precision, i.e. resolving millisecond events. The emitted neutrinos
provide in fact the only reliable information from stellar interiors by the present knowl-
edge, since matter is opaque to light and the emitted gravitational waves have proven
difficult to detect. Furthermore, it turned out to be extremely useful to continually
develop and improve the microphysics that is used to describe matter at extreme con-
ditions which are found in stellar interiors and even explore new physics in the context
of simulations of massive stars. Future observations as well as experiments and the
correlation to the description of microphysics might provide a powerful technique to
explore new physics. This strategy turned out to be the main guide of my doctoral
research. It is of great importance for researchers to improve the general picture of
physics and challenge even long agreed standards, while modeling physical processes
(sometimes based on phenomenological approaches) trying to explain observations and
experimental results.
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Abstract

The main results of my doctoral studies were obtained from core collapse simulations
of massive stars using a numerical model based on radiation hydrodynamics and three-
flavour Boltzmann neutrino transport in spherical symmetry. It was continuously fur-
ther developed with respect to the involved microphysics, such as neutrino-matter inter-
actions, a nuclear reaction network for low temperatures and densities and the equation
of state (EoS) for hot and dense nuclear matter.

These improvements made it possible to extend the simulation times from about
1 second to more than 20 seconds of physical time and allowed a detailed and for
the first time consistent radiation hydrodynamics investigation of the neutrino driven
wind, which develops during the early post-explosion phase of massive stars due to the
continued neutrino energy deposition. The neutrinos that diffuse out of the central
object, a protoneutron star (PNS), heat the material on top of the PNS surface. This
heat is partly converted into kinetic energy which drives a matter outflow, known as
the neutrino driven wind. Neutrino driven explosions of massive Fe-core progenitors of
10 and 18 M� were modelled using enhanced neutrino opacities. This was necessary
because the explosion mechanism of such stars is a subject of active research and by
present standard knowledge only working in multi-dimensional models. In the case
of a special progenitor star, the less massive 8.8 M� O-Ne-Mg-core, the explosion in
spherical symmetry was found even without enhanced opacities. The obtained post-
explosion evolution is in qualitative agreement with previous static steady-state and
parametrized dynamic wind models. On the other hand, we find generally smaller
neutrino luminosities and mean energies, the neutrino driven wind is proton-rich for
more then 10 seconds and the PNS properties and the contraction behaviour differ
from the assumptions made in previous wind studies. Despite the moderately large
entropies of about 100 kB/baryon and the fast expansion timescale, the conditions
found are unlikely to favour r-process nucleosynthesis.

In addition, we discuss the formation of stellar mass black holes via PNS collapse.
The simulations are launched from several massive progenitors of 40 and 50 M�. In
the absence of an earlier explosion, the PNS collapses to a black hole due to the con-
tinued mass accretion. We analyse the electron-neutrino luminosity dependencies and
construct a simple approximation for the electron-neutrino luminosity. Furthermore,



we analyse different (µ, τ)-neutrino pair-reactions separately and compare the differ-
ences during the post-bounce phase. We also investigate the connection between the
increasing (µ, τ)-neutrino luminosity and the PNS contraction during the accretion
phase before black hole formation. Comparing the different post-bounce phases of the
progenitor models under investigation, we find large differences in the emitted neutrino
spectra. These differences and the analysis of the electron-neutrino luminosity indicate
a strong progenitor model dependency of the emitted neutrino signal.

Including an EoS for strange quark matter based on the simple and widely used
MIT bag model, we are able to study the appearance of quark matter in core collapse
simulations. The transition from hadronic matter to quark matter is modelled via a
Gibbs construction which results in an extended mixed phase. Assuming small bag
constants, the phase transition occurs during the early post-bounce phase of massive
progenitor stars at densities near nuclear saturation which are found at the PNS centre.
The simulations are launched from 10, 13 and 15 M� stars, where in the absence
of an earlier explosion the PNSs contract due to the continued mass accretion on a
timescale of 100 ms. A direct consequence of the phase transition is the formation of a
strong second accretion shock at the phase boundary between the mixed and the pure
hadronic phases. It even turns into a dynamic shock and overtakes the first shock,
which remained unaffected from the happenings inside the PNS. In other words, a new
explosion mechanism is discovered, where moderate explosion energies of 1 × 1051 erg
are obtained. As soon as this second shock propagates over the sphere of last scattering
where neutrinos decouple from matter, a second neutrino burst is released which may
possibly be detectable for a future Galactic event, if a quark phase transition has taken
place.
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Chapter 1

Introduction

Core collapse supernovae and the understanding of the physical phenomena involved
kept scientists from various different fields of research busy for more than half a century.
One of the most important issues is the relation of the production of the elements in
core collapse supernova explosions, especially heavy elements such as uranium as well
as the involved nuclear processes. The so-called explosive nucleosynthesis provides
only an indirect insight into stellar interiors. Since the material is optically opaque,
the only direct observables are gravitational waves and neutrinos, both of which are
emitted on a timescale of several seconds. However, gravitational waves have proven
difficult to detect. Hence, the most promising source of information leaving a stellar core
are in fact the neutrinos. A neutrino burst was detected from SN1987a, documented
in Hirata et al. (1988). It is up to now the only observed core collapse supernova
event at such short distance from the Earth which has produced a neutrino signal.
Although the measurement only provided very few data points (neutrino events), it
nevertheless probed the theoretically predicted scenario of core collapse supernovae to
some extent including the relevance of neutrinos. Their relevance and importance is
not only due to the detectability of core collapse supernova events but also in order
to explain the explosion mechanism. From simple energetic considerations it can be
shown that neutrinos carry away energy of the order of several 1053 erg on a timescale
of several minutes. This energy exceeds the typical kinetic explosion energy of a few 1051

erg by two orders of magnitude. Already less than 1% of the energy in the neutrino
radiation field is sufficient in order to obtain an explosion. Hence, neutrino driven
explosions represent at present the most reliable explosion mechanism of massive stars
which unfortunately has only been working in axially symmetric models for massive
Fe-core progenitors and in spherical symmetry for the low-mass 8.8 M� O-Ne-Mg-core.
Additional explosions have been obtained due to the dumping of acoustic energy and
magnetically driven, both of which require multi-dimensional models as well. In the
following section, the reader will be introduced to the supernova problem, which is
related to the explosion mechanism of massive stars. It is an active subject of research
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to which we were able to contribute a new hypothesis by reviving an old idea that is
related to the involved microphysics.

1.1 Phenomenology of core collapse supernovae

Massive stars in the range of 8 to ' 75 M� evolve on the main sequence for millions of
years through the different nuclear burning phases. The final state of nuclear burning of
such massive progenitor stars is obtained when a reasonable amount of heavy Fe-group
nuclei, such as 52−56Fe, 56Ni and 60Zn, are produced. Since these nuclei are the most
stable elements with respect to the smallest mass per nucleon, nuclear burning processes
stop and heavier elements can not be produced in stellar cores that way. Above tem-
peratures of 0.5 MeV (' 6×109K), the production of heavy nuclei and their destruction
are in equilibrium and nuclear burning proceeds towards nuclear statistical equilibrium.
In addition, the importance of electron capture reactions increases. Electron captures
on nuclei and free protons reduce the number of electrons, because the densities at the
final stage of nuclear burning are low enough to allow the emitted neutrinos to escape
freely. In other words, the stellar core deleptonises and the number of electron leptons
YL and the number of electrons per baryon Ye reduce. Consequently the pressure of
the degenerate electron gas, which is the dominant contribution to the pressure at the
end of stellar evolution, decreases and the stellar core starts to contract. The contrac-
tion proceeds into a collapse during which density and temperature increase and hence
electron capture reactions become even more important. Above densities of ρ ' 1011

g/cm3, neutrinos are not free-streaming and neutrino transport becomes important. At
even higher densities of ρ ' 1013 g/cm3 neutrinos are in equilibrium with matter and
hence can be considered trapped. At the trapping density, the lepton number is fixed
at a value of YL ' 0.35 whereas the central electron fraction continues to decrease to
values below 0.35 according to the thermodynamic state. The collapse finally halts at
nuclear densities of the order ρ ' 2− 4× 1014 g/cm3 (nB ' 0.15− 0.17 fm−3 in nuclear
units), which depends on the equation of state (EoS). The collapse is divided into a
supersonically collapsing outer core and a subsonically collapsing inner core, spatially
connected at the sonic point. Information about the stalling collapse at the centre can-
not propagate from the inner part to the outer part across the sonic point. Hence, the
outer collapse continues while at the centre a stagnation wave forms which propagates
outwards. At the sonic point, the stagnation wave turns into a shock front. This defines
the moment of bounce when the central density reaches its maximum. At bounce, the
central electron fraction has a value slightly below 0.3 which defines the mass enclosed
inside the bouncing core, see Goldreich and Weber (1980). The electron capture scheme
used sensitively tunes the position of shock formation and hence the initial energy of
the forming shock front. The standard reaction rates from Bruenn (1985) are based on
the simplification of a single average nucleus with average atomic mass and charge. An
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improved description has been published by Langanke et al. (2003) and Hix et al. (2003)
where they address a nuclei distribution for the calculation of the electron capture rates
based on shell-model calculations for the Gammov-Teller transition. Simulations us-
ing this improved scheme result in a slightly higher degree of deleptonisation during
collapse and at core bounce.

After bounce, the shock front propagates further outwards and loses energy due to
the dissociation of heavy nuclei into light nuclei and nucleons. In this expanding regime
the shock continues to propagate into regions with lower and lower densities. The shock
propagation across the neutrinospheres, i.e. the neutrino energy and flavour dependent
spheres of last scattering, define the physical state where the neutrino radiation field
decouples from matter. This corresponds to a release (out-burst) of a large number of
electron-neutrinos emitted via additional electron captures. These electron-neutrinos
carry away energy of 4 − 5 × 1053 erg/s (depending on the progenitor model) on a
timescale of 5−10 ms. These two sources of energy loss turn the expanding shock front
into a standing accretion shock (SAS) which expands to a few 100 km at about 5 ms
after bounce. In this sense, there is no evidence for a prompt explosion. All massive
progenitor stars follow the same fate shortly after bounce. Depending on the progenitor
mass, only the magnitude of the observables (such as the time before the expanding
shock front turns into the SAS, the neutrino luminosities and energies, the enclosed
mass inside the SAS) differ.

The central object that has formed immediately after bounce is a protoneutron star
(PNS). The neutrinos which diffuse out of the hot and dense PNS on timescales of sev-
eral seconds, have long been investigated whether they can revive the SAS and lead to
neutrino driven explosions (see for example Bethe and Wilson (1985)). The absorption
of neutrinos behind the SAS transfers energy from the radiation field into the fluid on
timescales of 100 ms, when the neutrino luminosities and energies are still sufficiently
high. This corresponds to an increase of the thermal energy of the matter, i.e. mat-
ter is heated. This heat is partly converted into kinetic energy. Unfortunately, up
to now this energy transfer has proven to be not efficient enough to revive the SAS
in spherically symmetric core collapse models. Even models that are based on accu-
rate neutrino transport and involve a sophisticated EoS for the description of nuclear
matter at high densities and temperatures could not explain explosions in spherical
symmetry. An exception is the spherically symmetric explosion of the 8.8 M� O-Ne-
Mg-core from Nomoto (1983,1984,1987) by Kitaura et al. (2006). On the other hand,
multi-dimensional models have become available only recently. Multi-dimensional phe-
nomena such as rotation and the development of fluid instabilities have been shown
to increase the neutrino heating efficiency, see for example Miller et al. (1993), Herant
et al. (1994), Burrows et al. (1995) and Janka and Mueller (1996). They help us to un-
derstand aspherical explosions, see for example Bruenn et al. (2006), Marek and Janka
(2009) and Janka et al. (2008).
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1.2 Aims of the present work

Despite the recent success of multi-dimensional core collapse models with respect to
the actual task of exploring the explosion mechanism of massive stars, such models
suffer from various problems. For example, the obtained explosion energies can barely
be related to observations because the simulations are not carried out for long enough.
A comparison of different multi-dimensional explosion models is difficult. In addition,
it is difficult to exclude numerical effects, such as grid effects, causing the launch of
the explosion. A comparison of the composition of the explosion ejecta depends on the
explosive nucleosynthesis model. Hence, we belief it is important to constantly improve
the input (micro)physics involved as well. These are the neutrino physics, the equation
of state (EoS) and the progenitor star as the initial model. Next to the development
of fluid instabilities and the possible shock revival explored in multi-dimensional mod-
els, the improvements of neutrino-matter interactions and different EoSs have been
speculated to help to understand the explosion mechanism as well (Horowitz (2002),
Itoh et al. (2004)). To improve the input physics and investigate the improvements
to a high precision, multi-dimensional models are not ideally suited for due to the
large computational resources such simulations typically consume. Hence, we choose a
spherically symmetric approach based on the highly advanced numerical model AGILE-
BOLTZTRAN. It was designed by Mezzacappa and Bruenn (1993a-c) based on Newto-
nian radiation-hydrodynamics using three-flavour Boltzmann neutrino transport. It was
updated by Liebendörfer et al. (2001a,b) to solve the general relativistic equations. A
lot of effort was devoted to implementing an adaptive grid as documented in Liebendör-
fer et al. (2002) and to accurately conserve Lepton number, momentum and energy,
see Liebendörfer et al. (2004). The advantage of spherically symmetric over multi-
dimensional models is the possibility of improving neutrino-matter interactions and
investigating these using accurate neutrino transport, where multi-dimensional models
have to approximate neutrino transport for computational reasons. Furthermore, sim-
ulations can be carried out for several seconds of physical time using simulation times
of only up to a few weeks. Present state-of-the-art multi-dimensional simulations are
limited to not much more then 1 second of physical time and can run for years.

1.2.1 Neutrino-matter interactions

Neutrino-matter interactions are taken into account via reaction rates that are calcu-
lated interactively, because the rates depend on the thermodynamic state which changes
during the dynamical evolution. The dominant reactions are the electronic charged cur-
rent reactions, which are the electron(positron) and electron-(anti)neutrino captures at
free the nucleons and nuclei. During the collapse of the stellar core, the degeneracy of
matter is too low for the presence of positrons. Only electron capture reactions can take
place and hence there are only electron-neutrinos and all other flavours are suppressed.
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Only as the temperature increases due to shock heating post-bounce, positrons appear
as well which allow then also for the production of electron-antineutrinos via positron
captures at free neutrons and (µ/τ)-(anti)neutrinos via pair reactions. In principle, the
muonic charged current reactions contribute as well. However, the large rest mass of the
muon of about 107 MeV would allow muon capture reactions only at a extremely high
degeneracy. Hence, such reactions are suppressed and typically ignored in core collapse
supernova models. Next to the charged current reactions, neutral current reactions such
as various scattering and pair reactions are considered. Most important for the determi-
nation of the neutrinospheres are neutrino-nucleon and neutrino-nuclei scattering, due
to the small mean-free paths. Reactions such as neutrino-electron(positron) scattering
thermalise the neutrinos on their trajectory out before they reach the neutrinospheres
where neutrinos decouple from matter. Pair reactions, such as electron-positron annihi-
lation, nucleon-nucleon-Bremsstrahlung and the annihilation of trapped electron flavour
neutrino pairs produce (µ/τ)-(anti)neutrinos. To summarise, the following reactions are
considered:

Charged current reactions


e− + p↔ n+ νe,
e− + 〈A,Z〉 ↔ 〈A,Z − 1〉+ νe,
e+ + n↔ p+ ν̄e,

Neutral current reactions



ν +N ↔ ν +N (N = n, p) ,
ν + 〈A,Z〉 ↔ ν + 〈A,Z〉 ,
ν + e± ↔ ν + e±,

 scattering

e− + e+ ↔ ν + ν̄,
N +N ↔ N +N + ν + ν̄ (N = n, p, ) ,
νe + ν̄e ↔ νµ/τ + ν̄µ/τ ,

 pair reactions

where ν = (νe, ν̄e, νµ/τ , ν̄µ/τ , ) unless stated otherwise and 〈A,Z〉 represents heavy nuclei
via a single nucleus approximation with average mass A and charge Z.

The electron-flavour neutrinos are the dominant sources for cooling and heating
matter via the emission and absorption processes respectively. At large densities which
correspond to PNS interiors, the neutrino emission is dominant. The emitted neutrinos
are highly trapped and can only diffuse out of the PNS on timescales of seconds. This
deleptonises and cools the PNS, which leads to a contraction on the same timescales.
The neutrinos thermalise on their way out of the PNS, which reduces the mean energy of
the neutrinos. At low enough neutrino energies this allows for the reverse reactions, i.e.
the neutrino absorption processes, to dominate which in turn results in a net-heating
rate taking place close to the neutrinospheres. The radius at which this occurs defines
the gain region, where outside this radius the neutrino energy deposition is meant to be
the origin of power which drives neutrino driven explosions. Fig. 1.1 which was taken
from Janka (2001) illustrates the typical post bounce situation.
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Figure 1.1: Illustration of the post bounce situation, including mass accretion from the
progenitor star, the shock position, heating and cooling regions and the gain radius.

The transport of neutrinos becomes important in the regime near the neutrinospheres,
essentially in order to model the transition between the neutrino trapping and free
streaming regimes where we solve the Boltzmann equation for ultra-relativistic massless
fermions. This is computationally very expensive and can only be done in spherically
symmetric models. At present, multi-dimensional models have to rely on some neutrino
transport approximation scheme. The current and most successful axially symmetric
models of our time apply either the multi-group flux limited diffusion approximation
(see Bruenn (1985)) or the ray-by-ray approximation (see Janka and Mueller (1995)),
where the latter one calculates Boltzmann transport for each angular ray. Recently,
Liebendörfer et al. (2009) developed a new algorithm based on the separation of trapped
and free-streaming neutrinos, which is computationally less expensive and can even be
applied in 3-dimensional models (see Whitehouse and Liebendörfer (2010)).

1.2.2 The equation of state

The equation of state (EoS) in core collapse supernova models is much more than a
relation between matter pressure and baryon density. It describes general properties of
matter including the composition for various different thermodynamic regimes, which
can be distinguished as follows.

1. At low densities and temperatures, typically below T ' 0.5 MeV which corre-
sponds to T ' 6 × 109 K, nuclei are present and the evolution of the thermo-
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dynamic quantities is determined by the changing composition and hence time-
dependent thermonuclear and weak reactions. Matter properties such as pressure,
entropy and internal energy, are dominated by the degenerate electron gas. Our
core collapse model used previously the simplification of an ideal gas of Si-nuclei.
This lead to an increasingly inaccurate energy evolution, especially in explosion
models after 500 ms post bounce when the explosion shock reached the Si-layer
and simplifications could not be extended beyond ∼ 1 second post bounce. In
order to describe the baryon properties in such a regime accurately, a nuclear
reaction network can be used. The implementation of the nuclear reaction net-
work now makes it possible to include more mass (up to and even including a
large fraction of the He-layer) of the progenitor star into the physical domain and
follow the dynamical evolution for one order of magnitude longer.

2. For temperatures T > 0.5 MeV, the destruction and production of nuclei are in
equilibrium, i.e. nuclear statistical equilibrium, and given by the thermodynamic
state temperature T , baryon density nB and electron fraction Ye. Heavy nuclei are
approximated by a single representative nucleus with average atomic mass and
charge 〈A,Z〉, in addition to α-particles, which represent the light nuclei in our
model, and the free nucleons. The EoS in that regime for matter at high baryon
densities and temperatures is relatively unknown. The calculation of the EoS
has to rely on theoretical models, which are typically based on phenomenological
approaches and include various nuclear effects where the commonly used EoSs
for hot and dense nuclear matter in core collapse simulations of massive stars are
from Lattimer and Swesty (1991) and more recently Shen et al. (1998a).

Up to now, contributions from exotic particles such as strangeness in the nucleon
sector and quarks are only starting to be explored in the context of core collapse super-
novae. The study of their possible appearance in a radiation-hydrodynamics context
and the consequent relevance with respect to possible observables are major subjects
of the present work. Therefore, we employ a quark matter EoS that is based in the
simple and widely used MIT-bag model, developed by Sagert et al. (2009a). It de-
scribes the transition from hadronic matter to (u,d,s)-quark matter via an extended
co-existence region,i.e. the mixed phase, modelled via the Gibbs construction. The
additional quarks (t,b,c) are suppressed due to their large rest masses. The phase tran-
sition causes a collapse of the PNS in the regime above nuclear saturation due to the
softening of the EoS in the mixed phase. A second standing accretion shock forms due
to the stiffening of the EoS for matter in the pure quark phase. This second standing
accretion shock accelerates along the decreasing density gradient at the PNS surface,
overtaking the first SAS and leading to an explosion even in spherical symmetry where
otherwise no explosions could have been obtained. It becomes also observable in the
emitted neutrino spectra as a second outburst of neutrinos, due to the lifted degeneracy
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of the additionally shock heated hadronic material. The results of this investigation are
published in Sagert et al. (2009b) and will be discussed further in §3.3.

1.2.3 The progenitor model

The third part of the input physics in core collapse supernova simulations is the pro-
genitor model as initial conditions. The stellar life of a massive star with an initial mass
between 8 and ' 75 M� on the main sequence is modelled using quasi-static spherically
symmetric fluid dynamics combined with an EoS valid for the thermodynamic condi-
tions applied in such simulations. It includes a treatment of nuclear reactions, weak re-
actions and mixing. Such stellar evolution models are provided by for example Nomoto
and Hashimoto (1988), Woosley and Weaver (1995), Woosley et al. (2002), Umeda and
Nomoto (2008) and Hirschi (2007). The star is evolving on the main sequence over mil-
lions of years (depending on its initial mass and metallicity) though H-burning which
produces a core composed of He where the core temperature is not high enough to start
He-burning. The loss of internal energy and pressure support (i.e. contributions from
radiation, burning and baryons) cause the He-core to become gravitationally unstable
which results in a contraction during which the temperature increases. As soon as
the temperature is sufficiently high enough to ignite He-burning, the contraction halts
due to the contribution from the nuclear burning to the internal energy and pressure
where quasi-hydrostatic equilibrium is re-establishment. He-burning on the other hand
produces a C-O-core where again the temperatures are not high enough to ignite C-
O-burning and nuclear burning stops - this again results in a gravitational contraction
during which the temperature increases until C-O-burning starts and quasi-hydrostatic
equilibrium is obtain. In other words, the ash from each nuclear burning process sinks
towards the centre and initiates the next higher burning process, after a contraction
during which the temperature increases sufficiently high enough for the next higher
burning processes to be ignited. Hence, nuclei with larger atomic mass are found closer
to the stellar core. Massive star develop this way an onion-like shapes (see Fig. 1.2)
where the different layers determine the nuclear burning history of the star. At the
end of C-O-burning, 28Si and 32S nuclei have been produced dominantly and Si- and
S-burning produces Fe-group nuclei (for illustration, see Fig. 1.2 at the example of a
15 M� progenitor model) Furthermore, the timescale for each burning process reduces
reduces. Where the star evolves over millions of years on the main sequence through
H-burning, He-burning lasts for a couple of 105 years and C-O-burning only a couple
of 100 years. The shortest burning process is Si-S-burning, which lasts only a couple of
days.

However, Fe-group nuclei and in particular 56Fe is the most stable nuclei with respect
to the smallest mass per nucleon and hence Fe-burning does not take place. Heavier
elements cannot be produced in stellar cores via nuclear burning. Consequently, as
soon as a reasonable amount of Fe-group nuclei are produced at the core of the Si-S-
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Figure 1.2: The non-rotating 15 M�
progenitor model from Woosley et al.
(2002), illustrating at the top the
temperature (in log-scale at the left
side) and the electron fraction (linear-
scale at the right side) as well as
the dominant composition at the bot-
tom at the end of stellar evolution for
the innermost 5 M� of the remain-
ing mass of the star, i.e. the H-rich
envelope extends up to 12.6421 M�.
About 2.3579 M� have been lost into
the interstellar medium during stel-
lar evolution via stellar winds. The
dashed vertical lines (top) illustrate
the onion-like structure of the progen-
itor due to the composition.

burning shell, nuclear burning stops again. This time, the loss of energy support from
the nuclear burning in combination with the increasing importance of electron captures
cause the stellar core to contract during which quasi-hydrostatic equilibrium cannot be
obtained anymore and the contraction proceeds into the collapse of the Fe-core. At
that stage, stellar evolution models cannot be used anymore due to the lack of neutrino
transport which becomes more and more important as density and temperature increase.
Instead, the progenitors are used as input in core collapse supernova models where the
continuous evolution is simulated. In this sense, all massive progenitor stars follow the
same fate at the end of stellar evolution.

Less massive stars, such as our own sun, do not reach high enough core temperatures
to continuously ignite the next higher burning processes up to Si-S-burning. Such stars
do not produce extended Fe-cores at the final stage of nuclear burning that collapses and
explodes leaving a neutron star or a black hole. Instead, such cores develops an electron
degenerate 12C-enriched white dwarf. An intermediate progenitor between these two
mass ranges is the 8.8 M� O-Ne-Mg-core from Nomoto (1983,1984,1987). The core of
this progenitor contains only a small fraction (' 0.1 M� of the core) of Fe-group nuclei
at the end of stellar evolution, where C-O-burning is still proceeding during the core
collapse. This progenitor will be further discussed below as well as its post-bounce
evolution, for which we were able to obtain an explosion in spherical symmetry which
is in qualitative agreement with Kitaura et al. (2006).
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Organisation of the manuscript

In §2 I will briefly introduce the fundamental physical concept behind the modeling of
core collapse supernovae, which is general relativistic neutrino radiation hydrodynam-
ics based on three-flavour Boltzmann neutrino transport in spherical symmetry. I will
also explain the improvements made during my doctoral studies. These are the imple-
mentation of improved nuclear input physics, such as additional neutrino reactions for
neutrino-positron scattering and the annihilation of trapped electron-flavour neutrino
pairs, an equation of state (EoS) for hot and dense asymmetric nuclear matter which is
in nuclear statistical equilibrium (NSE) developed by Shen et al. (1998a) and a nuclear
reaction network for matter which is not in NSE developed by Thielemann et al. (2004).
Since the explosion mechanism of massive progenitor stars is an active subject of re-
search, we model explosions in spherical symmetry by enhancing the electronic charged
current reaction rates artificially. For such explosion models (using the improvements
of the nuclear physics) it is now possible to follow the explosion dynamics and the dy-
namical evolution of the PNS up to 20 seconds post-bounce. On the timescale of several
seconds, the neutrino driven wind will appear as a consequence of continuous neutrino
energy deposition on top of the PNS surface after the explosion has been launched. In
§3.1 I will discuss and illustrate the neutrino driven wind at two different Fe-core pro-
genitor models and the O-Ne-Mg-core. Massive progenitors above a certain threshold
(typically 40 M�, depending on the explosion mechanism) will not explode but pro-
ceed into an extended PNS accretion phase during which the continuous mass accretion
causes the PNS to become gravitationally unstable and collapse to a solar mass black
hole on timescales of several 100 ms. Such scenarios will be discussed in §3.2 for several
massive progenitors. Of special interest is the emitted neutrino signal from such events.
In collaboration with Sagert et al. (2009a) formerly from the University of Frankfurt
and now at the University of Heidelberg, we additionally explore the possibility and
consequences of a phase transition from hadronic matter to strange quark matter. I
will present the basic concept that can be applied to describe quark matter (e.g. based
on the MIT-bag model) and illustrate the resulting quark EoS as well as the transition
between the hadronic and the quark phases in §2.2. The consequences of this work with
respect to dynamical simulations, including the quark-hadron phase transition induced
explosion mechanism, will be further discussed in §3.3.



Chapter 2

Radiation hydrodynamics in spherical
symmetry

A wide range of exact solutions to Einsteins field equation have been formulated, see for
example Stephani et al. (2003). Most of these analytical solutions describe astronomical
objects and astrophysical processes only to a very limited degree. The simplifications
of nature as of e.g. perfect gas, perfect fluids and rigidly rotating dust discs leave out
important aspects. The whole physical picture is much more complex. It involves,
next to gravity and electromagnetism, for instance an equation of state (EoS) as well
as nuclear reactions (strong and weak interactions) and even radiation transport. In
this sense, the modeling of core collapse supernovae requires a description that takes
the four fundamental forces of nature into account. On the other hand, there is no
analytical model that describes the dynamical evolution of a collapsing star taking at
least the dominant microphysical effects into account. It is a system that requires the
combination of general relativistic hydrodynamics and radiation transport. At present,
there are no analytical solutions to such a description. Numerical solutions are required
in order to calculate the dynamical evolution of such systems. It is thereby important
to accurately fulfill the conservation laws of physics, e.g. energy, momentum and lep-
ton number conservation. Since the numerical solutions of such systems go far beyond
the mathematically approved domain of the theories beneath, they can only be under-
stood as an attempt to understand the fundamental physical processes involved and
not as a mathematically complete theory. For example, the gravitational collapse of an
ideal fluid can be solved analytically in the general relativistic framework. Coupling a
physical (i.e. non-polytropic) equation of state including composition to the system,
introduces physical dependencies for which analytical solutions cannot be extended.
The same holds for the inclusion of radiation transport and nuclear interactions, both
of which are additionally required for the modeling of core collapse supernovae. On
the other hand in addition to experiments, astronomical observations can be used to
limit certain parameters of the used input physics. This results in a powerful correla-
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tion between observations and the fundamental understanding of the involved physical
processes. It creates a scientifically fruitful environment.

The numerical model I have been working with during my doctoral studies is AGILE-
BOLTZTRAN. It was developed by Mezzacappa and Bruenn (1993a-c) based on spheri-
cally symmetric Newtonian hydrodynamics including three-flavour Boltzmann neutrino
transport. Liebendörfer (2001a,b) extended this model to solve the general relativistic
equations. An adaptive grid, described in Liebendörfer et al. (2002), was included and
a lot of effort has been devoted to conserve the lepton number, momentum and energy
(see Liebendörfer et al. (2004)). I will elucidate in the following sections the phys-
ical theories that stand behind AGILE-BOLTZTRAN, which are general relativistic
fluid dynamics, (neutrino) radiation transport, both their coalescence as well as various
neutrino-matter interactions.

2.1 General relativistic hydrodynamics
In the standard framework of general relativity based on Riemannian geometry, the
equations for energy and momentum conservation are obtained from the divergence of
the stress-energy tensor T (X, Y ) as follows

∇XT (X, Y ) = 0,

where ∇ is the covariant derivative. In a chart, the covariant derivative defines a
connection on the Manifold M as follows

∇i∂j = Γkij∂k,

where {∂i}, given by a local chart {xi} on M , is the basis in the tangent space to M ,
i.e. TpM = span{∂i} ∀p ∈M and the vector fields X, Y ∈ TpM . Γkij are the Christoffel
symbols given implicitly by the metric gij of the Riemannian manifold. The system is
closed with the conservation of the number of particles with rest mass density ρ (in the
sense of a system composed of conserved microscopic particles with 4-velocity u)

∇X (ρ u(X)) = 0.

Writing these relations in coordinate form as well as introducing the stress energy tensor
in coordinate form, one obtains

1√
−g

∂

∂xi
(√
−gT ij

)
= −ΓjikT

ki, (2.1)

and
1√
−g

∂

∂xi
(√
−gρui

)
= 0,
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where g = det(gij)1. These equations determine the dynamical evolution and are in a
sense equivalent to the equations of motion and energy conservation. Introducing the
stress-energy tensor of a perfect fluid, i.e.

T ij = µuiuj + p(gij + uiuj), (2.2)

where µ is the energy density, p is the pressure and ui is the 4-velocity vector, applying
(2.2) to Eq. (2.1), the following expression for the time component can be obtained

ui
∂µ

∂xi
+ (µ+ p)

1√
−g

∂

∂xi
(√
−gui

)
= 0, (2.3)

and for the space component

(µ+ p)ui
(
∂uτ

∂xi
+ Γτiju

j

)
+
(
gτi + uτui

) ∂p
∂xi

= 0. (2.4)

These equations can be written explicitly for a spherically symmetric and non-
stationary spacetime with coordinate time t, radial coordinate a (baryon mass) and
the two angles (ϑ, ϕ) that describe a 2-sphere of radius r(t, a). Using the following line
element2,

ds2 = −e2Φ(t,a)dt2 + e2Λ(t,a)da2 + r(t, a)2
(
dϑ2 + sin2 ϑdϕ2

)
, (2.5)

and writing the zero-component of the stress-energy tensor in terms of the internal
energy density e, i.e. T tt = ρ(1 + e), Eqs. (2.3) and (2.4) take the following form

1

ρ
∇iT

it =
∂e

α∂t
+ p

∂

α∂t

(
1

ρ

)
= 0,

r′

Γ

1

ρ
∇iT

ia =
p′

ρ
+

(
1 + e+

p

ρ

)
Φ′ = 0,

(see for example Liebendörfer et al. (2001a) without radiative contributions) using the
following setting for the metric coefficient functions, i.e. α = eΦ is the lapse function
and r′/Γ = eΛ. The dotted quantities denote partial derivative with respect to the
coordinate time t and the primed quantities denote partial derivatives with respect to
the radial coordinate (baryon mass), i.e.

˙ =
∂

α∂t
, ′ =

∂

∂a
.

1In the following I use the convention where Latin indexes denote space-time inducers (i, j, k) =
(0, ..., 3) and Greek indexes denote spatial ones only.

2It goes back to May and White (1966) who were the first to perform general relativistic simulations
based on the equations derived in Misner and Sharp (1964)
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The equations that are required to describe the system are obtained from the Einstein
equation, i.e.

Gij = 8πTij,

as follows (see Misner and Sharp (1964),Liebendörfer et al. (2001a))

Gtt =
1

r2
(1 + u2 − Γ2)− 2Γ

r

{
Γ′

r′
− u

αΓ

(
ṙ′

r′
− Γ̇

Γ

)}
= 8πρ(1 + e), (2.6)

Gat =
2Γ

r

{
u′

r′
− 1

α

(
ṙ′

r
− Γ̇

Γ

)}
= 0, (2.7)

Gaa = −2m

r3
− 2

r

(
u̇

α
− Γ2

α

α′

r′

)
= 8πp, (2.8)

where u = ṙ/α is the radial velocity. In combination with the expression that relates
the radius, baryon mass and matter density in spherical symmetry,

∂r

∂a
=

Γ

4πr2ρ
, (2.9)

the Eqs. (2.6), (2.7) and (2.8) can be simplified as follows (Liebendörfer et al. (2001a))

∂

∂a

(r
2

(
1 + u2 − Γ2

))
= 4πr2r′ρ(1 + e), (2.10)

1

α

(
ṙ′

r′
− Γ̇

Γ

)
=
u′

r′
, (2.11)

∂u

α∂t
=

Γ2

α

α′

r′
− m

r2
− 4πrp. (2.12)

Combining Eqs. (2.9) with (2.11), one obtains the evolution equation for the rest mass
density (Liebendörfer et al. (2001a))

∂

α∂t

(
1

ρ

)
=

∂

Γ∂a

(
4πr2u

)
, (2.13)

which is the continuity equation. All the expressions (2.8)-(2.13) have been obtained in
the absence of any radiation field. They will be modified if a radiation field is present
and coupled to the system.
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2.2 Boltzmann neutrino transport

The type of radiation considered in core collapse supernovae are neutrinos, due to the
presence of weak reactions like the capture of leptons on nucleons as well as scattering
processes. The emission and absorption as well as thermalisation processes are subject
to the theory of weak interactions based on the theory by Weinberg-Salam-Glashow
(Greiner and Müller), see for example Dicus (1972), Tubbs and Schramm (1975), Yueh
and Buchler (1976a), Yueh and Buchler (1976b), Schinder and Shapiro (1982) and
Bruenn (1985).

Although most of the progenitors physical domain corresponds to the free-streaming
regime form neutrinos, the physical conditions found inside stellar interiors belong to
the regime where neutrinos are highly trapped. Neutrinos can be considered as trapped
particles at densities above 1013 g/cm3. The most important region for neutrino-fluid
interactions with respect to heating and cooling lays inside the density domain between
1010− 1013 g/cm3. There, neutrinos are not trapped anymore but also not free stream-
ing yet and hence their transport is of importance. We apply accurate three flavour
Boltzmann neutrino transport for the whole domain considered, where no assumptions
are required with respect to trapping(diffusion) or free streaming. These conditions are
determined automatically via the mean free paths, which are calculated interactively
and enter the Boltzmann transport equation for massless ultra-relativistic (i.e. v = c)
Fermions. In the following subsections, I will introduce the general relativistic Boltz-
mann transport equation which goes back to Lindquist (1966). Below that, I will draw
down the equations used in spherical symmetry.

2.2.1 Mathematical remarks

The equations for radiation transport must obey a general relativistic form in order to
be able to couple them to a general relativistic fluid dynamics system. The theory of
classical mechanical systems is one of the best known and most elegant mathematical
descriptions in physics. It is related to Hamiltonian systems (M,w,H) which is a
reformulation of a classical mechanical system. It describes the structures defined on
a symplectic manifold (in classical physics terms the phase-space) (M,w) where an
additional structure, the Hamilton function H, is given. M is an ordinary manifold
and w(p) : TmM × TmM → R (∀m ∈ M) is a symplectic 2-form. Lindquist (1966)
applies such a representation to formulate the transport equation.

In general, the basis of the tangent space TxM over a 4-dimensional Riemannian
manifold M (x ∈M) with coordinates {xi} (i = 0, 1, 2, 3) can be defined on some open
set U ⊂M as {∂/∂xi}. The tangent vectors p ∈ U can be written as (Lindquist (1966))

p = pi
∂

∂xi
,
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where pi are the coefficient functions. Defining a new set of local coordinates {xi, pi} in
the section of the tangent bundle TM that lays over U , TM |U := TU , gives a natural
basis in the tangent space over TU via (Lindquist (1966)){

∂

∂xi
,
∂

∂pi

}
.

In the following paragraph, the path towards a presentations of vectors in such a context
will be sketched in terms of a differentiable map that relates the tangent space TxM
for any x ∈M with TbU for any b ∈ TU , ψ∗ : TbU → TxM .

Splitting up TbU in a horizontal (HbU) and a vertical part (VbU) in a coordinate-free
way as follows (Lindquist (1966))

TbU = HbU ⊕ VbU,

each vector t′ ∈ TbU can be expresses as a sum of horizontal and vertical components
(Lindquist (1966))

t′ = t′H + t′V ,

where t′H ∈ HbU and where t′V ∈ VbU . Then (Lindquist (1966))

ψ−1
∗ (t) = t′H

is the horizontal vector whose projection gives the tangent vector t at x. Furthermore
following the introduction by Lindquist (1966), C(τ) is a curve in M passing through
x0 = ψ(b) and b0 = (x0,p0) ∈ TU . Constructing a unique curve in TM denoted as
C ′(τ) = {xi,pi}, which describes both a curve xi(τ) and a vector field p(τ) = pi∂/∂xi

which is parallel-transported along C. Denote the tangent vector to C(τ) as (Lindquist
(1966)),

t =
dxi

dτ

∂

∂xi
,

the corresponding tangent vector to C ′(τ) is given by (Lindquist (1966))

t′ =
dxi

dτ

∂

∂xi
+
dpj

dτ

∂

∂pj
.

Because p(τ) is parallel-transported along C, one can write the coefficient function of
the momentum direction of the tangent vector in terms of the connection(Christoffel
symbols) as follows (Lindquist (1966))

dpj

dτ
= −Γjikp

k dx
i

dτ
,

which yields (Lindquist (1966))

t′ =
dxi

dτ
Di,
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where

Di =
∂

∂xi
− Γjikp

k ∂

∂pj
.

A tangent vector in TU will be expressed in this form, if it is horizontal. The set of
independent vectors {Dxi} spans HbU . Combining this with the vectors {∂/∂pi} that
span VbU , the following basis {

RDxi ,
∂

∂pi

}
spans TbU (Lindquist (1966)). Hence any vector u ∈ TbU can be written as (Lindquist
(1966))

u = uiHDi + uiV
∂

∂pi
.

2.2.2 The general relativistic transport equation

Introducing a distribution function f(x,p), which is a probability function defining the
number of particles dN in a certain spacelike volume element dV at position x with
4-momentum p. The momenta lay in a corresponding 3-surface element dP of the
momentum-space.

Let d1p, d2p, d3p be three displacements of the vector p, which span a 3-surface
on the mass shell through p whose normal is p itself, where p · p = −m2. Conserving
orthogonality the following expression (Lindquist (1966)),

√
−gεijkld1p

id2p
jd3p

k = const. pl = dP pl,

defines an invariant volume element dP orthogonal to p, where g = det|gij| and where
εijkl is the Levi-Civita symbol(anti-symmetric tensor). This expression can be written
as follows (Lindquist (1966))

dP =
√
−gεijkl

pl

m2
d1p

id2p
jd3p

k =
√
−gεijkl

d1p
id2p

jd3p
k

−p0

,

where p0 = g0ip
i. If dN defines the number of world lines crossing dV at x with 4-

momenta in the range dP , one can use the following relation to define the distribution
function (Lindquist (1966)),

dN = f(x,p)(−p · u)dV dP,

where u is any arbitrary timelike unit vector for which u · u ≡ uiui = −1 and u0 > 0
holds. The necessity of the additional factor (−p · u) is explained in Lindquist (1966).
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Assuming the particles paths are geodesics leads to the following expressions for the
particle trajectory and momentum as follows (Lindquist (1966)),

dxi

dτ
= pi

dpi

dτ
= −Γijkp

kpj.

Denote dW the 4-volume element spanned by dV and dP . Furthermore be dx = pδτ
an infinitesimal displacement along a family of world lines, the following identity can
be applied to express the 4-volume element (Lindquist (1966))

dW = (−u · dx)dV = (−p · u)dV dτ.

Lindquist (1966) showed that (−p · u)dV dP remains invariant along a given set of
trajectories (Louisville’s Theorem). It follows from this expression that the total change
in the number of world lines within dWdP can be expressed in terms of the change of
the distribution function due to (a) transport (Lindquist (1966)),

δ(dN) =

(
∂f

∂xi
dxi +

∂f

∂pi
dpi
)

(−p · u)dV dP

=

(
pi
∂f

∂xi
− Γijkp

kpj
∂f

∂pi

)
dWdP,

and (b) interactions within dW that destroy and create particles and change the particle
number via scattering, denoted as collision term on the right hand side. This leads to
the Boltzmann transport equation (Lindquist (1966)),

piDi(f) =

(
df

dτ

)
collisions

, (2.14)

using the derivativeDi defined in the section above. The left hand side of this expression
is the directional derivative of f along the phase flow and denotes the phase-space
transport of f . The collision term will be further discussed at the example of neutrino
transport in spherical symmetry in §2.1.3.

2.2.3 Boltzmann transport in spherical symmetry

The above expressions for the transport of particles(radiation) can be written in an
explicit way for the spherical symmetry case based on the line-element (2.5). The
following representation of the 4-momenta is used,

p0 = E, p1 = E cos θ, p2 = E sin θ cosϕ, p3 = E sin θ sinϕ,
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for which the following useful relations hold

d3p = p2dE sin θ dθ dϕ,= E2 dE dµ dϕ,

p0d3p = E3dE dµ dϕ,

p1

p0
d3p = E2dE µdµ dϕ,

p1d3p = E3dE µdµ dϕ,

where µ = cos θ is the cosine of the propagation angle. The distribution function
f(t, a, E, µ) depends on the spacetime and the momentum space coordinates, which in
spherical symmetry are the time and baryon density (t, a) and the particle energy and
the cosine of the propagation angle (E, µ) respectively. Applying this representation to
the transport equation (2.14), the following form can be obtained (Lindquist (1966))

e−φ
∂f

∂t
=

e−Λ

r′
µ
∂f

∂a

+
(
1− µ2

) [
−Γ

r′
∂φ

∂a
+

Γ

r
+ µ

(
u

r
− e−φ∂Λ

∂t

)]
∂f

∂µ

− E

(
µ
e−Λ

r′
∂φ

∂a
+ µ2e−φ

∂Λ

∂t
+
(
1− µ2

) u
r

)
∂f

∂E

−
(
e−φ

df

dt

)
collision

.

This equation was expressed in terms of Lagrangian coordinates by Castor (1972) and
Yamada et al. (1999). They obtained the following form of the Boltzmann equation in
spherical symmetry

∂F

α∂t
=

µ

α

∂

∂a

(
4πr2αρF

)
+

(
1− µ2

){
µ

(
3u

r
+
∂ ln ρ

α∂t

)
+ Γ

(
1

r
− 1

α

∂α

∂r

)}
∂F

∂µ

+

{(
1− 3µ2

)(∂ ln ρ

α∂t
+

3u

r

)
− 2µΓ

(
1

r
− 1

α

∂α

∂r

)}
F

− µΓ
1

α

∂α

∂r

1

E2

∂

∂E

(
E3F

)
+

[
µ2

(
∂ ln ρ

α∂t
+

3u

r

)
− u

r

]
1

E2

∂

∂E

(
E3F

)
+

(
dF

αdt

)
collision

(2.15)
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=
µ

α

∂

∂a

(
4πr2αρF

)
+ Γ

(
1

r
− 1

α

∂α

∂r

)
∂

∂µ

[(
1− µ2

)
F
]

+

(
∂ ln ρ

α∂t
+

3u

r

)
∂

∂µ

[
µ
(
1− µ2

)
F
]

− µΓ
1

α

∂α

∂r

1

E2

∂

∂E

(
E3F

)
+

[
µ2

(
∂ ln ρ

α∂t
+

3u

r

)
− u

r

]
1

E2

∂

∂E

(
E3F

)
+

(
dF

αdt

)
collision

, (2.16)

for the specific distribution function F (t, a, E, µ) = f(t, a, E, µ)/ρ and the settings
defined already in the previous section, i.e. α = eφ and Γ = eΛ (see for example
Liebendörfer et al. (2001a) and Liebendörfer et al. (2004)).

2.2.4 The moment equations

Following the standard framework applied for the derivation of the Boltzmann trans-
port equation above, one can define a particle(radiation) flux 4-vector in the general
relativistic framework as follows (Lindquist (1966))

ni(x) =

∫ ∞
−∞

d3p pif(x,p).

Furthermore, integrating over the Boltzmann equation with the same measure of inte-
gration yields (Lindquist (1966))∫ ∞

−∞
d3p

{
pi
∂f

∂xi
− Γjikp

ipk
∂f

∂pj

}
=

∂ni

∂xi
+ Γiikn

k (2.17)

= ∇in
i =

∫ ∞
−∞

d3p

(
df

dτ

)
collision

. (2.18)

This is the first momentum equation of the Boltzmann transport equation. It relates
the changes in the particle(radiation) flux to the source terms on the right hand side.
This continuity equation is not zero, in other words the particle(radiation) flux is by
definition not conserved, because of the emission and absorption of particles(radiation)
as a consequence of interactions with the background matter field taken into account
in the collision term. Integrating over the Boltzmann equation with a different mea-
sure and using the definition of the stress-energy tensor for the particles(radiation)
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introduced in Lindquist (1966) as follows,

T ik(x) =

∫ ∞
−∞

d3p pipkf(x,p),

one finds the following relations for the equation of energy and momentum conservation
for the radiation field (Lindquist (1966))

∫ ∞
−∞

d3p

{
pmpk

∂f

∂xk
− pmΓjikp

ipk
∂f

∂pj

}
=

∂Tmk

∂xk
+ ΓiikT

mk + ΓmikT
ik

= ∇kT
mk =

∫ ∞
−∞

d3p pm
(
df

dτ

)
collision

.

The stress-energy tensor is not conserved for the same reasons that apply for the par-
ticle(radiation) flux.

These phase-space integral expressions can be written in spherical symmetry in
terms of the zeroth and first µ moments (number moments) of the distribution function
defined as follows (Liebendörfer et al. (2004))

JN =

∫ +1

−1

dµ

∫ ∞
0

E2dE F (t, a, µ, E), (2.19)

HN =

∫ +1

−1

µdµ

∫ ∞
0

E2dE F (t, a, µ, E). (2.20)

Using these expressions and integrating over the Boltzmann equation (2.16), the conti-
nuity equation takes the following form in the spherically symmetric case (Liebendörfer
et al. (2004))

∂JN

∂t
+

∂

∂a

(
4πr2αρHN) = α

∫ +1

−1

dµ

∫ ∞
0

E2dE

(
dF

dt

)
collision

, (2.21)

for the particle number density J and the particle flux H. Note that integrating over
the Boltzmann equation, the terms containing (1−µ2) do not contribute because these
terms vanish for µ = ±1. The same holds for the terms containing E3F which vanish
at E = 0 and E =∞.

The same argumentation applied using different integral measures leads to the evo-
lution equations for the energy moments of the distribution function (Liebendörfer et al.
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(2004))

J =

∫ +1

−1

dµ

∫ ∞
0

E3dE F (t, a, µ, E),

H =

∫ +1

−1

µdµ

∫ ∞
0

E3dE F (t, a, µ, E),

K =

∫ +1

−1

µ2dµ

∫ ∞
0

E3dE F (t, a, µ, E),

Q =

∫ +1

−1

µ3dµ

∫ ∞
0

E3dE F (t, a, µ, E).

Integrating the Boltzmann equation (2.16) applying the integration measure E3, leads
to the equation for the radiation energy (Castor (1972), Liebendörfer et al. (2004))

∂J

α∂t
=

1

α

∂

∂a

(
4πr2αρH

)
+
∂ ln ρ

α∂t
K − u

r
(J − 3K)− 2Γ

∂α

α∂r
H

+

∫ +1

−1

dµ

∫ ∞
0

E3dE

(
dF

dt

)
collision

,

where applying the integration measure µE3 leads to the the radiative contribution to
the lapse function (Castor (1972), Liebendörfer et al. (2004))

∂H

α∂t
=

1

α

∂

∂a

(
4πr2αρK

)
− Γ

(
1

r
− ∂α

α∂r

)
(J −K) + Γ

∂α

α∂r
K

+

∫ +1

−1

µ dµ

∫ ∞
0

E3dE

(
dF

dt

)
collision

,

where the terms with µ3 which correspond to Q cancel each other and hence Q does
not appear in the final expression. Furthermore, using the integral measure E3(u+ Γµ)
leads to the momentum evolution equation (Liebendörfer et al. (2004))

∂

∂t
(uJ + ΓH) = − ∂

∂a

(
4πr2αρ(ΓK + uH)

)
− α

r

{
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(
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}
− α
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{
4πr2

(
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)}
+ αu

∫ +1

−1
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0

E3dE

(
df

dt

)
collision

+ αΓ

∫ +1

−1

µdµ

∫ ∞
0

E3dE

(
dF

dt

)
collision

.
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The system of equations is far from being complete. Most importantly, the coupling
of the radiation field to the fluid equations is missing. This will be done in the next
section, in combination with radiation-matter interactions which determine the collision
term on the right hand side of the Boltzmann equation and hence the integrals of the
collision terms in the momentum equations.

2.3 Coupling between radiation field and matter
In the following subsections I will first sketch the derivation of the full set of radiation-
hydrodynamics equations. Below I will introduce the various neutrino-matter interac-
tions that are used in core collapse supernova models.

2.3.1 The full picture

The stress-energy tensor of the hydrodynamic system (2.2) is modified due to the ad-
ditional presence of radiative contributions as follows (Liebendörfer et al. (2004))

T tt = ρ(1 + e+ J),

T aa = p+ ρK,

T ϑϑ = Tϕϕ = p+
1

2
ρ(J −K).

The additional contribution for the antisymmetric component accounting for the energy
flux (Liebendörfer et al. (2004))

T ta = T at = ρH.

The hydrodynamic quantities (ρ, e, p), density, internal energy and pressure have al-
ready been defined above. The radiation contributions, i.e. (J,K,H), are the neu-
trino moments and represent the internal energy density, pressure and energy exchange
contributions. Following the same procedure as above, the equations for energy and
momentum conservation take the following now modified form due to the appearance
of additional terms from the radiation contributions (Liebendörfer et al. (2001a))

1

ρ
∇iT

it =
∂

α∂t
(e+J)+(p+ρK)

∂

α∂t

(
1

ρ

)
+

1

α2

∂

∂a

(
4πr2ρHα2

)
+
u

r
(J−3K) = 0, (2.22)

r′

Γ

1

ρ
∇iT

ia =
1

ρ

∂

∂a
(p+ ρK) +

(
1 + e+

p+ ρK

ρ

)
Φ′ +

r′

r
(J − 3K) = 0. (2.23)

The full set of equations are given in Liebendörfer et al. (2004), where the conservation
equations for the neutrino momenta (the momentum equations) are subtracted from the
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corresponding radiation-hydrodynamics conservation equations to achieve the evolution
of the pure hydrodynamic quantities. The resulting set of conservation equations for the
hydrodynamic variables, such as total and internal energy, momentum, gravitational
mass and the lapse function, also contain contributions from radiation-matter interac-
tions due to energy and momentum exchange. The collision term becomes important
and its specific form will be discussed in the following subsection.

2.3.2 The collision term

The most important neutrino-matter interactions that are typically considered in core
collapse supernova models go back to the early 1970th as explored in Tubbs and
Schramm (1975), Yueh and Buchler (1976a), Yueh and Buchler (1976b) and Yueh
and Buchler (1977) which are further developed by Schinder and Shapiro (1982) and
later Bruenn (1985). These interactions are calculated via the momentum integrated
reaction rates Rpi+pj→pk+pl weighted by the particles distribution functions f and cor-
respondingly the blocking factors (1− f) as follows 3∫

d3pi
(2π)3

∫
d3pj
(2π)3

∫
d3pk
(2π)3

(
fifj (1− fk) (1− fl)Rpi+pj→pk+pl

+ (1− fi) (1− fj) fk flRpk+pl→pi+pj
)
.

In the standard framework used in the literature, the integration of the final state
neutrino fν or blocking (1 − fν) is taken into account when the reaction rates are
implemented into the collision term on the right hand side of the transport equation as
follows (

dF (µ,E)

dt

)
collision

= Ω(F )AE + Ω(F )IS + Ω(F )NLS + Ω(F )PAIR,

where the different contributions are given as follows:

1. Neutrino emission and absorption:

Ω(F )AE = j(E)

(
1

ρ
− F (µ,E)

)
− χ(E)F (µ,E) =

j(E)

ρ
− χ̃(E)F (µ,E)

2. Iso-energetic neutrino-nucleon/nuclei scattering:

Ω(F )IS =
E2

c(hc)3

∫ +1

−1

dµ′ RIS(µ′, µ, E)F (µ′, E)− E2F (µ,E)

c(hc)3

∫ +1

−1

dµ′ RIS(µ′, µ, E)

3Since the leptons and baryons involved obey Fermi-Dirac statistics, the particles distribution func-

tion are given as follows fi ≡ fi(Ei) =
(
exp

{
Ei−µi

kBT

}
+ 1
)−1

with particle energy Ei, chemical poten-
tial µi and temperature T
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3. Neutrino-lepton (electron/positron) scattering:

Ω(F )NLS =

(
1

ρ
− F (µ,E)

)
1

c(hc)3

∫ ∞
0

E ′2 dE ′
∫ +1

−1

dµ′Rin
NLS(µ, µ′, E, E ′)F (µ′, E ′)

−F (µ,E)
1

c(hc)3

∫ ∞
0

E ′2 dE ′
∫ +1

−1

dµ′Rout
NLS(µ, µ′, E, E ′)

(
1

ρ
− F (µ′, E ′)

)

4. Neutrino pair processes:

Ω(F )PAIR =

(
1

ρ
− F (µ,E)

)
1

c(hc)3

∫ ∞
0

E ′2 dE ′
∫ +1

−1

dµ′F (µ′, E ′)

Rp
PAIR(E,E ′, µ, µ′)

(
1

ρ
− F̄ (µ′, E ′)

)
−F (µ,E)

1

c(hc)3

∫ ∞
0

E ′2 dE ′
∫ +1

−1

dµ′ Ra
PAIR(E,E ′, µ, µ′)F̄ (µ′, E ′),

where F̄ is the antineutrino distribution function entering the pair-production
kernel integration for the corresponding neutrino.

The angle θ defines the angle between the incident and emergent neutrino angle and is
given by the following relation (Bruenn (1985))

cos θ ≡ ω = µµ′ +
√

(1− µ2)(1− µ′2) cosφ,

where φ is the relative azimuthal angle of one neutrino to the other.
The calculation of the reaction rates, emissivity j, absorptivity χ, the scattering

kernels for iso-energetic neutrino-nucleon/nuclei scattering RIS, neutrino lepton scat-
tering RNLS (which is the sum of neutrino electron and positron scattering RNES/NPS)
and the pair production kernels RPAIR will be sketched in the subsection below. Note
that the rates RNES/NPS and RPAIR depend not only on µ′ and E ′ which are integrated
as shown above, but the rates depend also on φ. The dimensional reductions must be
performed before being placed in the Boltzmann equation.

2.4 Neutrino matter interactions

In the following subsections, I will introduce and sketch the derivation of the neutrino-
matter interaction rates used in our model as well as their explicit form.
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2.4.1 The charged current reactions

The charged current reaction rates, e.g. the emission and absorption of electron flavour
neutrinos on the free nucleons and nuclei, are calculated via the neutrino energy E de-
pendent absorptivity χ and emissivity j as follows (see Yueh and Buchler (1976b),Bruenn
(1985))

χ(E) ≡ 1

c
nn 〈σv〉

=

∫
d3pn
(2π)3

2fn(En) Rpνe+pn→pe+pp

∫
d3pp
(2π)3

∫
d3pe
(2π)3

{(1− fp(Ep))(1− fe(Ee))} ,

j(E) ≡ 1

c
nenp 〈σv〉

=

∫
d3pp
(2π)3

∫
d3pn
(2π)3

∫
d3pe
(2π)3

{
2fp(Ep) 2fe(Ee) (1− fn(En)) Rpe+pp→pn+pνe

}
,

where 〈σv〉 are the cross sections and the number densities have been expressed in terms
of the distribution functions as follows (equivalent for all fermions)

dn(p) =
d3p

(2π)3
2 fn(E),

dn(p′) =
d3p

(2π)3
(1− fn(E)) ,

and the factor 2 relate to the spin degeneracy of the initial state (Tubbs and Schramm
(1975)). Emissivity and absorptivity are reverse reactions and can be related via the
detailed balance relation (Bruenn (1985)) as follows

χ(E) = exp

{
E − (µp − µn + µe)

kT

}
j(E),

which follows from the expression that relates the spin of the interacting particles, i.e.
(2si + 1)(2sj + 1)Rpi+pj→pk+pl = (2sk + 1)(2sl + 1)Rpk+pl→pi+pj . Note that the chemical
potentials contain the kinetic contributions and the rest mass. They can be written as
follows

µn = µ0
n +mn,

µp = µ0
p +mp.

The same integrals hold for the emission and absorption of electron-antineutrinos, by
replacing the corresponding distribution functions and the chemical potentials in the
expression above and hence the following expression for the detailed balance can be
obtained

χ̄(E) = exp

{
E − (µn − µp− µe)

kT

}
j̄(E),
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for the electron-antineutrinos. The calculation of the reaction rates is based on the the-
ory of weak interactions. The total emissivity and opacity for electron-(anti)neutrinos
are obtained by summing up the contributions from capture reactions on the free nu-
cleons and nuclei, i.e.

j = jnucleons + jnuclei,

j̄ = j̄nucleons + j̄nuclei,

where detailed balance is applied for the calculation of the reverse reaction rates (χ, χ̄).

Reaction 1 νe + n↔ p+ e− (jnucleons, χnucleons)

Electron captures and the reverse reaction, i.e. electron-neutrino captures, are charged
currents which are due to the exchange of a W−-boson. The weak interaction process
can be related to the β±-decay, where the substructure of the nucleons (i.e. up-quarks
and down-quarks) change flavour via the emission of a W±-boson as follows

d → d

u → u

d → u + W− → e− + νe,

and

u → u

d → d

u → d + W+ → e+ + ν̄e,

where the W±-bosons decay into an electron(positron) and an electron-(anti)neutrino4.
Electron captures can be understood in the same way, where the interaction of an
electron with a up-quark inside the proton cause the electron to decay into aW−-boson
which in turn changed the quark flavour from an up- to a down-quark and emits an
electron-neutrino.

The matrix element for the absorption of electron-neutrinos on free neutrons is given
by (Bruenn (1985))

M =
G√

2
ūp(pp)γ

k
(
gV − gAγ5

)
un(pn)ūe(pe−)γk (1− γ5)uνe(pνe), (2.24)

where gV = 1 is the vector coupling constant and gA = 1.23 ± 0.03 is the axial-vector
coupling constant in the limit of zero momentum transfer and where γµ are the usual

4The W -boson was discovered experimentally by C. Rubbia and S. Van der Meer at the CERN
facility in 1983. It has a mass of ' 80 GeV.
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γ− 4× 4-matrices used in the standard theory of weak interactions. The spin-averaged
and squared matrix element follows straight forward (Bruenn (1985))

1

2

∑
s

|M |2 = 16G2
{

(gV + gA)2 (pp · pe−) (pn · pνe)

+ (gV − gA)2 (pp · pνe) (pn · pe−)

− (g2
V − g2

A)mnmp (pe− · pνe)
}
,

and the reaction rate can be obtained as follows (Bruenn (1985))

Rpνe+pn→p−e +pp
=

1
2

∑
s |M |

2

16EEe−EpEn
(2π)4δ4 (pνe + pn − pe− − pp) ,

where E is the neutrino energy and Ee, Ep, En denote the electron, proton and neutron
energy respectively. The momentum-space integration has been performed analytically
in Bruenn (1985), by assuming zero momentum transfer and hence replacing

δ4 (pνe + pn − pe− − pp)→ δ3 (~pn − ~pp) δ (E + En − Ee− − Ep) ,

and |~pp| � mp, |~pn| � mn. The resulting opacity can be calculated as follows (Bruenn
(1985))

χ(E)nucleons =
G2

π

(2π)4

(hc)4

∫
2d3p

(2π)3
fn(E) (1− fp(E)) (g2

V + 3g2
A) (1− fe−(E +Q))×

×(E +Q)2

√
1− m2

e

(E +Q)2

=
G2

π

(2π)4

(hc)4

1

e
µ0
p−µ0

n
kT − 1

∫
2d3p

(2π)3
(fp(E)− fn(E)) (g2

V + 3g2
A) (1− fe−(E +Q))×

×(E +Q)2

√
1− m2

e

(E +Q)2

=
G2

π

(2π)4

(hc)4

np − nn

e
µ0
p−µ0

n
kT − 1

(g2
V + 3g2

A) (1− fe−(E +Q)) (E +Q)2

√
1− m2

e

(E +Q)2

=
G2

π

(2π)4

(hc)4
ηnp(g

2
V + 3g2

A) (1− fe−(E +Q)) (E +Q)2

√
1− m2

e

(E +Q)2
,
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where np and nn are the number densities for protons and neutrons respectively. Q =
mn−mp is the restmass difference between neutrons and protons and where w = p2/2m
(mn ' mp ≡ m). The quantity ηnp takes into account the final state nucleon blocking
(degeneracy factor). From this expression and the expression for the detailed balance
introduced above, the emissivity can be calculated (Bruenn (1985))

j(E)nucleons =
G2

π

(2π)4

(hc)4
ηpn(g2

V + 3g2
A)fe−(E +Q)(E +Q)2

√
1− m2

e

(E +Q)2
.

The factor G is the Fermi constant given by the following expression applying the
correct units (Bruenn (1985))

G2(2π)4

(hc)4
= 5.18× 10−44cm2MeV−2,

and hence the units of j and χ are cm−1.

Reaction 2 ν̄e + p↔ n+ e+ (j̄nucleons, χ̄nucleons)

The capture of electron-antineutrinos is calculated via the exchange of a W+-boson.
Here I will following the same procedure as for the capture of electron-neutrinos based
on Bruenn (1985) and list the important quantities for the derivation of the reaction
rate. The matrix element for the absorption of electron-antineutrinos on free protons
is given by (Bruenn (1985))

M =
G√

2
ūn(pn)γk

(
gV − gAγ5

)
up(pp)ūe(pe+)γk (1− γ5)uν̄e(pν̄e),

and the squared and spin-averaged matrix element becomes (Bruenn (1985))

1

2

∑
s

|M |2 = 16G2
{

(gV + gA)2 (pp · pν̄e) (pn · pe+)

+ (gV − gA)2 (pn · pν̄e) (pp · pe+)

− (g2
V − g2

A)mnmp (pe+ · pν̄e)
}
.

The reaction rate is given by the following expression (Bruenn (1985))

Rpν̄e+pp→pe++pn =
1
2

∑
s |M |

s

16EEe+EpEn
(2π)4δ4 (pν̄e + pp − pe+ − pn) .
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Integrating the reaction rate over the momentum space gives again the expression for
the opacity and emissivity for neutrino energies with E −Q > me as follows

χ̄(E)nucleons =
G2

π

(2π)4

(hc)4
ηpn(g2

V + 3g2
A) (1− fe+(E −Q)) (E −Q)2

√
1− m2

e

(E −Q)2
,

j̄(E)nucleons =
G2

π

(2π)4

(hc)4
ηnp(g

2
V + 3g2

A)fe+(E −Q)(E −Q)2

√
1− m2

e

(E −Q)2
.

The expressions are similar in comparison to the electron-neutrino absorptivity and
emissivity. The difference in the sign for the neutrino energy is due to the different sign
of the electron-antineutrino chemical potential which in turn is due to the different sign
of the charged (neutron-proton) and positron chemical potentials which are given by
the following relations

µe− = −µe+ ≡ µe

µνe = µe − (µn − µp)
µν̄e = −µe − (µp − µn) = −µνe .

Here, the nucleon chemical potentials contain the rest mass contributions.

Reaction 3 νe + A′ ↔ A+ e− (jnuclei, χnuclei)

The presence of a distribution of nuclei is simplified by a single average nucleus with
average atomic mass A = (N,Z) and charge Z and where the configuration of the final
nucleus is given by A′ = (N − 1, Z + 1). The neutrino and electron capture rates on
nuclei can be approximated in a crucial way. Based on the (current)vector operator
Jµ = 〈A′|Jµ(0)|A〉, the matrix element is given by the following expression (Bruenn
(1985))

M =
G√

2
Jµūνe(pνe)γµ(1− γ5)ue(pe),

and the spin averaged and squared matrix element becomes (Bruenn (1985))

1

2

∑
s

|M |2 =
G2

2

1

2JA + 1

∑
mA

∑
mA′

JµJ∗α ((pνe)µe(pe)α + (pνe)α(pe)µ

− pνe · pe gµα − iεβµδα(pνe)
β(pe)

δ
)

=
G2

2

1

2JA + 1

∑
mA

∑
mA′

{
| J0 |2(1 + ~ue) · ~pνe + | ~J |2

(
1− 1

3
~ue · p̂νe

)}
,
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where ~ue = ~pe/Ee, p̂νe = ~pνe/E and ε is a completely asymmetric tensor with ε0123 = 1.
Following the procedure above, the reaction rate is given by the following expression
(Bruenn (1985))

Rpe+pA→pνe+pA′
=

1
2

∑
s |M |

2

EEe
(2π)4δ4(pe + pA − pνe − pA′).

Following the argumentation in Bruenn (1985), only contributions with | ~J |2 provide
allowed electron captures on nuclei in the ground state which are dominated by 1f7/2

→ 1f5/2 Gammov-Teller resonances, unless the neutron holes are absent (which is the
case for N > 40). Fuller et al. (1982) estimated the spin summation as follows

1

2JA + 1

∑
mA

∑
mA′

| ~J |2 =
NpNh

2JA′ + 1

12

7
=

2

7
NpNh,

where Np is the number of protons in the single-particle 1f5/2 level and where Nh is the
number of neutron holes in the single-particle 1f7/2 level. These numbers are predicted
from shell-model calculations as follows

Np(Z) =


0, Z < 20
Z − 20, 20 < Z < 28
8, Z > 28

Nh(N) =


6, N < 34
40−N, 34 < N < 40
0, N > 40.

Applying these simplifications to the calculations, the emissivity takes the following
form (Bruenn (1985))

j(E) =
2

7

G2

π

(2π)4

(hc)4
nAg

2
ANp(Z)Nh(N)fe(E +Q′)(E +Q′)2

√
1− m2

e

(E +Q′)2
,

where nA = ρXA/(mBA) is the number density of the heavy nuclei. For the mean
average nucleus A then the following expression holds (Bruenn (1985))

Q′ = M∗
A′ −MA = MA′ −MA + ∆,

where ∆ ' 3 MeV is the energy of the neutron 1f5/2 state above the ground state for
the nuclei considered. Applying the detailed balance to the emissivity, one obtains the
absorptivity as follows (Bruenn (1985))

χ(E) =
2

7

G2

π

(2π)4

(hc)4
nA g

2
ANp(Z)Nh(N) (1− fe(E +Q′))(E +Q′)2

√
1− m2

e

(E +Q′)2

× exp

{
µn − µp −Q′

kT

}
.
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Remark 1 The simplification of a single nucleus with average atomic mass and charge
〈A,Z〉 has recently been extended by G.Martinez-Pinedo and K.-H. Langanke, intro-
ducing a distribution of nuclei based on NSE-network calculations. They calculate the
allowed 1f7/2 to 1f5/2 Gammov-Teller transitions using a shell model and tabulate the
values for ∆ for a large number of nuclei. This improved electron capture scheme has
first been used in stellar evolution models in Woosley et al. (2002) where it has been
shown to increase the amount of deleptonisation at the end of stellar evolution which was
confirmed during the Fe-core collapse phase in core collapse simulations (see Langanke
et al. (2003), Hix et al. (2003)).

2.4.2 Neutral currents 1: scattering reactions

The scattering kernels for in and out scattering are explicitly given by the momentum
integration of the corresponding reaction rates including blocking factors as follows
(Bruenn (1985))

Rin
NES(NPS),IS =

∫
d3pt

(2π)3

∫
d3p′t

(2π)3
(1− ft(Et)) 2 f(E ′t)Rp′t+p

′
ν→pt+pν

Rout
NES(NPS),IS =

∫
d3pt

(2π)3

∫
d3p′t

(2π)3
2 ft(Et) (1− f(E ′t))Rpt+pν→p′t+p′ν .

The neutrino reactions considered here are neutrino-electron(positron) scattering (NES,
NPS) and the iso-energetic scattering of neutrinos on nuclei and free nucleons (IS).
For the latter reactions I will not distinguish the different neutrino types because the
reaction rates are the same.

Reaction 4 ν +N ↔ ν +N (RN
IS)

For the iso-energetic scattering of neutrinos on nucleons, the matrix element and the
reaction rate take the following form in the standard theory of weak interactions given
via the exchange of the neutral Z0-boson, (Bruenn (1985))

M =
G√

2

(
ūN(p′N) γk

(
hNV − hNAγ5

))
(ūν(p

′
ν) γk (1− γ5)uν(pν)) ,

Rpν+pN→p′ν+p′N
=

G2

EE ′ENE ′N
(2π)4δ4(pν + pN − p′ν − p′N) ×

×
{(
hNV + hNA

)2
(pN · pν) (p′N · p′ν)

+
(
hNV − hNA

)2
(p′N · pν) (pN · p′ν)

−
(
(hNV )2 − (hNA )2

)
m2
N (pν · p′ν)

}
,
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where

hpV =
1

2
− 2 sin2 θW,

hpA =
1

2
gA,

hnV = −1

2
,

hnA = −1

2
gA,

are the neutral current nucleon form factors which arise from virtual strong interaction
processes in the limit of zero-momentum transfer. θW is the Weinberg-angle. Performing
the momentum integration and assuming δ4(pν+pN−p′ν−p′N)→ δ (E−E ′)δ(~pN−~p′N)
(zero-momentum transfer), the scattering kernel becomes (Bruenn (1985))

R

 in
out


IS (E,ω) ≡ RN

IS(E,ω)

=
2πG2

h
ηNN

{
(hNV )2 + 3(hNA )2 +

(
(hNV )2 − (hNA )2

)
ω
}
δ(E − E ′),

where

ηNN =

∫
2d3pN
(2π)3

fN(EN) (1− fN(EN))

=

∫
2d3pN
(2π)3

e
EN−µN

kT(
1 + exp

{
EN−µN
kT

})2

= kT
∂nN
∂µN

→


nN non-degenerate N

3
2
kT nN

µN
degenerate N.

Because the derivative can be numerically unstable for degenerate and non-relativistic
nucleons, Mezzacappa and Bruenn (1993a) replaced the derivatives and showed that
the following expressions are numerically stable

ηNN =
3

2
kT

nN
εNF

=

3
2
kT nN

εNF√
n2
N +

(
3
2
kT nN

εNF

)2
nN

=

3
2
kT
εNF√

1 +
(

3
2
kT
εNF

)2
nN .
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The scattering kernel has to be integrated over φ to get the form which enters the
Boltzmann equation. Following again Mezzacappa and Bruenn (1993a), the integration
results in the following expression for the scattering kernel

RN
IS(µ, µ′, E) =

8π3G2

h
ηNN

{
(hNV )2 + 3(hNA )2 +

(
(hNV )2 − (hNA )2

)
µ′µ
}
,

which is the sum of neutrons and protons NN = (nn, pp), i.e.

RN
IS(µ, µ′, E) =

8π3G2

h

{
ηnn
(
(hnV )2 + 3(hnA)2 +

(
(hnV )2 − (hnA)2

)
µ′µ
)

+ ηpp
(
(hpV )2 + 3(hpA)2 +

(
(hpV )2 − (hpA)2

)
µ′µ
)}
.

Reaction 5 ν + A↔ ν + A (RA
IS)

The iso-energetic scattering of neutrinos on nuclei can be calculated among similar lines.
The reaction rate is given by the following expression (Bruenn (1985))

Rpν+pA→p′ν+p′A
= G2(2π)4δ4(pν + pA − p′ν − p′A)

× 1

2JA + 1

∑
mA

∑
mA′

{
(J0
z )2
(

1 + p̂ν · p̂′ν
)

+ | ~J |2
(

1− 1

3
p̂ν · p̂′ν

)}
,

where Jkz is the neutral current. Following the calculations in Bruenn (1985), the
following expression was found for the scattering kernel

R

 in
out


IS (E,ω) ≡ RA

IS(E,ω)

=
(2π)2G2

h
nAA

2

(
CV,0 +

1

2

N − Z
A

CV,1

)2

(1− ω)e−4bE2(1−ω)

× δ(E − E ′),

where Ci,0 = 1
2
(hpi +hni ) and Ci,1 = 1

2
(hpi −hni ) for i = (V,A) and where nA = ρXA/mBA

is the number density of nuclei. The quantity b is given by b = 4.8×10−6A2/3. Perform-
ing the φ-integration to obtain the the scattering kernel which is used in the Boltzmann
equation, one obtains (Bruenn (1985))

RA
IS(µ, µ′, E) =

8π3G2

h
nAA

2

(
CV,0 +

1

2

N − Z
A

CV,1

)2

e−4bE2(1−µµ′)

×
{

(1− µµ′)I0

(
4bE2

√
(1− µ2)(1− µ′2)

)
+

√
(1− µ2)(1− µ′2)I1

(
4bE2

√
(1− µ2)(1− µ′2)

)}
,



2.4 Neutrino matter interactions 35

where I0,1 are the Bessel-functions of the first kind of order (0,1) which appear from
the φ-integration.

Remark 2 Corrections from ion-ion-correlations for the scattering of neutrinos at nu-
clei are included via a multiplicative factor, the s-factor, following Itoh et al. (2004).

Reaction 6 νe + e− ↔ ν ′e + e′− (Rin/out
NES )

Let us first consider the in-scattering kernel for the electron-neutrinos. The matrix ele-
ments for the exchange of aW - and a Z-boson are given by the following two expressions
(Bruenn (1985))

MW =
G√

2

(
ūνe(p

′
νe)γ

k(1− γ5)ue−(pe−)
)

(ūe−(p′e−)γk(1− γ5)uνe(pνe)) ,

MZ =
G√

2

(
ūνe(p

′
νe)γ

k(1− γ5)uνe(pνe)
) (
ū−e (p′e−)γk(a− bγ5)ue−(pe−)

)
,

where a = −1
2

sin θW and b = −1
2
and hence the total matrix element reads (Bruenn

(1985))

M =
G√

2

(
ūνe(p

′
νe)γ

k(1− γ5)uνe(pνe)
)

(ūe−(p′e−)γk(CV − CAγ5)ue−(pe−)) ,

where the vector and axial-vector coupling constants are given as follows (Bruenn
(1985))

CV = a+ 1 =
1

2
+ 2 sin θW,

CA = b+ 1 =
1

2
.

The squared and spin-averaged matrix element is given by the following expression
(Bruenn (1985)) ∑

spin

|M |2 = 32G2
{

(CV + CA)2(pνe · pe−)(p′νe · p
′
e−)

+ (CV − CA)2(pνe · p′e−)(p′νe · pe−)

− (C2
V − C2

A)m2
e(pνe · p′νe)

}
,

and the transition rate reads

Rpνe+pe−→p′νe+p′
e−

=
G2

EE ′Ee−E
′
e−

(2π)4δ4(pνe + pe− − pνe − pe−)

×
(
β1(pe− · pνe)(p′e− · p′νe) + β2(p′e− · pνe)(pe− · p′νe)− β3m

2
e(pνe · p′νe)

)
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where β1 = (CV +CA)2, β2 = (CV −CA)2, β3 = C2
V −C2

A and where the Fermi constant
G2 is given by (Bruenn (1985))

G2 ≡
[
c(~c)2

]
G2 = 1.55× 10−33cm3MeV−2s−1.

An expression for the scattering kernel can be obtained directly from the integration of
the reaction rate over the corresponding initial and final electron momenta (Schinder
and Shapiro (1982))

Rout
NES(E,E ′, ω) =

1

2

1

(2π)3

πσ0c

(mec2)2

1

EE ′
(β1I1(E,E ′, ω) + β2I2(E,E ′, ω) + β3I3(E,E ′, ω)) ,

where (see Tubbs and Schramm (1975))

σ0 =
4G2m2

e~2

πc
= 1.764× 10−44cm2.

The Ii are the phase-space integrated products of the momenta of the squared and
spin averaged matrix element, weighted with the electron distribution functions and
blocking factors, as follows (Schinder and Shapiro (1982))

Ii =

∫
d3pe−

2Ee−
f(Ee−)

∫
d3p′e−

2E ′e−
(1− f(E ′e−))

∫
d3pνe−

2E ′
Mi δ

4(pνe + pe− − pνe − pe−),

where the products of the momenta are give by

M1 = (pe− · pνe)
(
p′e− · p′νe

)
,

M2 = (p′e− · pνe)
(
pe− · p′νe

)
,

M3 = m2
e

(
pνe · p′νe

)
.

The integrations are done in the rest frame of the fluid and following Tubbs and
Schramm (1975), Tubbs (1978) and Yueh and Buchler (1976a) the following expres-
sions are obtained

I1(E,E ′, ω) =
2πkBTE

2E ′2(1− ω)2

∆5
f(E ′ − E)×

×
{
A(kBT )2

(
G2(y) + 2yG1(y) + y2G0(y)

)
+ B(kBT ) (G1(y) + yG0(y)) + CG0(y)}

I2(E,E ′, ω) = I1(E → −E ′, E ′ → −E,ω)

I3(E,E ′, ω) =
2π(kBT )EE ′(1− ω)(mec

2)2

∆
f(E ′ − E)G0(y),
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where

∆ =
√
E2 + E ′2 − 2EE ′ω,

y =
1

kBT

(
−E − E

′

2
+

∆

2

√
1 +

2(mec2)2

EE ′(1− ω)

)
,

A = E2 + E ′2 + EE ′(3 + ω),

B = E
(
2E2 + EE ′(3− ω)− E ′2(1 + 3ω)

)
,

C = E2

(
(E − E ′ω)2 − E ′2(1− ω2)

2
− (1 + ω)(mec

2)2∆2

2(1− ω)E2

)
,

f(x) =
1

e
x
kT − 1

,

Gi(y) = Fi

(
µe − (E − E ′)

kBT
− y
)
− Fi

(
µe
kBT

− y
)
,

Fi(z) =

∫ +∞

−∞
dx

xi

ex−z + 1
.

The Fi are Fermi-integrals and, following Mezzacappa and Bruenn (1993a), can be
related to the polylogarithm function5

Fi(z) = −i!Si+1(−ez),

where

Si(z) =
x

(i− 1)!

∫ ∞
0

dt
ti−1

et − z
,

and hence

S2(z) = −S2

(
1

z

)
− 1

2
log2(−z)− π2

6
,

S3(z) = S3

(
1

z

)
− 1

6
log3(−z)− π2

6
log(−z).

Remark 3 For E = E ′, the expressions for the Ii can be simplified as follows (Mezza-

5The polylogarithm function and other related complex-valued functions, such as the whole theory
on zeta-functions, are by present standards included in most numerical mathematics programs such as
MATHEMATICA.
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cappa and Bruenn (1993a))

I1(E,ω) =
2π(kBT )E4(1− ω)2

∆5
×

×
{
A(kBT )2

(
2F1

(
µe
kBT

− y
)

+ 2yF0

(
µe
kBT

− y
)

+ y2F−1

(
µe
kBT

− y
))

+ B(kBT )

(
F0

(
µe
kBT

− y
)

+ yF−1

(
µe
kBT

− y
))

+ CF−1

(
µe
kBT

− y
)}

I2(E,ω) = I1(E,ω)

I3(E,ω) =
2π(kBT )E2(1− ω)(mec

2)2

∆
F−1

(
µe
kBT

− y
)
,

including the simplifications in the expressions for ∆, y, A, B, C and where

F−1(z) =
1

ez + 1
.

The final expressions for the scattering kernel depends on E,E ′, µ, µ′ and on φ. To
obtain the form of these kernels that can be used in the collision term at the right hand
side of the Boltzmann transport equation, the dimensional reduction with respect to φ
must be performed. A simple approach would be the integration of φ, which yields

Rout
NES(E,E ′, µ, µ′) =

∫ 2π

0

dφRout
NES(E,E ′, ω). (2.25)

An additional approach was introduced by Mezzacappa and Bruenn (1993a) who follow
the derivations from Schinder and Shapiro (1982) and Bruenn (1985) and expand the
kernels in a Legendre series as follows

Rout
NES(E,E ′, ω) =

∞∑
l=0

2l + 1

2
Φout
NSE,l(E,E

′)Pl(ω),

with the Legendre coefficients

Φout
NSE,l(E,E

′) =

∫ +1

−1

dωPl(ω)Rout
NES(E,E ′, ω).
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Following the addition theorem for Legendre polynomials6, the full scattering kernel
can be written as follows

Rout
NES(E,E ′, ω) =

∞∑
l=0

2l + 1

2
Φout
NES,l(E,E

′)Pl(µ)Pl(µ
′)

+
∞∑
l=0

2l + 1

2
Φout
NES,l(E,E

′) 2
l∑

m=1

(l −m)!

(l +m)!
(Pl(µ))m (Pl(µ

′))
m

cos(mφ).

Integrating this expression over φ gives (Mezzacappa and Bruenn (1993a))

Rout
NES(E,E ′, µ, µ′) = 2π

∞∑
l=0

2l + 1

2
Φout
NES,l(E,E

′)Pl(µ)Pl(µ
′). (2.26)

A problem occurs for both approaches, either Exp. (2.25) or (2.26), which is that the
expressions for forward scattering, i.e. E = E ′ and µ = µ′, become singular. This
has been pointed out by Mezzacappa and Bruenn (1993a). To avoid this problem the
µ′-integration of the scattering kernel can be done without loosing generality as follows,∫ +1

−1

dµ′Rout
NES(E,E ′, µ, µ′) = 2π

∞∑
l=0

2l + 1

2
Φout
NES,l(E,E

′)Pl(µ)

∫ +1

−1

dµ′Pl(µ
′)

= 2πΦout
NES,0(E,E ′),

giving the isotropic forward scattering contribution, which is the zero order Legen-
dre expansion. Furthermore, these expressions are realised numerically with discrete
neutrino energies E and direction cosine µ. Mezzacappa and Bruenn (1993a) use this
fact, i.e. that the scattering kernels are numerically averaged over a discrete µ-grid,
and therefor interpret the kernels as integrable finite. They split the discrete direction
cosine µj+1/2 into forward and non-forward scattering as follows

jmax∑
l=1

wjR
out
NES(Ek+1/2, Ek+1/2, µj+1/2, µl+1/2) = wj+1/2R

out
NES(Ek+1/2, Ek+1/2, µj+1/2, µj+1/2)

+
∑
j 6=l

wlR
out
NES(Ek+1/2, Ek+1/2, µj+1/2, µl+1/2),

6The following expression for Pl(ω) can be obtained

Pl(ω) = Pl(µ)Pl(µ
′) + 2

l∑
m=1

(l −m)!

(l +m)!
(Pl(µ))

m
(Pl(µ

′))
m
cos(mφ).
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where the wj are the corresponding weights and where the left hand side is the numerical
discretisation of the µ′ integration. Combining the two expressions above, the resulting
scattering kernel can be used for forward scattering (Mezzacappa and Bruenn (1993a))

wj+1/2R
out
NES(Ek+1/2, Ek+1/2, µj+1/2, µj+1/2) = 2πΦout

NES,0(Ek+1/2, Ek+1/2)

−
∑
j 6=l

wlR
out
NES(Ek+1/2, Ek+1/2, µj+1/2, µl+1/2).

We are left with the calculation of the isotropic scattering kernel. There one can avoid
the singular behaviour by integrating first over ω and than over the electron energy Ee−
as follows (see Bruenn (1985))

Φout
NES,0(E,E ′) =

G2

π

1

E2E ′2

∫ ∞
0

dEe−fe−(Ee−)(1− fe−(Ee− + E − E ′))

×
(
β1H

I
0 (E,E ′, Ee−) + β2H

II
0 (E,E ′, Ee−)

)
,

where the same definition(units) for the Fermi constant G are used as above and where
the contributions from the electron rest mass term (β3) are expected to be small as-
suming relativistic(degenerate) electrons and are hence neglected. The functions H i

0

are given in Yueh and Buchler (1976a), Bruenn (1985) and Mezzacappa and Bruenn
(1993a) as follows

HI
0 =


4
15
E5
e− + 4

3
E4
e−E + 8

3
E3
e−E

2 + Θ(E ′ − E)ΓI0(E,E ′), E ′ > Ee− ,

aI0(E,E ′) + bI0(E,E ′)Ee− + cI0(E,E ′)Ee− , E ′ < Ee− ,

HII
0 =


4
15
E5
e− −

4
3
E4
e−E

′ + 8
3
E3
e−E

′2 + Θ(E ′ − E)ΓII0 (E,E ′), E ′ > Ee− ,

aII0 (E,E ′) + bII0 (E,E ′)Ee− + cII0 (E,E ′)Ee− , E ′ < Ee− ,
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where

aI0(E,E ′) =

(
8

3
E2E ′3 − 4EE ′4 +

8

5
E ′5
)

Θ(E − E ′) +
4

15
E5Θ(E ′ − E),

bI0(E,E ′) =

(
16

3
EE ′3 − 4E ′4

)
Θ(E − E ′) +

4

3
E4Θ(E ′ − E),

cI0(E,E ′) =
8

3
E ′3Θ(E − E ′) +

8

3
E3Θ(E ′ − E),

aII0 (E,E ′) = aI0(E ′, E),

bII0 (E,E ′) = bI0(E ′, E),

cII0 (E,E ′) = cI0(E ′, E),

ΓI0(E,E ′) =
8

3
E2
e−(E3 − E ′3) + 4E2

e−(E − E ′)2

(
E2

3
+

2EE ′

3
+ E ′2

)
+ 4(E − E ′)3

(
E2

15
+
EE ′

5
+

2E ′2

5

)
.

Remark 4 The scattering kernel for in-scattering is obtained from the detailed balance,
similar to the charged current reactions and in accordance to the general form of the
scattering kernels, as follows

Rin
NES(E,E ′, µ, µ′) = exp

{
E − E ′

kBT

}
Rout

NES(E,E ′, µ, µ′).

Reaction 7 νe + e+ ↔ ν ′e + e′+ (Rin/out
NPS )

The difference of electron-neutrino positron scattering to electron scattering is the ex-
change of the electron contributions by the corresponding positron contributions in the
matrix elements. The squared and spin averaged matrix element can be written as
follows (Yueh and Buchler (1976b),Hannestad and Madsen (1995))∑

spin

|M |2 = 32G2
{

(CV + CA)2(pνe · p′e+)(pe+ · p′νe)

+ (CV − CA)2(pνe · pe+)(pe+ · p′νe)

− (C2
V − C2

A)m2
e(pνe · p′νe)

}
.
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The calculation of the reaction rate for electron-neutrino positron scattering (NPS) can
be done in the same way as for NES of electron-neutrinos

Rpνe+pe+→p′νe+p′
e+

=
G2

EE ′Ee+E
′
e+

(2π)4δ4(pνe + pe+ − pνe − pe+)

×
(
(CV + CA)2(pνe · p′e+)(p′νe · pe+)

+ (CV − CA)2(pνe · pe+)(p′νe · p
′
e+)

− (C2
V + C2

A)m2
e(pνe · p′νe)

)
.

Hence, the out-scattering kernel is given by the following expression

Rout
NPS(E,E ′, ω) =

1

2

1

(2π)3

πσ0c

(mec2)2

1

EE ′

(
β1Ĩ1(E,E ′, ω) + β2Ĩ2(E,E ′, ω) + β3Ĩ3(E,E ′, ω)

)
,

where the electron chemical potential is replaced by the positron chemical potential in
each of the phase-space integrated products of momenta, which are due to symmetry
considerations of the matrix element in comparison to NES given by the following
expressions (Yueh and Buchler (1976b))

Ĩ1(E,E ′, ω, µe) = I2(E,E ′, ω,−µe),
Ĩ2(E,E ′, ω, µe) = I1(E,E ′, ω,−µe),
Ĩ3(E,E ′, ω, µe) = I3(E,E ′, ω,−µe).

The φ-integration can be done exactly as discussed above for NES. To obtain the
isotropic scattering kernel, the positron energy integration is performed in the same
way as for NES, i.e.

Φout
NPS,0(E,E ′) =

G2

π

1

E2E ′2

∫ ∞
0

dEe+fe+(Ee+)(1− fe+(Ee+ + E − E ′))

×
(
β1H̃

I
0 (E,E ′, Ee+) + β2H̃

II
0 (E,E ′, Ee+),

)
,

where again the contributions from the rest mass term are ignored. Following again
symmetry considerations, the functions H i

0 (i ∈ I, II) are given by the following ex-
pressions (Yueh and Buchler (1976b)),

H̃I
0 (E,E ′, Ee+) = HII

0 (E,E ′, Ee−)

H̃II
0 (E,E ′, Ee+) = HI

0 (E,E ′, Ee−),
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where the same coefficient functions ai0, bi0, ci0 (i ∈ I, II) and ΓI0 are used as for NES.
The in-scattering kernel is again obtained from the detailed balance

Rin
NPS(E,E ′, µ, µ′) = exp

{
E − E ′

kBT

}
Rout

NPS(E,E ′, µ, µ′).

Reaction 8 ν̄e + e± ↔ ν̄ ′e + e′± (Rin/out
NES/NPS)

The scattering kernels for the electron-antineutrino can be obtained using the following
argumentation from Bruenn (1985), where the neutrino momenta dependency of the
matrix element is modified applying the following replacement

pνe → −p′ν̄e
p′νe → −pν̄e ,

which is equivalent to the setting

CA ↔ −CV .

The reaction rates and hence the scattering kernel can be written as follows (Bruenn
(1985))

Rout
NES(E,E ′, ω) =

1

2

1

(2π)3

πσ0c

(mec2)2

1

EE ′
(β2I1(E,E ′, ω) + β1I2(E,E ′, ω) + β3I3(E,E ′, ω))

Rout
NPS(E,E ′, ω) =

1

2

1

(2π)3

πσ0c

(mec2)2

1

EE ′

(
β2Ĩ1(E,E ′, ω) + β1Ĩ2(E,E ′, ω) + β3Ĩ3(E,E ′, ω)

)
.

The same holds for the isotropic scattering kernels

Φout
NES,0(E,E ′) =

G2

π

1

E2E ′2

∫ ∞
0

dEe−fe−(Ee−)(1− fe−(Ee− + E − E ′))

×
(
β2H

I
0 (E,E ′, Ee−) + β1H

II
0 (E,E ′, Ee−)

)
Φout
NPS,0(E,E ′) =

G2

π

1

E2E ′2

∫ ∞
0

dEe+fe+(Ee+)(1− fe+(Ee+ + E − E ′))

×
(
β2H̃

I
0 (E,E ′, Ee+) + β1H̃

II
0 (E,E ′, Ee+)

)
,

using the same conventions as above. The in-scattering kernel is again calculated via
the detailed balance.
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Remark 5 Comparing the above expressions for NES and NPS for the electron-flavour
neutrinos and by symmetry considerations of the reactions itself, one finds that the
electron-antineutrino scattering kernel for NES is equivalent to the electron-neutrino
scattering kernel for NPS by replacing µe = −µe. The same holds for the electron-
antineutrino scattering kernel for NPS and the electron-neutrino scattering kernel for
NES.

Reaction 9 νµ/τ + e± ↔ ν ′µ/τ + e′± (Rin/out
NES/NPS)

The scattering of µ/τ -(anti)neutrinos proceeds via the exchange of a Z0-boson only
(no charged currents are involved). The squared and spin-averaged matrix elements
are given by the following expressions for NES and NPS respectively (Hannestad and
Madsen (1995))∑
spin

|M |2NES = 32G2
{

(CV + CA − 2)2(pν · pe−)(p′ν · p′e−) + (CV − CA)2(pν · p′e−)(pe− · p′ν)

− ((CV − 1)2 + (CA − 1)2)m2
e(pν · p′ν).

}
,

∑
spin

|M |2NPS = 32G2
{

(CV + CA − 2)2(pν · p′e+)(pe+·p
′
ν) + (CV − CA)2(pν · pe+)(p′e+ · p′ν)

− ((CV − 1)2 + (CA − 1)2)m2
e(pν · p′ν).

}
.

Applying the same argumentation as above, the following replacements (Bruenn (1985))

CV → CV − 1,

CA → CA − 1,

give the final expressions for the scattering kernelsRin
NEP/NPS(E,E ′, ω) and Φin

NES/NPS(E,E ′),
where the detailed balance is applied again for the in-scattering.

Remark 6 The total scattering kernel for NLS which enters the collision term on the
right hand side of the Boltzmann equation is given by the sum of the contributions from
NES and NPS, i.e.

R
in/out
NLS = R

in/out
NES +R

in/out
NPS ,

for each neutrino flavour.
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2.4.3 Neutral currents 2: pair processes

Pair processes play a fundamental role in core collapse supernovae. µ/τ -(anti)neutrinos
can only be produced via pair reactions since the muonic-charged current reactions are
suppressed due to the absence of µ or τ . In the following paragraphs, I will discuss the
pair-processes used in our model. The standard reaction is the annihilation of electron-
positron pairs as well as N − N -Bremsstrahlung. Recently we have implemented an
additional process which was pointed out by Buras et al. (2003) to be of relevance, that
is the annihilation of trapped electron-flavour neutrino pairs.

Reaction 10 e− + e+ ↔ νe + ν̄e (R
a/p
PAIR,e−e+)

The classical pair production process is the annihilation of electron-positron pairs. The
reaction kernel is given by the electron momentum and positron momentum integra-
tion of the reaction rate Rpe−+pe+↔pνe+pν̄e , scaled with the corresponding electron and
positron distribution functions for the emission of neutrinos or the blocking factors for
the absorption of neutrinos as follows (Bruenn (1985))

Rp
PAIR,e−e+(E,E ′, ω) =

∫
d3pe−

(2π)3

∫
d3pe+

(2π)3
2fe−(Ee−)2fe+(Ee+)Rpe−+pe+→pνe+pν̄e ,

Ra
PAIR,e−e+(E,E ′, ω) =

∫
d3pe−

(2π)3

∫
d3pe+

(2π)3
(1− fe−(Ee−))(1− fe+(Ee+))Rpνe+pν̄e→pe−+pe+

,

where similar to the considerations above, detailed balance can be used to calculate the
reverse reaction kernel as follows (Bruenn (1985))

Ra
PAIR,e−e+(E,E ′, ω) = exp

{
Ee− + Ee+

kBT

}
Rp

PAIR,e−e+(E,E ′, ω).

The spin-averaged and squared matrix element can be written as follows (Hannestad
and Madsen (1995))∑

spin

|M |2 = 32G2
{

(CV + CA)2(pe+ · pνe)(pe− · pν̄e)

+ (CV − CA)2(pe− · pνe)(pe+ · pν̄e)

+ (C2
V − C2

A)me(pνe · pν̄e)
}
.

Following Yueh and Buchler (1976b) and Schinder and Shapiro (1982), the calculation
of the pair reaction kernels for the electron-flavour neutrinos can be done in a similar
way as NES for electron-neutrinos applying the following replacements

p′e− = −pe+ ,
pνe = −pνe ,
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and relabel the initial electron and positron and the final electron-neutrino and antineu-
trino momenta as given in the squared and spin-averaged matrix element. Following
the same calculations as for NES above, the resulting reaction rate becomes (Bruenn
(1985))

Re−+e+↔νe+ν̄e =
1

2

G2

EE ′Ee−Ee+
(2π)4δ4(e− + e+ − νe − ν̄e)

× (CV + CA)2(pe+ · pνe)(pe− · pν̄e)
+ (CV − CA)2(pe− · pνe)(pe+ · pν̄e)
+ (C2

V − C2
A)me(pνe · pν̄e),

Integrating over the electron and positron momenta and assuming relativistic electrons
and positrons, an expression for the pair-reaction kernel can be obtained, which depends
on the neutrino in and out going energies E and E ′ respectively and on ω as follows
(Schinder and Shapiro (1982))

Rp
PAIR,e−e+(E,E ′, ω) =

1

(2π)5

1

2

πσ0

(mec2)2

1

EE ′
×

×
{

(CV + CA)2J1(E,E ′, ω) + (CV − CA)2J2(E,E ′, ω) + (C2
V − C2

A)J3(E,E ′, ω)
}
.

Remark 7 Note that
1

2

1

(2π)2

σ0c

(mec2)2
=

2G2

2π
,

where again

σ0 =
4G2m2

e~2

πc
= 1.764× 10−44cm2,

and hence the integral kernel scaling factor does not contain an explicit electron rest
mass dependency.

The Ji correspond to the integrated products of the momenta given by the squared and
spin-averaged matrix element. The integration has been performed in Schinder and
Shapiro (1982) where the following results were obtained

J1(E,E ′, ω) = −2πkBT (E + E ′)E2E ′2(1− ω)2

∆5
f(E + E ′)×

×
{
A(kBT )2 (G2(ymax)−G2(ymin) + 2ymaxG1(ymax)− 2yminG1(ymin)

+ y2
maxG0(ymax)− y2

minG0(ymin)
)

+ B(kBT ) (G1(ymax)−G1(ymin) + ymaxG0(ymax)− yminG0(ymin))

+ C (G0(ymax)−G0(ymin))} ,
J2(E,E ′, ω) = J1(E ′, E, ω),

J3(E,E ′, ω) = −2πkBT (mec
2)2E2E ′2(1− ω)2

∆
f(E + E ′) (G0(ymax)−G0(ymin)) ,
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where

A = E ′2 + E2 − EE ′(3 + ω)

B = E
(
EE ′(3− ω) + E ′2(3ω + 1)− 2E2

)
C = E2

(
(E + E ′ω)2 − 1

2
E ′2(1− ω2)− 1

2

(mec
2)2

E2
∆

1 + ω

1− ω

)
∆ =

√
E2 + E ′2 + 2EE ′ω

f(x) =
1

e
x

kBT − 1
Gn(y) ≡ Fn(η′ − y)− Fn(η − y)

η =
µe
kBT

η′ = η +
E + E ′

kBT
,

and where Fn(x) are again Fermi-Dirac integrals as introduced in the section on NES
above. The arguments are given by

ymin/max =

E+E′

2
∓ ∆

2

√
1− 2(mec2)2

EE′(1−ω)

kBT
.

The similarity to the NES kernel becomes obvious. Hence, the pair emission and ab-
sorption kernels become singular with respect to the forward direction, i.e. E → E ′,
µ → µ′. Applied the same dimensional reduction as for NES and expanding the scat-
tering kernel in a Legendre series (Messer (2000))

Rp
PAIR,e−e+(E,E ′, ω) =

∞∑
l=0

2l + 1

2
Φp
PAIR,e−e+,l(E,E

′)Pl(ω),

where (using again the addition theorem for Legendre polynomials)∫ +1

−1

dµ′Rp
PAIR(E,E ′, µ, µ′) = 2πΦp

PAIR,e−e+,0(E,E ′),

is the isotropic zero order Legendre expansion of the pair production kernel. The
same technique used for NES, namely separating forward and non-forward (i.e. j =
jmax + 1 − j′, Messer (2000)) direction cosine in the discrete form of the µ′-integrated
scattering kernel and combine it with the above expression for Φp

PAIR,0, one obtains
(Messer (2000))

1

wj+1/2

Rp
PAIR,e−e+(Ek+1/2, Ek+1/2, µj+1/2, µjmax+1−j+1/2) = 2πΦp

PAIR,0(Ek+1/2, Ek+1/2)
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−
∑

l 6=jmax+1−j

wlR
p
PAIR,e−e+(Ek+1/2, Ek+1/2, µj+1/2, µl+1/2).

The zero order Legendre expansion is calculated in Bruenn (1985), avoiding the singular
behaviour by integrating first over ω and then over the electron and positron momenta.
Using the same definition for G2 as above, one obtains

Φp
PAIR,e−e+,0(E,E ′) =

G2

π

∫ E+E′

0

dEe−fe−(Ee−)fe+(E + E ′ − Ee−) ×

×
(
(CV + CA)2J I0 (E,E ′, Ee−) + (CV − CA)2J II0 (E,E ′, Ee−)

)
,

where again the rest mass term is considered to be small and hence neglected. The
coefficients are given by the following expressions (see Messer (2000) based on Bruenn
(1985))

J I0 (E,E ′, Ee−) = Θ(E + E ′ − Ee−)×
× {a(E,E ′, Ee−) (Θ(E − Ee−)Θ(E ′ − E) + Θ(E ′ − Ee−)Θ(E − E ′))
+ b(E,E ′, Ee−) (Θ(Ee− − E ′)Θ(E ′ − E) + Θ(Ee− − E)Θ(E − E ′))
+ c(E,E ′, Ee−) (Θ(Ee− − E)Θ(E ′ − Ee−))

+ d(E,E ′, Ee−) (Θ(Ee− − E ′)Θ(E − Ee−))},
J II0 (E,E ′, Ee−) = J I0 (E ′, E, Ee−),

where

a(E,E ′, Ee−) =
1

EE ′

(
4

15
E5E ′3 − 4

3
E4
e−E

′ +
8

3
E3
e−E

′2
)
,

b(E,E ′, Ee−) =
1

EE ′

(
−a(E,E ′, Ee−) +

8

3
Ee−(E3 + E ′3)

− 4

3
Ee−(E + E ′)2(E ′2 − 2EE ′ + 3E2)

+
4

15
(E + E ′)3(E ′2 − 3EE ′ + 6E2)

)
,

c(E,E ′, Ee−) =
E2

E ′

(
8

3
E ′2 + 4EE ′ +

8

3
E2

)
− Ee−

(
16

3
E2 + 4

E3

E ′

)
+

8

3

Ee−E
2

E ′
,

d(E,E ′, Ee−) =
4

15

E ′4

E4
− 4

3

Ee−E
′3

E
+

8

3

E2
e−E

′2

E
.

Reaction 11 e− + e+ ↔ νµ/τ + ν̄µ/τ (Ra/p
PAIR,e−e+)
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The pair reaction kernel for the annihilation and emission of µ/τ neutrino pairs is a
cross over channel from νe-pair emission and can be done following the argumentation
applied above for NES(NPS) using the same relations, namely (Bruenn (1985))

CV → CV − 1,

CA → CA − 1.

Reaction 12 N +N ↔ N +N + ν + ν̄ (Ra/p
PAIR,NN)

The calculation of the pair processes due to nucleon-nucleon Bremsstrahlung goes back
to the work by Hannestad and Raffelt (1998). They rewrite the collision term as follows

Ω(f)PAIR, brems = C2
AG

2
FnB

∫ +1

−1

dµ′
∫ ∞

0

E ′2dE ′ (3− µµ′)×

×
(
(1− fν)(1− fν̄)Sσ(−E ′ − Ē ′)− fνfν̄ Sσ(E ′ + Ē ′)

)
,

where fν and fν̄ are the neutrino and antineutrino distribution functions respectively
and CA is the coupling constant, nB is the baryon density. The scattering kernel is
given as follows

Rp
PAIR,NN(µ, µ′, E, E ′) = C2

AG
2
FnB(3− µµ′)Sσ(E ′, Ē ′, T, nB, Xn, Xp).

This expresses the calculation of the pair reaction rate in terms of Sσ, which depends on
the neutrino energy E ′ and the antineutrino energy Ē ′ of the out-scattering neutrino-
antineutrino pair, the temperature T , the baryon density nB and the nucleon fractions
Xp and Xn. Here I would like to summarise the final results from Hannestad and Raffelt
(1998), who find

Sσ(E) =
1

T

γ

x2 + γg(y,η∗)
2

2 s(x),

x =
E

T
,

y =
m2
π

mNT
= 1.94T−1

10 ,

γ =
Γσ
T

= 1.63 η3/2
∗ T10 = 8.6 ρ14T

−1/2
10 ,

Γσ =
8
√

2π α2
π

3π2
η3/2
∗

T 2

mN

,

η∗ =
p2
F

2mNT
=

(2π)2/3

2mNT

(
ρ

mN

)
,
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where απ = (2mN/mπ)2/4π is the pion-nucleon fine structure constant and η∗ is the
effective degeneracy parameter with Fermi-momentum pF. This reduces the calculation
of Sσ(E) to find expressions for s(x) and g(y, η∗). The derivation is given in details in
Hannestad and Raffelt (1998). The reaction kernels contribute to both, the production
and absorption of electron and µ/τ neutrino pairs, equivalently.

Reaction 13 νe + ν̄e ↔ νµ/τ + ν̄µ/τ (Ra/p
PAIR,νeν̄e)

In addition to the standard process of µ/τ neutrinos pair emission via electron-positron
annihilation andN -N -Bremsstrahlung, the annihilation of trapped electron-flavour neu-
trino pairs has been studied by Buras et al. (2003). They point out the importance
of this reaction especially in the regime of high matter densities and temperatures,
becoming as important as Bremsstrahlung. The squared and spin-averaged matrix el-
ement is a cross-over from the traditional pair-emission process. It can be obtained by
replacing the corresponding electron-positron distributions and momenta by the µ/τ
neutrino distributions and momenta. The following matrix element is used (Hannestad
and Madsen (1995))∑
spin

|M |2 = 32G2
{

(CV + CA)2(pν̄µ · pνe)(pνµ · pν̄e) + (CV − CA)2(pνµ · pνe)(pν̄µ · pν̄e)
}
,

where again, similar to the considerations above, the rest mass term does not contribute
because the neutrinos are considered to be mass less. The scattering kernels can be
written as follows, replacing the electron and positron distribution functions and the
momenta

Rp
PAIR,νeν̄e(E,E

′, ω) =

∫
d3pνe
(2π)3

∫
d3pν̄e
(2π)3

2fνe(E)2fν̄e(Ē)Rpνe+pν̄e→pνµ+pν̄µ

Ra
PAIR,νeν̄e(E,E

′, ω) =

∫
d3pνe
(2π)3

∫
d3pν̄e
(2π)3

(1− fνe(E))(1− fν̄e(Ē))Rpνµ+pν̄µ→pνe+pµ̄e .

The main difference to electron-positron annihilation lays in the coupling constants.
These are

CV = CA = +
1

2
,

and hence ∑
spin

|M |2 = 32G2 (pν̄µ · pνe)(pνµ · pν̄e).

Following the calculations from above for electron-positron annihilation, the integration
of the single term of the products of momenta yields the pair production kernel as follows

Rp
PAIR,νeν̄e(E,E

′, ω) =
1

(2π)5

1

2

πσ0

(mec2)2

1

EE ′
J̃(E,E ′, ω),
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where

J̃ = J1(me = 0, µe = µνe),

i.e. all electron rest mass dependency has been canceled and the electron chemical
potential is replaced by the electron-neutrino chemical potential. The annihilation
of electron-flavour neutrino pairs is only favourable in the presence of large electron-
flavour neutrino numbers, where typically local thermodynamic equilibrium (LTE) can
be assumed. Hence, the neutrino chemical potentials are given explicitly by the electron
chemical potential µe and the charged chemical potentials µ̂ as follows

µνe = µe − (µn − µp) = µe − µ̂,
µν̄e = −µνe .

The dimensional reduction, i.e. the φ-integration of the kernel, is done in the same way
as for electron-positron annihilation, taking into account the singular forward direction.
The reverse reaction, i.e. the emission of electron-neutrino pairs via the annihilation of
µ/τ -neutrino pairs, is calculated applying detailed balance.

Remark 8 The total contribution of pair reactions that enters the collision term of the
Boltzmann equation is the sum of all contributions discussed above, e.g.

R
a/p
PAIR = R

a/p
PAIR,e−e+ +R

a/p
PAIR,NN +R

a/p
PAIR,νeν̄e .

2.4.4 Comparison of the different pair reaction rates

The reaction rates depend on the thermodynamic state, especially a strong direct tem-
perature and density dependency becomes clear from the above expressions. To be able
to compare the reaction rates with respect to the incoming neutrinos, integrating the
reaction kernels with respect to the outgoing neutrino phase space dependency as it is
done for the collision term of the Boltzmann equation, one obtains

R
p/a
PAIR(µ,E) =

1

c

2π

(hc)3

∫ +1

−1

dµ′
∫ ∞

0

E ′2dE ′R
p/a
PAIR(µ, µ′, E, E ′).

This gives the correct units of cm3s−1. Comparing now the spectrum, one has to get
rid of the angular dependency which can be done as follows

R
p/e
PAIR(E) =

E2

h3c2

∫ +1

−1

dµR
p/a
PAIR(µ,E),

which leads to the neutrino energy dependent scattering kernel in units of cm−3MeV−1s−1.
Ignoring effects from neutrino fluxes and neutrino occupation or blocking, one can anal-
yse the phase space integrated reaction rates for different thermodynamic conditions
since EPAIR(E, T, nB, Ye).
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The integrated kernels for all there considered reactions are plotted with respect to
the incoming neutrino energy E in Fig. 2.1, for zero chemical potentials, i.e. µe = µνe =
0. The left panel shows the thermodynamic conditions given in Table 2.1 (first line)
and represent a high density, high temperature and deleptonised environment found
typically inside PNSs where neutrino trapping applies. There, N-N-Bremsstrahlung
dominates over the other two pair reaction rates by a factor of 2 for the electron-
neutrino pairs and a factor of 4-5 for the µ/τ -neutrino pairs. This behaviour has
already been pointed out in a previous study by Messer and Bruenn (2003). Analysing
the reaction rates for slightly lower densities and temperatures in the right panel of
Fig. 2.1 for the conditions given in Table 2.1 (second line), the strong temperature
dependency of the N-N-Bremsstrahlung leads to a vanishing of the rates while electron-
positron annihilations dominate the production(absorption) of electron flavour neutrino
pairs. For the production of µ/τ -neutrino pairs, the annihilation of trapped electron-
neutrino pairs is the dominant reaction at these conditions. Since the calculation of this
reaction rate is based on the assumption of local thermodynamic equilibrium (LTE), at
conditions outside the electron-neutrinosphere where LTE does not apply, the reaction
rate vanishes as neutrinos start to decouple from matter. For conditions found outside
the electron-neutrinosphere, the annihilation of electron-positron pairs is the dominant
source for the production of neutrino pairs of all flavours.

Table 2.1: Thermodynamic conditions for the pair reaction rates illustrated in Fig. 2.1
and 2.2.

T ρ Ye ηe ηνe Xn Xp

[MeV] [g/cm3]
12 5× 1013 0.35 0 0 0.20 0.09
5 1× 1012 0.35 0 0 0.59 0.29
12 5× 1013 0.35 10.86 9.67 0.20 0.09
5 1× 1012 0.35 6.82 6.32 0.59 0.29

A similar comparison of the reaction rates under "physical" conditions found in
core collapse supernovae is difficult. The reaction kernels depend not only on the ther-
modynamic state given by the triplet (T, nB, Y )e), but also on the chemical potentials
and the composition. Both of which are implicitly given by the thermodynamic state.
Hence, an EoS must be applied to analyse the effects of non-vanishing chemical po-
tentials. The EoS will be introduced in the next section. For that reason, Table. 2.1
gives the same conditions for which the pair reaction rates are illustrated in Fig. 2.1 for
vanishing chemical potentials, now involving an EoS for hot and dense nuclear matter
that calculates the chemical potentials for these conditions. Demonstrating that for
neutron rich conditions which are found in PNS interiors,

µe > µνe ,
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Figure 2.1: Reaction rates for the emission and absorption of neutrino pairs with respect
to the incoming neutrino energy for different thermodynamic conditions with µe = µνe =
0 listed in Table 2.1 (line 1 & 2).
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Figure 2.2: Reaction rates for the emission and absorption of neutrino pairs with re-
spect to the incoming neutrino energy for different thermodynamic conditions with
non-vanishing chemical potential as listed in Table 2.1 (line 3 & 4).
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since µn− µp > 0. The annihilation of trapped electron favour neutrino pairs is always
more important then electron-positron annihilation, for the production of µ/τ -neutrino
pairs. For the same conditions but now using the non-vanishing chemical potentials, the
reaction rates are illustrated in Fig. 2.2 (left panel: Table 2.1 third line, (right panel:
Table 2.1 fourth line). At high densities and temperatures (left panel), it becomes clear
that N-N-Bremsstrahlung is as important as νe-pair annihilation for the production of
µ/τ -neutrino pairs. At lower densities and temperatures but still at conditions valid for
PNS interiors where LTE holds (right panel), N-N-Bremsstrahlung does not contribute
to the production of µ/τ -neutrino pairs. The annihilation of trapped νe-neutrino pairs
dominates over the annihilation of electron-positrons.

With the inclusion of the additional pair production source via the annihilation of
trapped electron-flavour neutrino pairs, an important reaction with a non-negligible
effect has been added. The influence of this additional pair reaction to the observable
neutrino spectra and to the fluid dynamics in the context of core collapse supernova
simulations of massive stars will be further discussed and illustrated in §3.2 of the
manuscript.

2.5 Conservation of lepton number and the electron
fraction

The conservation equation for the electron flavour lepton number, in combination with
the Boltzmann transport equation, can be used to derived the evolution equation of
the electron fraction. The electron fraction is an important quantity in core collapse
supernova models. It determines the number of charges per baryon and, since muons are
suppressed due to their large rest mass of 107 MeV, the number of electrons (electron
minus positrons) per baryon. The electron fraction is determined via a differential
equation in time and given by the balance between the emission and absorption of
electron flavour neutrinos as well as electrons and positrons and by the flux of neutrinos.

In addition to the coupling of the hydrodynamics equations and radiation transport,
it must be explicitly ensured that such systems conserve the lepton number YL for each
lepton species, i.e.

YLe = Ye− − Ye+ + Yνe − Yν̄e ,
YLµ/τ = Yµ/τ− − Yµ/τ+ + Yνµ/τ − Yν̄µ/τ .

The µ/τ -lepton number is conserved by definition in our model, because µ/τ -neutrinos
are only considered via neutral current reactions. The conservation of the electron
lepton number will be discussed in the following paragraph 7.

7In the following, I use the same conventions as above, where Ye := Ye− − Ye+ is the total number
of charges per baryon.
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Applying the conservation law to the spherically symmetric system introduced in
the sections above, the conservation of the lepton number is given by the continuity
equation as follows (Mezzacappa and Bruenn (1993b))

∂YL
∂t

+mB
∂

∂a

(
4πr2ρNL

)
= 0,

where NL is the lepton flux. It is given by the sum of the corresponding lepton contri-
butions from electrons, positrons and electron flavour neutrinos (similar to the lepton
number) as follows (Mezzacappa and Bruenn (1993b))

NL = Ne− −Ne+ +Nνe −Nν̄e = Nνe −Nν̄e .

However, there is no electron or positron flux relative to the fluid taken in the rest
frame of the fluid, because electrons(positrons) correspond to the rest frame. Only
the neutrinos can move relative to the fluid. The electron and electron-(anti)neutrino
fractions are determined via the number densities ni, i.e. Yi = ρ ni/mB, (i ∈ e, νe, ν̄e)
where the baryon mass is defined as mB = 1.674 × 10−24g. The neutrino number
densities are explicitly given by phase-space integrals related to the zeroth moment of
the distribution function (see Eq. 2.20) and hence the neutrino fractions are given by
the following expressions (Mezzacappa and Bruenn (1993b))

Yνe/ν̄e(t, a) = mB
2π

(hc)3

∫ +1

−1

dµ

∫ ∞
0

E2dE Fνe/ν̄e(t, a, µ, E) =
nνe/ν̄e
nB

,

where Fν = fν/ρ is the specific neutrino distribution function. Furthermore, the neu-
trino fluxes are given by phase-space integrations of the neutrino distribution functions
as well, related to the first neutrino moment of the distribution functions Fνe/ν̄e (see
Eq. 2.20) as follows (Mezzacappa and Bruenn (1993b))

Nνe/ν̄e(t, a) =
2πc

(hc)3

∫ +1

−1

µdµ

∫ ∞
0

E2dE fνe/ν̄e(t, a, µ, E).

With these definitions the continuity equations can be expressed for each electron-
neutrino flavour explicitly. Integrating over the Boltzmann equation, Mezzacappa and
Bruenn (1993b) obtained the following expressions for the conservation of the neutrino
numbers (compare with Eq. 2.21)

∂Yνe
∂t

+mB
∂

∂a

(
4πr2ρNνe

)
=
mB

ρ

2π c

(hc)3

∫ +1

−1

dµ

∫ ∞
0

E2dE (jνe − χ̃νefνe) ,

∂Yν̄e
∂t

+mB
∂

∂a

(
4πr2ρNν̄e

)
=
mB

ρ

2π c

(hc)3

∫ +1

−1

dµ

∫ ∞
0

E2dE (jν̄e − χ̃ν̄efν̄e) ,
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where j, χ are in units of cm−1. Using the same definitions, the conservation of lepton
number reads

∂Ye
∂t

+
∂

∂t
(Yνe − Yν̄e) +mB

∂

∂a

(
4πr2ρ (Nνe −Nν̄e)

)
= 0.

Combining the above expressions, the evolution equation for the electron fraction Ye
can be written as follows (see Mezzacappa and Bruenn (1993b))

∂Ye
∂t

= −2π cmB

ρ(hc)3

∫ +1

−1

dµ

∫ ∞
0

E2dE {(jνe − χ̃νefνe)− (jν̄e − χ̃ν̄efν̄e)} . (2.27)

This expression is determined by the local change of neutrino numbers given via neutrino
absorption, emission and the neutrino flux. The emissivity and absorptivity depend sen-
sitively on the thermodynamic conditions, which evolve dynamically. The rates favour
equilibrium, e.g. Ye = constant. This means when the thermodynamic state changes
due to for instance adiabatic collapse(expansion) or shock heating, the reaction rates
response to re-establish equilibrium again at a different value of Ye. The value is rather
important in core collapse supernovae as it determines for instance the composition of
the ejecta during the explosion phase. It is sensitively tuned by the degree of electron
degeneracy.

Remark 9 The above argumentation for the electron flavour leptons which leads to
the evolution equation for the electron fraction Eq. 2.27 can be applied to the µ-lepton
number as well. A similar expression for the dynamical evolution of Yµ could be obtained

∂Yµ
∂t

= −2π cmB

ρ(hc)3

∫ +1

−1

dµ

∫ ∞
0

E2dE
{(
jνµ − χ̃νµfνµ

)
−
(
jν̄µ − χ̃ν̄µfν̄µ

)}
, (2.28)

which depends on the emissivity j and absorptivity χ of µ-(anti)neutrinos on nucleons
via the muonic charged current reactions. Following Yueh and Buchler (1976a), the
muonic charged current reactions can be trivially obtained from the derivation of the
electronic charged current reactions as discussed above in §.2.4.1, applying the following
replacements

fe± → fµ± ,

(fνe , fν̄e) →
(
fνµ , fν̄µ

)
,

(µe,me) → (µµ,mµ).

It additionally requires the separation of µ and τ neutrinos in the Boltzmann transport
equation, both of which are at present treated as one single species.

An alternative approach to calculate the dynamical evolution of the electron fraction
has been published in Qian et al. (1993) and Qian and Woosley (1996). Based on the
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weak reaction rates λij for the reaction partners i and j, which are in a sense (see
Remark 11) equivalent to the emissivity j and absorptivity χ used above, the evolution
equation for the electron and positron fractions are given by the following relations,

dYe−

dt
= −λe−pYe−Yp + λνenYνeYn

dYe+

dt
= −λe+nYe+Yn + λν̄epYν̄eYp.

In the fully dissociated regime where no lepton-nuclei reactions contribute, i.e. using
the following relations Yp = Ye and Yn = 1− Ye, the two expressions can be combined
to calculate the evolution of the total number of charges as follows (Qian and Woosley
(1996)),

dYe
dt

= λe+nYe+ + λνenYνe − (λe−pYe+ + λe+nYe+ + λνenYνe + λν̄epYν̄e)Ye. (2.29)

To this point, the expressions (2.27) and (2.29) are equivalent. Furthermore, Qian
and Woosley (1996) (see Eq.(73)) approximated the expression (2.29) in a crucial but
powerful way as follows,

Ye '
λe+nYe+ + λνenYνe

λe−pYe+ + λe+nYe+ + λνenYνe + λν̄epYν̄e

' λνenYνe
λνenYνe + λν̄epYν̄e

=

(
1 +

λν̄epYν̄e
λνenYνe

)−1

,

ignoring contributions from electron and positron captures and the decoupling of ra-
diation and matter as well as neutrino transport. This expression was then further
simplified and expressed in terms of the neutrino luminosities Lν and the mean neu-
trino energies 〈εν〉 respectively,

Ye '

(
1 +

Lν̄e
Lνe

〈εν̄e〉 − 2Q+ Q2

〈εν̄e 〉

〈ενe〉+ 2Q+ Q2

〈ενe 〉

)−1

, (2.30)

where Q = mn − mp = 1.2935 MeV is the rest mass difference between neutron and
proton. This expression is used very often in models which do not relay on accurate
Boltzmann transport but approximate neutrino contributions, for instance studies of
the neutrino driven wind where neutrino luminosities and energies are assumed and
from these the electron fraction can be calculated applying (2.30).
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2.6 The equation of state
In the context of pure hydrodynamic simulations, the standard contribution which is
determined by the equation of state (EoS) is the relation between matter pressure
and matter (baryon) density ρ (nB). In the case of internal structures, such as for
instance the matter composition, the matter internal energy, entropy per baryon, the
mass fractions of the free nucleons and the (light and heavy) nuclei as well as the
chemical potentials

(P, eint, s, xn, xp, xα, xFe, µn, µp)

are given by the EoS as well. These quantities are determined not only for a given den-
sity but also for given temperature T and proton-to-baryon ratio given by the electron
fraction Ye, depending on the nuclear physics model applied.

There remains a question about the radiation-hydrodynamics timescales in relation
to the timescale for the strong and weak interactions which change the composition and
hence the EoS. In the case where the radiation-hydrodynamics timescale is much larger
than the timescale for strong interactions, equilibrium is achieved instantaneously. No
time dependency enters the EoS and it can be evaluated without loss of generality.
This is the case for high temperatures and densities. However, at low densities and
temperatures where nuclear burning processes are found to be present (e.g. a large
fraction of the simulated domain in core collapse supernova studies are covered by the
progenitor star), time dependent reaction rates determine the composition and hence
the EoS.

In the following subsections, I will introduce the different thermodynamic regimes for
which different EoSs are used in our core collapse supernova simulations. The thermo-
dynamic conditions found in core collapse supernovae span the following 3-dimensional
space in (T, nB, Ye)

T = 10−4, ..., 100 MeV,
nB = 10−12, ..., 1 fm−3,

Ye = 0, ..., 0.8,

where the low temperatures and densities correspond to the outer part of the stellar
core, i.e. the Si-S, C-O, He and H-layers, which must be taken into account to some
extend as well for the correct dynamic evolution (e.g. the mass accretion onto the
Fe-core).

In order to support these numbers, Fig. 2.3 shows data from core collapse simulations
of 15 M� (left panel) and 40 M� (right panel) progenitor stars. The figures illustrate
the evolution of the Temperature with respect to the baryon density, where color-coded
is electron fraction. High baryon densities correspond to the central part of the stellar
domain and low densities are the infalling material from the Fe-core surroundings given
by the progenitor, where matter is iso-spin symmetric with Ye ' 0.5. However, the
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highly deleptonised domain where Ye < 0.1 corresponds to densities below saturation of
ρ ' 1011 − 1013 g/cm3 where the neutrinospheres are located. Both models reach high
central densities above nuclear saturation. The simulations differ also in the central
temperatures obtained, T ' 50 MeV for the 15 M� progenitor and T ≥ 100 MeV for
the 40 M� progenitor. The domain illustrated in (T, nB, Ye) must be covered by the
EoS valid for core collapse supernova simulations. Please note that the 40 M� model
in Fig. 2.3 (left panel) collapses to a black hole after about 550 ms post-bounce.

Remark 10 The (T, nB, Ye) phase space is occupied rather symmetrically for core col-
lapse supernova matter. In other words extreme phase-space asymmetry, such as high
baryon densities and low temperatures (e.g. neutron star matter) or vice versa (e.g. the
early universe), are not obtained in core collapse supernova simulations on timescales
of the order 1 second after bounce. This is illustrated in Fig. 2.3 at the example of
the 15 and 40 M� progenitors from Woosley and Weaver (1995). Only at later times
and after the explosion has been launched, when the central object becomes a neutrons
star via deleptonisation of the PNS, the temperature decreases while the central density
increases continuously.

Figure 2.3: Thermodynamic phase space, illustrating the temperature and baryon den-
sity domain covered in core collapse supernova simulations of massive progenitor stars;
(a): 40 M� and (b): 15 M�). Color coded is the electron fraction. The white regions
are not covered at all.

2.6.1 The nuclear reaction network for low temperatures and
densities

For temperatures below 0.5 MeV, the physical domain is typically governed by the
progenitor structure and the presence of heavy nuclei dominates the baryon matter
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properties such as pressure, entropy per baryon, internal energy and the nucleon chem-
ical potentials. However, at these conditions the electron(positron) contributions to the
EoS dominate over the baryons. In the following subsection, I will describe the baryon
EoS used and further below I will briefly sketch the electron-positron contributions to
the EoS.

The baryon contributions

Following the notation of Timmes and Arnett (1999), the radiation contributions to
the internal energy and the baryon pressure can be calculated based on the photon gas
(massless, spin = 1) as follows

eB,th =
8π

15(hc)3
(kBT )4 = a T 4,

pB,th =
1

3
eB,th,

where a is the Boltzmann constant. The ion-contributions on the other hand are calcu-
lated based on the non-relativistic perfect gas using a Maxwell-Boltzmann distribution
as follows (Timmes and Arnett (1999))

eB,ion =
3

2
nionkBT,

pB,ion = nionkBT,

where the total number density of ions (or nuclei) nB,ion is the sum of all number
densities of the nuclei ni, given explicitly by the mass fractions Xi and the atomic mass
Ai or the abundances Yi as follows

ni =
ρXi

mBAi
=
ρYi
mB

,

such that nion =
∑

i ni. Next to eB,ion, the composition contributes to the total internal
energy via nuclear burning processes. The generation of energy from nuclear reactions
is taken into account via the dynamically changing composition, which in turn is cal-
culated from a nuclear reaction network. The binding energy (or mass excesses mmexc,
both are equivalent) of the distribution of N nuclei used are calculated as follows,

eB,nuc =
N∑
i=1

Yimexc,i c
2,

where the mass excess of each nucleus with mass m(Z,A), charge Z and atomic mass
number A is given by (Thielemann)

mexc(Z,A) = m(Z,A)− Amu,
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where mu = 931.49432 MeV is the atomic mass unit. It is defined as the mass of 12C
such that mexc,12 = 0. We use the tabulated mass excesses from Audi et al. (2003).
The total internal baryon energy is then given by the sum of all the contributions from
above, i.e. (Timmes and Arnett (1999))

eB = eB,th + eB,ion + eB,nuc.

To calculate the abundances Yi dynamically, the following system of equations is used
to calculate the number density ni for each nucleus (Thielemann)

∂ni
∂t

∣∣∣∣
ρ=constant

=
∑
j

N i
jλjnj +

∑
j,k

N i
j,k

1 + δjk
〈σv〉j,k njnk, (2.31)

due to weak interactions and photodisintegration (first term) and two-particle reactions
(second term). TheN ’s are positive or negative numbers and specify how many particles
of abundance Yi are created or destroyed. The number densities can be expressed in
terms of the abundances and hence Eq. (2.31) takes the following form (Thielemann)

∂Yi
∂t

=
mB

ρ

∂ni
∂t

=
∑
j

N i
jλjYj +

ρ

mB

∑
j,k

N i
j,k

1 + δjk
〈σv〉j,k YjYk,

assuming ρ = constant. In the following paragraphs, I will sketch the basic equations
to calculate the reactions (reaction rates) used in the reaction network. Note, the
considered reactions are labeled as follows

i+ j → o+m : i(j, o)m.

Reaction 14 i(γ, o)m, (photodisintegration)

Photodisintegration is the capture of highly thermalised photons (which translates to
high temperatures) on heavy nuclei. The general reaction rate (Thielemann),

ri,j =

∫
dni dnj σ · |~ui − ~vj| ,

can be written as follows (see Thielemann), applying the Plank distribution for the
projectile photon j = γ (which has relative speed of light c) and the Maxwell Boltzmann
distribution for the target nucleus

ri,γ = ni
1

π2

(2π)3c

(hc)3

∫ ∞
0

dE2
γ σi,γ,o(Eγ)

(
exp

{
Eγ
kBT

}
− 1

)−1

= λi,γ,o(T )ni,
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where λ acts as a temperature T dependent decay constant and σi,γ,o is the photodis-
integration cross section.

Reaction 15 i(e−, νe)m, i(νe, e−)m (electron capture rates, electron-neutrino captures)

The calculation of the reaction rate has already been demonstrated in §2.1.3 where we
discussed the collision term of the Boltzmann equation. For the reaction network a
slightly different approach is applied. Following standard statistical mechanics (Thiele-
mann), the reaction rate can be expressed as an integral over the reaction cross section
σe as follows

ri,e =

∫
dni dne σe · |~vi − ~ve| .

Rewriting this expression in terms of the centre of mass coordinates (i.e. the nucleus
is at rest in the centre of mass system), one obtains the following form for the reaction
rate (Thielemann)

ri,e = ni

∫
dne σe(ve) ve

= λi,e(ρYe, T )ni.

The decay rate λi,e is the integral of the electron capture cross section σe and depends
on the number density of electrons and hence on the baryon density ρ and the electron
fraction Ye and on the temperature T .

Remark 11 The same calculations can be done for the reaction rate ri,νe and the decay
rate λi,νe, i.e. for electron-neutrino captures. However, the conditions of the progenitor
stars do not favour neutrino captures and the emitted neutrinos produced via electron
captures escape freely. This reaction is only important at high baryon densities above
1011−12 g/cm3 and are hence handled applying Boltzmann neutrino transport as dis-
cussed above in §2.1. However, since the neutrino capture reactions are the reverse
reactions to electron captures, the calculation of the rates can be done applying detailed
balance.

Remark 12 Comparing the decay rates with the calculation of the emissivity j and
opacity χ fνe (as defined above, fνe is the electron-neutrino distribution function) in the
context of electron captures on free protons and electron-neutrino captures on free neu-
trons, both procedures are in a way equivalent (taking into account the approximations
made for the momentum integartion calculating j and χ) as follows

λp,e =
j

Xp

,

λn,νe =
χ fνe
Xn

,

where j and χ are the energy integrated emissivity and absorptivity respectively.
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Reaction 16 i(e+, νe)m, i(ν̄e, e−)m (positron capture rates, electron-antineutrino cap-
tures)

These reactions become only important at large electron degeneracy, which is typically
not achieved in progenitor models. Even during the Fe-core collapse such large degener-
acy is typically not obtained. Hence, these reactions are suppressed and not considered.
However, the same calculation as for i(e−, νe)m can be applied to obtain the reaction
and decay rates, i.e. ri,e+ and λi,e+ .

Reaction 17 Decay reactions

In accordance to electron captures, in the case of decay reactions such as the beta-
decay or the alpha-decay, the decay rate for nuclei in the ground state is given by (see
Thielemann)

ri = λi ni,

where the decay constant λi is given by the inverse of the decay half-life time τ1/2 as
follows

λi =
1

τ1/2

ln 2.

Remark 13 At high temperatures where excited states can be populated, the decay con-
stant becomes a function of the temperature. Such considerations are relevant for ex-
ample in explosive nucleosynthesis investigations.

Reaction 18 2-particle interactions with nuclei

When the interacting particles are nuclei and obey both Maxwell-Boltzmann statistics,
the reaction rate ri,j can be expressed as follows (Thielemann)

ri,j =

∫
dni dnj σ · |~vi − ~vi|

= ni nj

∫
d3vi d

3vj σ (|~vi − ~vj|) |~vi − ~vi| fi fj

= ni nj 〈σv〉i,j ,

where

fi = f (~vi) =
m

3
2
i

(2πkBT )3
exp

{
−mi v

2
i

2kBT

}
,

are the Maxwell-Boltzmann distribution functions of the nuclei. Changing to the centre
of mass coordinates, where the centre of mass nuclei is at rest, the integral expression
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for the transition rate 〈σv〉i,j can be written in terms of the relative particles energy E
and mass µ as follows (Thielemann)

〈σv〉 (T ) =

√
8

µπ

1

(kBT )3/2

∫ ∞
0

E dE σ(E) exp

{
− E

kBT

}
.

From the above considerations it becomes clear the central importance lays in the
knowledge of the cross sections for the relevant reactions. With these one is enabled to
calculate the transition rates and hence determine the abundances and their changes due
to the reactions discussed above, for a given number of nuclei and the thermodynamic
state (T, nB).

Remark 14 Sine nuclear reactions change the composition as discussed above, the elec-
tron fraction Ye changes accordingly. Due to present computational limitations we use
only 20 nuclei. Starting with (n, p) the free nucleons and 3He, we use the 14 symmetric
nuclei from 4He to 56Ni and include additionally a few Fe-group isotopes, i.e. in total

(n, p) nucleons(
3He,4He

)
light nuclei(

12C,14N,16O,20Ne,24Mg,28 Si,32 S,36Ar,40Ca,44 Ti,48Cr
)

α-chain(
52Fe,53 Fe,54 Fe,56 Fe,56Ni

)
Fe-group

These abundances are included into the state vector of AGILE-BOLTZTRAN to model
their advection on the adaptive grid accurately. The state vector reads then as follows,

(a, r, v, m, ρ, T, Ye, α, Yn, Yp, . . . , Y56Fe) ,

where originally only the first 8 quantities were taken into account, i.e. baryon mass
a, radius r, velocity v, gravitational mass m, baryon density ρ, temperature T and the
lapse function α. However, the abundances are only required to calculate the internal
energy evolution. The impact of the nuclear reaction network to change Ye is of minor
importance to determine the nuclear binding energy. It can not be described in details
due to the rather small number of nuclei used and we neglect the effect. Though, it is
taken into account in post-processing nucleosynthesis investigations where a much larger
(typically N ∼ 1000) nuclear reaction network is used.

Remark 15 The chemical potentials in the presence of free nucleons are calculated
based on the non-relativistic Maxwell-Boltzman gas (Thielemann)

µ(n,p) = kBT ln

{
n(n,p)h

3

g

1

(2πm(n,p)T )(3/2)

}
+m(n,p) c

2, (2.32)

where g = 2 for neutrions and protons, h is Planks constant, m(n,p) are the neu-
tron(proton) mass and n(n,p) = ρY(n,p)/mB are the neutron(proton) number densities.
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The electron-positron gas

For the calculation of the electron pressure, internal energy and chemical potential,
one can use standard text book statistical physics and apply the equations from the
degenerate Fermi-gas (spin s = 1/2, weight g = 2). The EoS we use is developed by
Timmes and Arnett (1999). Applying Fermi-Dirac statistics for the derivation of the
number density of electrons, the following expression can be found (for the result, see
Timmes and Arnett (1999))

ne− =

∫ ∞
0

dp ω(p) fe−(p) =

∫ ∞
0

dE ω(E) fe−(E)

=
4π

h3
(2mekBT )3/2

∫ ∞
0

dx
x1/2

ex−η + 1
(1 + x)

(
1 +

1

2

kBT

mec2
x

)
=

4π

h3
(2mekBT )3/2 (F1/2(η, β) + F3/2(η, β)

)
,

where x = E/kBT , fe− is the electron distribution function, ω(p) is the state density
which depends explicitly on the statistical weight and the momentum(energy) 8, β =
kBT/mec

2 and η = µe/kBT is the degeneracy parameter. The Fermi-Dirac-integrals are
given as follows (Timmes and Arnett (1999))

Fk(η, β) =

∫ ∞
0

dx
xk

ex−η + 1

(
1 +

1

2
βx

)1/2

.

Replacing the electron chemical potentials by the positron chemical potentials µe+ =
−µe− , where µe− ≡ µe, the following expression for the number density of positrons can
be found (see Timmes and Arnett (1999))

ne+ =
4π

h3
(2mekBT )3/2 (F1/2(−η − 2/β, β) + βF3/2(−η − 2/β, β)

)
.

Combining these expressions with the number density of electrons, i.e.

ne− − ne+ =
ρYe
mB

,

which is typically known in an astrophysical context (ρ via the continuity equation and
Ye via electron/positron and electron-(anti)neutrino capture reactions). Combining the

8The expression for the state density for the calculation is given as follows (Timmes and Arnett
(1999))

ω(E) =
2π

h3
g(2me)

3/2E1/2

(
1 +

(
1

kBT
+

1

2mec2

)
E +

E2

kBT 2mec2

)
,

where the statistical weight is g = 2, which differs from the standard text book expression by a series
expansion in E.
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above expressions, it is possible to solve the integral expressions numerically and hence
calculate the chemical potentials. The knowledge of these enables us to calculate the
electron and positron pressure as follows (see Thielemann, Timmes and Arnett (1999))

pe− =
1

3

∫ ∞
0

dp p v ω(p) fe−(p)

=
8π

3

(2me)
3/2(kBT )5/2

h3

∫ ∞
0

dx
x3/2

ex−η + 1

(
1 +

1

2

kBT

mec2
x

)(
1 +

1

2

kBT

mec2
x

)
=

8π

3

(2me)
3/2(kBT )5/2

h3

(
F3/2(η, β) +

β

2
F5/2(η, β)

)
,

pe+ =
8π

3

(2me)
3/2(kBT )5/2

h3

(
F3/2(−η − 2/β, β) +

β

2
F5/2(−η − 2/β, β)

)
.

The analogue calculation can be applied for the specific internal energy (Timmes and
Arnett (1999))

ee− =

∫ ∞
0

dpE ω(p) fe−(p)

=
1

ρ

4π

h3
(2me)

3/2(kBT )5/2
(
F3/2(η, β) + βF5/2(η, β)

)
,

ee+ =
1

ρ

4π

h3
(2me)

3/2(kBT )5/2
(
F3/2(−η − 2/β, β) + βF5/2(−η − 2/β, β)

)
+

1

ρ
2mec

2 ne+ .

Remark 16 The total EoS is the sum of all contributions discussed above for the in-
ternal energy, pressure and entropy as follows

e = eB,rad + eB,ion + eB,nuc + ee− + ee+ ,

p = pB,rad + pB,ion + pB,nuc + pe− + pe+ ,

s = sB,rad + sB,ion + sB,nuc + se− + se+ .

The composition is initially determined by the progenitor and changes during the dy-
namical evolution evolved using the nuclear reaction network. Next to the electron and
positron chemical potentials, which are determined numerically as shown above, the
chemical potentials of the free nucleons are calculated assuming an ideal gas of non-
relativistic Fermions where due to µ/kBT → −∞ the Maxwell-Boltzmann statistics can
be applied and from (see Thielemann)

ni = e
µi
kBT

g

hc
(2πmikBT )3/2

the chemical potentials can be determined by Eq.(2.32).
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2.6.2 Hot and dense nuclear matter

For matter temperatures above 0.5 MeV the production of nuclei via nuclear reactions
and the destruction via weak interactions and photodisintegration is found to be in
thermal equilibrium, i.e. nuclear statistical equilibrium (NSE). The timescale to estab-
lish NSE is typically much shorter than the radiation-hydrodynamic timescale in core
collapse supernovae, which are of the order of 1− 100 ms. Hence the composition can
be calculated statically, i.e. depending only on the baryon density, temperature and the
electron fraction. Based on the following equilibrium condition for the nucleus chemical
potential µA and the free nucleons µn, µp (Thielemann),

µA = N µn + Z µp,

the following relation can be used to calculate the abundance of a nucleus with atomic
mass A, charge Z and N = A+ Z (Thielemann)

YA = GA

(
ρ

mB

)A−1
A4/2

2A

(
2π~2

mukBT

) 3
2

(A−1)

Y N
n Y Z

p exp

{
BA

kBT

}
, (2.33)

where GA is the statistical weight of the nucleus, BA := N mnc
2 + Z mpc

2 − mAc
2

and where Maxwell-Boltzmann statistics is applied for the calculation of the chemical
potentials and the following assumptions have been made to simplify the expression
(Thielemann)

mn ' mp ' mu,

mA ' Amu.

The expression (2.33) can be understood as follows:

(i) high densities favour nuclei with large A due to the dominance of the term ρA−1,

(ii) high temperatures favour light nuclei and free nucleons due to the presence of
highly thermalised photons (photodisintegration),

(iii) intermediate conditions favour stable nuclei with the largest binding energies due
to the dominance of the exponential term exp {BA/kBT}.

Together with the relations of charge neutrality and mass conservation, i.e. (Thiele-
mann) ∑

i

Xi =
∑
i

Ai Yi = 1,∑
i

Zi Yi = Ye,
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expression (2.33) can be used instead of expression (2.31) to calculate the nuclear com-
position. For the construction of an EoS for nuclear matter, NSE is assumed for all
thermodynamic conditions. This leads to increasing inaccuracies for low temperatures
and densities where the nuclear burning history of the progenitor is used to calculate
the EoS as demonstrated in the subsection above and time dependent nuclear reactions
must be used.

However, for high densities and temperatures above 0.5 MeV the commonly used
EoSs for hot and dense nuclear matter are the EoS from Lattimer and Swesty (1991)
(EoS1) and the EoS from Shen et al. (1998a) (EoS2). EoS1 is based on the liquid drop
model including surface effects. It already contains contributions from electrons and
positrons and is available to the community as a subroutine or a table for the three dif-
ferent incompressibility energies 180, 220 and 375 MeV and a asymmetry energy of 29.3
MeV. These values determine the stiffness or softness of nuclear matter. EoS2 is based
on the relativistic mean field (RMF) approach and Thomas-Fermi approximation. It
has a incompressibility of 281 MeV and a asymmetry energy of 36.9 MeV, which results
in a rather stiff EoS for nuclear matter in comparison to EoS1. EoS2 contains only the
baryon contributions and is distributed to the community as a table. Contributions
from electrons and positrons as well as ion-ion correlations and photons are added us-
ing the same EoS applied for matter in non-NSE as described in the subsection above.
It is developed by Timmes and Arnett (1999) and Timmes and Swesty (2000). EoS1
and EoS2 assume NSE for all conditions. Both approximate the composition os heavy
nuclei via a single nucleus with average atomic A mass and charge Z, in addition to
α-particles which represent light nuclei and the free nucleons. Above the neutron drip
line, which is found at intermediate densities of about ρ ' 1012 g/cm3, nuclei start to
dissolve and nuclear matter appears. At even higher densities, nuclei disappear com-
pletely and bulk nuclear matter, which means free nucleons only, is achieved. The EoSs
handle the transitions between these different regimes intrinsically.

EoS2 has been added to our core collapse model recently. In the following paragraph
I will examine the three different descriptions used for the different nuclear regimes.
Relativistic mean field (RMF) theory is applied to calculate the EoS for homogeneous
nuclear matter (free nucleons only), the Thomas-Fermi approximation is used for in-
homogeneous matter (free nucleons, α-particles, a single representative heavy nucleus)
and the ideal gas approximation for low densities and temperatures. The minimisation
of the free energy determines which approach is favoured over the other. Note that it
is hardly possible to conclude the (dis)appearance of phases to density or temperature
effects. It is a correlation of the density, the temperature and the electron fraction. The
different thermodynamic regimes can be separated as follows (Shen et al. (1998a))

(a) homogeneous nuclear matter for densities and temperatures of

nB = 0.0954, ..., 1.5127 fm−3,

T = 15, ..., 100 MeV,
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for a mixture of neutrons, protons and initially α-particles which disappear at
high densities and temperatures.

(b ) non-uniform matter at intermediate densities and high enough temperatures
for the free nucleons to form clusters that are interpreted as heavy nuclei. The
starting density of this phase depends strongly on the temperature where at high
densities the temperature dependency decreases. For temperatures T > 15 MeV,
the non-uniform matter phase disappears independent of the density.

(c) uniform matter at low densities and finite temperatures for a mixed gas of neu-
trons, protons and α-particles.

(d) the ideal gas for densities in the range

nB = 7.58× 10−11, ..., 10−5 fm−3,

and finite temperatures where, based on the most stable nucleus with atomic mass
A ' 56, heavy nuclei dominate the EoS.

This behaviour is illustrated in Fig. 2.4 for low temperatures where nuclei dominate
the EoS. At T = 0.5 MeV (left panel) where (supernova) matter is typically only very
slightly iso-spoin asymmetric with Ye = 0.48, heavy nuclei have atomic masses around
〈A〉 ' 60 and belong to the Fe-group with 〈Z〉 ' 26. These nuclei become larger going
to higher baryon densities, forming even the extremely massive (’isotopic’) nuclei with
〈A〉 > 20009, before finally slightly below saturation density bulk (fully dissociated)
nuclear matter appears and the heavy nuclei disappear. At low densities, heavy nuclei
compete with the appearance of α-particles. Going to higher temperatures of T = 1
MeV (right panel), where the asymmetry typically increases and Ye = 0.4, the fraction
of heavy nuclei reduces at low densities in favour of α-particles and free nucleons, and
the heavy nuclei become larger with 〈A〉 ' 80 and 〈Z〉 ' 30 before super-heavy nuclei
appear slightly below saturation density. Fig. 2.5 illustrates the baryon fractions at
higher temperatures where heavy nuclei start to disappear. At about T = 5 MeV and
Ye = 0.3 (left panel, which are typical bounce conditions), the fraction of heavy nuclei
reduces to the density domain where only the super-heavy nuclei exist. The fraction
of α-particles reduces at lower densities as well and the EoS is determined by the gas
of free nucleons. This phenomenon holds for even higher temperatures of T = 10 MeV
where typically Ye = 0.2 (right panel, typical post-bounce condition).

Remark 17 Both EoSs, EoS1 and EoS2, define the internal energy density relative
to the nuclear model specific mass unit. These gauge masses mg[MeV] are the neutron

9Such bulk of nuclear matter are no physical nuclei, i.e. they cannot be found in the nuclear chart.
They form due to the clustering of nucleons at intermediate densities and belong to the phase known
as pasta, spaghetti and Swiss cheese. More precise descriptions for these phases are required in order
to take the effects into account constructing an EoS.
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Figure 2.4: Baryon fractions and average atomic mass number and charge with respect
to the baryon density for different thermodynamic conditions found in core collapse su-
pernova simulations. The conditions illustrate the regime dominated by a large fraction
of heavy nuclei.
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Figure 2.5: The same configuration as Fig. 2.4 but higher temperatures where heavy
nuclei disappear.
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mass mn = 939.5653 MeV and the atomic mass unit mu = 931.49432 MeV for EoS1
and EoS2 respectively. The internal energy density output of the EoSs is then given by
the following expression

eint[MeV] =
e

ng
−mg.

For each gauge the baryon density is defined as follows

ρ = mgng,

where ng is the baryon number density. Since our numerical model Agile-Boltztran uses
a different definition of the baryon mass, i.e. mB = 1.674×10−24 g (= 939.0361 MeV),
the internal energy is re-gauged to mB as follows

eAB[MEV] = eint[MeV] + (mg −mB).

This value for the internal energy density is then used in our numerical model.

2.7 Matter at and above nuclear saturation density

Although the baryon EoSs from Lattimer and Swesty (1991) and Shen et al. (1998a)
describe the properties of matter above nuclear density, the physical state of matter
at such high densities relatively uncertain. On the other hand, the saturation point of
nuclear matter is known experimentally. Electron-nucleon scattering experiments have
shown that the central density of heavy nuclei is almost constant and independent of
the atomic mass. This provides values for the saturation density (Durand et al. (2000))

n0 = 0.17± 0.2 fm−3,

where the binding energy of nuclear matter at saturation density can be estimated to
be (Durand et al. (2000))

E

A0

= −16± 1MeV.

The saturation point, in other words the EoS of nuclear matter at saturation density,
corresponds to the equilibrium point at T = 0 MeV. This translates to a vanishing
pressure at saturation density.

2.7.1 Heuristic considerations

Assuming an ideal gas of N fermions (nucleons) in a finite volume. The Fermi energy
of the gas is defined as the chemical potential at zero temperature, i.e. EF = µ(T = 0),
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and can be written in terms of the number density nN of the nucleons as follows

EF =
(~c)2

2mN

(3π2)2/3n
2/3
N

' 198.716MeV×
( n

fm−3

)2/3

,

wheremN [MeV] is the nucleon mass. This gives Fermi-energies of ' 42.8 and ' 125.183
MeV for baryon densities of 0.1 and 0.5 fm−3 respectively. This behaviour of the Fermi
energy is illustrated in Fig. 2.6. Increasing the (number) density while keeping the
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Figure 2.6: Fermi energy with respect to the baryon density.

volume fixed translates to a system where the mean distance between the nucleons
reduces. Where the gas to be non-interacting, at some (number) density the wave
functions would begin to overlap. This effect is compensated in an interacting nucleon
gas by for instance nucleon-nucleon interactions. Such interactions describe generally
short range forces and are taken into account for both EoSs discussed above. They
are assumed to be strongly repulsive at short distances of ≤ 0.4 fm and attractive at
intermediate distances of ∼ 1−1.2 fm. Such interactions determine the compressibility
and the asymmetry energy of the EoS and are responsible for the stiffening of the
EoS at high densities. However, increasing the baryon density to high values will
continuously increase the Fermi energy. There is no upper limit for the baryon density
of a nucleon gas. It simply translates to higher Fermi levels of the nucleon states that
are occupied. Baryon densities above nuclear saturation might have a deformation
effect on the nucleon structure, where the model of a nucleon gas (despite various
nucleon-nucleon interactions) might not be applicable anymore. It is physically more
appropriate to include the nucleon sub-structure, i.e. the quarks. Their properties are
known (to some extend) from high energy E > 1 GeV (deep inelastic) electron-nucleon
scattering experiments. Electrons (or in general leptons) have a very small mean free
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path at such high energies (λ ∼ 1/E < 0.2 fm) and no internal structure. Hence, the
scattering cross sections depend only on the internal structure of the scattering target
(the nucleon). In addition, these cross sections can be calculated analytically (see for
example Greiner and Schäfer) depending on the so called structure functions, which can
be calculated from theoretical quark models to confirm the experimentally found values
for the cross section. From such experiments and from the excited baryon resonances,
it is well known that the nucleons consist of three quarks, i.e.

n =

 d
u
d

 , p =

 u
d
u

 , (2.34)

where u and d denote the up- and down-quarks. Today, 6 quark species are known in
total. These and a few of their properties are listed in Table 2.2 and 2.3. The quark

Table 2.2: Selected properties of the light quarks taken from the Particle Data Group
and Eidelman (2004).

Flavour Symbol Mass [MeV] Charge Spin Baryon number

up u 2.55
{

+0.75
−1.05

+2
3

1
2

1
3

down d 5.04
{

+0.96
−1.54

−1
3

1
2

1
3

strange s 100
{

+26
−34

−1
3

1
2

1
3

Table 2.3: Selected properties of the massive quarks taken from the Particle Data Group
and Eidelman (2004).

Flavour Symbol Mass [GeV] Charge Spin Baryon number

charm c 1.27
{

+0.07
−0.11

+2
3

1
2

1
3

bottom b 4.20
{

+0.17
−0.07

−1
3

1
2

1
3

top t 171.2± 2.1 +2
3

1
2

1
3

spin of 1/2, the baryon numbers of 1/3 and the charges must be fulfilled to explain
the nucleon quantum numbers. However, since spin-1/2 particles obey the Fermi-Dirac
statistics two quarks must not be in the same state. Therefore, next to the flavour
eigenstates, colour eigenstates are invented.

Although nuclear models that are used to describe nuclear matter and the EoS take
quark contributions into account, one of the most prominent question in high energy
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nuclear physics remains: Is there a transition to a gas composed of deconfined quarks
and at which conditions does it happen? This question could not be answered to a
satisfying degree by the present knowledge, because there is no model that describes
consistently nucleons as the confined state of free quarks at finite densities and temper-
atures. Furthermore, the transition to a deconfined state and the general understanding
of deconfinement is rather uncertain up to now and remains an active subject of research.
It would mean solving the (de)confinement problem for the quantumchromodynamic
(QCD) equations based on the QCD Lagrangian, taking quark-quark interactions and
gluons (strong interaction particles) into account.

The approach to describe quarks as an interacting gas goes back to the theory of
quantumelectrodynamics (QED) and its extensions to the theory of weak interactions.
This path will be sketched in the following paragraphs. It leads to the formulation of
the standard model of particle physics and describes all fundamental interactions of na-
ture (electro-magnetism, weak, strong) by the exchange of specific interaction particles
(photons, W±-,Z0-bosons, gluons). The electromagnetic interactions are modelled via
the exchange of photons (electro-magnetic interaction particles) applying the following
Lagrangian density,

L = L0 + Lint

= −1

4
Fµν F

µν + ψ̄ (pµ − eAµ) γµψ,

where ψ are the quantum fields, e is the charge, γµ are the gamma matrices and Aµ are
the vector potentials. The field tensor is given by the following expression

Fµν = ∂µAν − ∂νAµ.

The vector potentials have a benifitful property, they are invariant under gauge trans-
formations which makes it possible to consider the QED as a gauge theory. This makes
life a lot easier because one can make use of the well known symmetry group proper-
ties for gauge theories and their representations (see for example Greiner and Müller).
The gauge group of QED can be achieved directly from the gauge symmetry by for in-
stance replacing the interaction fields A(x) by matrix valued functions Â(x) and hence
(Greiner and Schäfer)

L = −1

4
F̂µν F̂

µν + ψ̄
(
p̂µ − gÂµ

)
γµψ,

where the coupling constant g has been introduced replacing e and where

F̂µν = ∂µÂν − ∂νÂµ + ig
[
Âµ, Âν

]
.

This description for electro-magnetic interactions can be extended for weak interac-
tions by postulating that leptons couple only to their neutrinos (e.g. electrons(positrons)
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with electron-(anti)neutrinos, muons(anti-muons) with mu-(anti)neutrinos), which can
be modelled via the exchange of charged particles. These interaction particles were
given the names W±-bosons. For the neutral currents (such as scattering and pair pro-
cesses), the exchange of a neutrally charged particle had to be postulated in addition.
It was given the name Z0-boson. The matrix valued vector or gauge fields Â are then
replaced by the boson fields λjW j and B and the Lagrangian density becomes (Greiner
and Schäfer)

L = −1

4
W j
µνW

j,µν − 1

4
BµνB

µν + ψ̄

(
pµ − g1W

j
µ

λj

2
− g2Bµ

)
γµψ,

where the two coupling constants g1 and g2 describe the two different boson exchanges
and where

W j
µν = ∂µW

j
ν − ∂νW j

µ − g1εijkW
i
µW

k
ν ,

Bµν = ∂µBν − ∂νBµ.

The matrices λj are due to the representation of the gauge group applied to the problem.
The exchange of photons for QED leads to the U(1)-symmetry, where here the exchange
of theW±-bosons leads to SU(2)-symmetry and the exchange of Z0-boson leads to U(1)-
symmetry. Hence, the total symmetry group for weak interactions is the SU(2)×U(1)
where the following set of matrices (matrix valued vectors)

λ1 =

(
0 1
1 0

)
, λ2 =

(
0 −i
i 0

)
, λ3 =

(
1 0
0 −1

)
, λ4 =

(
1 0
0 1

)
,

is a representation (identified as the Pauli matrices) of the gauge group.
The extension of this description to quark-quark interactions is a subject of active

research. It has been postulated that the number of leptons must be equal to the
number of quarks and hence there are three colour eigenstates. This statement leads
to a representation of the symmetry group SU(3) for the QCD and the wave-functions
become colour triplets

ψ(x) =

 ψr(x)
ψb(x)
ψg(x)

 ,

where (r,b,g) index the colours (red, blue, green) respectively. Denote the representation
of the symmetry group as λ̂a ∈ SU(3) and identifying the quark interaction particles
as gluons, which consist of a colour and anti-colour state. Hence, there are 8 gluons in
total. The vector(gauge) fields of the gluons can be written as follows

Âµ(x) =
8∑

a=1

1

2
λ̂aAaµ(x),
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where the Lagrange density follows directly (Greiner and Schäfer)

L = −1

2
tr
{
F̂µν F̂

µν
}

+ ψ̄
(
p̂µ − gÂµ

)
γµψ.

g is the coupling constant for quark interactions and the gluon stress-energy tensor is
given by the following expression (Greiner and Schäfer)

F̂µν = ∂µÂν − ∂νÂµ − ig
[
Âµ, Âν

]
.

These equations, including the brief introduction of QED and the theory of weak inter-
actions, form the standard model of particle physics with the fundamental interactions
and their particles 10. However, while the equations for QED and the theory of weak
interactions can be solved rather straight forward from for instance perturbation consid-
erations, it is not straight forward to solve the QCD equations based on the Lagrangian
density. The following attempts can be found in the literature (Greiner and Schäfer).

1. The most prominent approach is the perturbation ansatz, where the series of
Feynman-diagrams that can be constructed from the Lagrangian density con-
verge at high order. This approach has been succeeded for QED and for the
theory of weak interactions because the series expansion for the coupling con-
stants converge at some point. The same argument does not apply for QCD. The
series expansion in g of Feynman diagrams converges only at high energy scales
∼GeV. It is discussed in details in Greiner and Schäfer.

2. Another approach is to model the QCD on a lattice, where the continuous space-
time is replaced by a discrete lattice. The equations are then solved numerically
which might introduce numerical effects due to the presence of descretoced lattice
solutions that could lead to increasing inaccuracies.

3. Most phenomenological approaches (I will not go into details here) work on the
actual task of a QCD model that explains(predicts) the QCD phase diagram. The
question could be formulated as follows: How many different representations (or
phases) of quark matter do exist and which are the thermodynamic conditions
in terms of temperature and chemical potential (or equivalent baryon density).
Most of these models are based on phenomenological approaches that are similar
to what is applied to calculate hadronic EoSs. The phenomenological descriptions
predict a cross over from the hadronic regime to a quark-gluon plasma at low

10The experimental evidence for the presence of the Higgs-boson and the gravitational interactions
are predicted theoretically but not included yet.
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chemical potentials and high temperatures 11, while a phase transition of first
or second order is expected at finite temperatures and large chemical potentials.
The concern is a deeper understanding of the appearance of the different quarks
and the possible existence of super-conducting phase at high chemical potentials.

In the following subsection, I will introduce the most simple phenomenological ap-
proach to describe quark matter and to construct an EoS. This model has been applied
to core collapse simulations of massive stars to investigate the phase transition from
hadronic matter to quark matter during the PNS evolution. It is meant to explore
possible observables and the dynamics of the phase transition itself.

2.7.2 The MIT-bag model

This very simple and widely applied phenomenological approach to describe hadronic
matter composed of quarks goes back to the assumption that quarks are enclosed inside
the nucleons (which defines here confinement) where otherwise the quarks inside the
nucleons can be considered as free Fermions (let me anticipate that there have been
no free quarks observed in any experiment). The MIT-bag model suffers from the
same variety of mismatches in explaining experimental data as other quark matter
descriptions but the big advantage is its simplicity.

The basic idea is to construct a colour flux, given by the product of current vec-
tor and density, which fulfills the continuity equation and vanishes at a given (nu-
cleon)surface (i.e. the nucleon radius) identified as the bag as follows (Greiner and
Schäfer)

nµ · Ĵaµ
∣∣∣
surface

= ~n · ~̂Ja
∣∣∣
R(θ,φ)⊂R2

= 0,

where n is the density of states and the simplification (restriction) to the spatial surface
R has been made. Assuming the different colour quarks can not be separated, the
current vector is given by (Greiner and Schäfer)

Ĵaµ = (q̄r, q̄b, q̄g) λ
a γµ

 qr
qb
qg

 ,

where λa ∈ SU(3) is a representation of the symmetry group and qi(x) are the quark
colour wave functions. By means that the quark flavours can be considered separately,

11Lattice QCD calculations showed that the critical temperature Tc must be between 100 − 200
MeV. These calculations predict a smooth confinement-deconfinement transition. The calculations can
be extended to larger chemical potentials where Tc reduces. However, lattice QCD calculations could
only be performed for a very limited amount of data points in the phase diagram due to numerical
difficulties and present computational limitations.
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the continuity equation takes the following form (Greiner and Schäfer)

~n · q̄~̂γq
∣∣∣
R(θ,φ)

= 0,

which can be understood as a boundary condition. This leads to an eigenvalue problem
for the matrix ~n · ~γ where the eigenvectors fulfill the above expression and the only
unknown is the size of the bag given by R. The confinement (in other words the
quarks inside the bag) produce a pressure acting onto the bag. This pressure must be
equivalent to the external vacuum pressure. This is not meant to be a physical pressure
but must be taken into account when constructing an EoS from the model assumption
of a bag for confined quarks. Starting from the stress-energy tensor for Dirac-particles
(i.e. particles that are solutions of the Dirac equation, see Greiner and Schäfer)

Tµν =
∑
q

i
2

(q̄ γµ ∂νq − q ∂νγµq̄) ,

the following relation holds (Greiner and Schäfer)

nµ Tµν |surface =
∑
q

i

2
nµq̄ γµ ∂νq − nµ q ∂νγµq̄

∣∣∣∣∣
surface

= −
∑
q

1

2
q̄ ∂νq − q ∂ν q̄

∣∣∣∣∣
surface

= −1

2
∂ν
∑
q

q̄q

∣∣∣∣∣
surface

= −nν PD|surface ,

using the fact that (~n ·~γ)2 = −1 and where PD denotes the Dirac pressure. Hence, this
pressure must be equivalent to a constant external pressure B

PD|surface = − 1

2
nν∂ν

∑
q

q̄q

∣∣∣∣∣
surface

= − 1

2
~n · ~∇

∑
q

q̄q

∣∣∣∣∣
R(θ,φ)⊂R2

= B,

where again the simplification(restriction) to only spatial dependencies has been made.
This consideration determines the hadron-bag for given parameters B. For a spherically
symmetric system, i.e. solving the Dirac equation for the massless quark fields in
spherical symmetry, the bag pressure (constant) can be approximated in terms of the
bag radius R as follows (Greiner and Schäfer)

R4 =
Nq

4πB
ER,
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where Nq is the number of quarks inside the bag and ER are the energy eigenvalues of
the quark states that are considered. Although this approach has its major advantages
in the simplicity, for instance quark-quark interaction (in other words gluons) are not
considered and so are other important aspects not taken into account. However, an
experimental and theoretical justifications of the MIT-bag model is at presence neither
provided nor excluded.

2.7.3 The EoS for three flavour quark matter based on the MIT
bag model

Quarks inside the bag can be considered as free particles. The equations for an ideal
gas of Fermi-Dirac particles can be applied to calculate the EoS, assuming mass less
(u,d)-quarks and massive s-quarks. In addition, the bag constant must be added to the
internal baryon energy and subtracted from the baryon pressure.

To construct an EoS from such principles, the criterion that applies to decide which
phase (hadronic or free quarks) is favoured is the minimisation of the free energy which
was done by Sagert et al. (2009a) for a certain domain given by the independent vari-
ables (T, Ye, nB). The bag constants are chosen to be B1/4 = 162 MeV and B1/4 = 165
MeV, which gives stable maximal gravitational masses for cold (T = 0) neutron star
matter of 1.56 M� and 1.50 M� respectively. At conditions where the MIT-bag model
is favoured over the hadronic model EoS2, a transition from the Hadronic EoS to the
quark EoS is constructed. For this purpose, Sagert et al. (2009a) assume global charge
neutrality which leads to a Gibbs construction for the transition(coexistence) region
between hadrons and quarks and hence to an adiabatic (constant entropy) phase tran-
sition. The coexistence region, in other words the onset and the end-point of the phase
transition, is shown in Fig. 2.7 for the two choices of the bag constant. We plot the
temperature dependency of the coexistence region with respect to the baryon density
for different values for the electron fraction. From the graphs it becomes clear that for
lower values of Ye and higher temperatures, the onset of the phase transition happens at
lower densities. This is independent of the size of the bag. For the larger bag constant,
the onset of the phase transition as well as the end-point is shifted to higher densities
and temperatures.

The mixed phase is modelled constructing a quark fraction XQ, which is illustrated
in Fig. 2.8 (lower panel) with respect to the baryon density for different Ye and entropies
per baryon s (see lower panel). XQ rises slowly as the density increases. The onset of
the phase transition is related to the appearance of the quark fraction (e.g. XQ > 0)
while it is zero in the hadronic regime (XQ = 0). The end-point is related to the quark
fraction reaching XQ = 1. In this sense, the domain within between where 0 < XQ < 1
defines the mixed phase (or coexistence region). The upper panel of Fig. 2.8 shows the
pressure with respect to the baryon density for the same conditions. There it becomes
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Figure 2.7: Onset and end-point of the mixed phase (coexistence region) for the two
quark EoSs used based on the MIT-bag model with B1/4 = 162 MeV and B1/4 = 165
MeV for different values of Ye (solid: 0.1, dashed: 0.3, dash-dotted: 0.5).
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Figure 2.8: Pressure and quark fraction of the quark EoSs in comparison to EoS2.
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clear that the mixed phase is characterised by a decreasing pressure gradient12. This
translates to a decrease of the adiabatic index for matter which is in the mixed phase
and hence to a significant softening of the EoS. The consequences of this construction
will be discusses and illustrated in the following chapter in §3.3.

12Note that for the preparation of the quark EoSs and in particular the mixed phase, the lepton
contributions are taken into account as well.



Chapter 3

Simulations of massive progenitor
stars

In the following sections I will summarise the most important results that have been
obtained during the past 4 years of my doctoral studies, using the numerical model
AGILE-BOLTZTRAN which has been introduced in §2. including the resent improve-
ments of the input physics. Explosions in spherical symmetry will be discussed at three
examples, the low mass 8.8 M� O-Ne-Mg-core from Nomoto (1983,1984,1987) and the
10.8 and 18 M� Fe-core progenitors from Woosley et al. (2002). I will illustrate the
differences between the O-Ne-Mg-core and Fe-core progenitors during the explosions
phase. I will additionally examine the long term post-bounce evolution which is deter-
mined by the appearance of the neutrino driven wind. The second part of this chapter
is devoted to the PNS evolution of more massive Fe-core progenitors in the mass range
of 40− 50 M�, where in the absence of an earlier explosion the continuous mass accre-
tion leads to a PNS collapse and the formation of a black hole. Further below, I will
discuss the quark-hadron phase transition during the early post bounce evolution of low
and intermediate mass Fe-core progenitor stars. The phase transition leads to explo-
sions, where in spherical symmetry otherwise no explosion could have been obtained.
Furthermore, it becomes observable in the neutrino spectra

3.1 Neutrino driven explosions and the neutrino driven
wind

Massive stars end their life in an explosion event with kinetic energies of the order 1051

erg. A region of low density and high entropy forms behind the explosion ejecta imme-
diately after the explosion has been launched, which is continuously subject to neutrino
heating. The neutrinos emitted from the remnant at the center, the protoneutron star
(PNS), heat the material above the PNS surface. This heat is partly converted into
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kinetic energy and the material accelerates to positive velocities, known as the neu-
trino driven wind. For the first time, we simulate the collapse, bounce, explosion and
the neutrino driven wind phases consistently for more than 20 seconds. In simulations
where no explosions are obtained naturally, we model neutrino driven explosions for
low and intermediate mass Fe-core progenitor stars by enhancing the charged current
reaction rates. In the case of a special progenitor star, the 8.8 M� O-Ne-Mg-core, the
explosion in spherical symmetry was obtained without enhanced opacities. The post ex-
plosion evolution is in qualitative agreement with static steady-state and parametrized
dynamic models of the neutrino driven wind. On the other hand, we find generally
smaller neutrino luminosities and mean neutrino energies as well as a different evolu-
tionary behavior of the neutrino luminosities and mean neutrino energies. In addition,
the neutrino driven wind is proton-rich for more then 10 seconds and the PNS prop-
erties and the contraction behaviour differ from the assumptions made for the inner
boundary in previous neutrino driven wind studies. Despite the moderately large en-
tropies of about 100 kB/baryon and the fast expansion timescale, the conditions found
are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the
neutrino driven wind settles down to a quasi-stationary state. After about 5 seconds
post bounce, the peak temperature inside the PNS already starts to decrease due to
the continues deleptonization. This moment determines the beginning of the neutrino
dominated cooling phase. We discuss the physical conditions of the quasi-static PNS
evolution and take the effects of deleptonization and mass accretion of the low density
envelope enclosed inside the mass cut into account.

Most of the work that will be presented in this section is collected in Fischer et al.
(2009b) and submitted to Astronomy & Astrophysics.

3.1.1 Introduction to the neutrino driven wind

Independent of the explosion mechanism, the mass enclosed inside the mass cut will
accrete onto the PNS after the explosion has been launched. The following dynamical
evolution of the PNS and hence the properties of the neutrino spectra emitted is de-
termined by the mass accretion and the EoS. On a timescale of several seconds after
the explosion has been launched, the region between the expanding explosion shock
and the PNS at the center is subject to the formation of the neutrino driven wind
as follows. Neutrinos continuously diffuse out of the hot PNS and heat the material
on top of the PNS surface before they reach the neutrinospheres. We define the PNS
surface to be the radius of the energy-integrated electron-neutrinosphere. The dom-
inant neutrino heating contributions are given by the captures of electron-neutrinos
and electron-antineutrinos at free nucleons. Matter is heated by neutrinos where the
thermal energy is converted into kinetic energy, which accelerates material on top of
the PNS surface to positive velocities. This matter outflow is known as the neutrino
driven wind.
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In this context, two particular studies are of special importance. The properties
of the neutrino driven wind as described in Woosley et al. (1994) are based on the
detailed radiation hydrodynamics simulation of a 20 M� Fe-core progenitor applying
the numerical model from Wilson and Mayle (1993). The simulation was carried until
about 18 seconds after bounce. Another state-of-the-art model of that time was the
explosion of the O-Ne-Mg-core by Mayle and Wilson (1988). Both investigations were
milestones in the research of core collapse supernovae and are based on detailed neutrino
input physics including neutrino transport, developed by J. R. Wilson. The results
obtained, in particular the properties of the ejecta and the neutrino observables such
as luminosities and energies, were considered the standard reference for more than 10
years. Neutrino driven wind studies used the results as parameters, where the conditions
found indicated the possible site for the production of heavy elements via the r-process.
In the simulations discussed in here, we follow a similar approach as Wilson and Mayle
(1993) and Mayle and Wilson (1988), where we apply the neutrino input physics based
on Bruenn (1985). Although we find general agreement with the previous work, in
particular the explosion phase, we find significant differences in the properties of the
neutrino driven wind. The entropies per baryon are smaller by a factor of 2-3 and
the wind stays proton-rich for more than 10 seconds for all our models. In addition,
the neutrino luminosities and mean energies are generally smaller. The mean neutrino
energies decrease with time, where they remain almost constant in the simulation of
Woosley et al. (1994). The largest difference arises in the decreasing difference between
the mean electron neutrino and antineutrino energies found in our simulations, i.e.
the neutrino spectra become more similar with respect to time. The difference in the
neutrino spectra in Woosley et al. (1994) remains large and even increases with time.
Using the results from Woosley et al. (1994) as reference, Qian and Woosley (1996)
analyzed the neutrino driven wind and formulated approximate analytical expressions
for various properties of the neutrino driven wind, e.g. the neutrino heating rate, the
electron fraction, the entropy per baryon and the mass outflow rate.

Based on the static wind equations, the results obtained in parameter studies (see
e.g. Duncan et al. (1986), Hoffman et al. (1997), Thompson et al. (2001) and Thompson
and Burrows (2001)) became known as static steady-state wind models, where Woosley
and Baron (1992), Woosley et al. (1994), Takahashi et al. (1994) and Witti et al.
(1994) described the neutrino driven wind in a radiation-hydrodynamics context. Of
special importance for the neutrino driven wind investigations is the impact on the
nucleosynthesis. Most interesting is the possibility to explain the production of heavy
elements via the r-process due to the large entropies, the fast expansion timescales and
the low electron fraction of Ye < 0.5 in the wind. Otsuki et al. (2000) explored general
relativistic effects on the neutrino driven wind and investigated the possible impact on
the nucleosynthesis. Recently, Wanajo (2006a) and Wanajo (2006b) investigated the
neutrino driven wind with respect to the r- and rp-processes.

The possibility of supersonic wind velocities has been explored in most of the refer-
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ences. The supersonically expanding material in the wind collides with the much slower
expanding and denser explosion ejecta. The material decelerates and a reverse shock
forms which is known as the neutrino driven wind termination shock (first observed
by Janka and Mueller (1995) and Burrows et al. (1995)). Recently, Arcones et al.
(2007) examined the post bounce phase of core collapse supernovae of several massive
progenitor stars. Their models were launched from massive progenitor stars that were
previously evolved through the core collapse, bounce and early post bounce phases
using sophisticated radiation hydrodynamics based on spectral neutrino transport in
spherical symmetry. The simulations are then continued applying a simplified radia-
tion hydrodynamics description (see Scheck et al. (2006)), assuming large luminosities
to trigger neutrino driven explosions in spherical symmetry. The neutrino driven wind
develops supersonic outflow and the wind termination shock appears in all their models.
Like most of the present neutrino driven wind studies, an interior boundary was as-
sumed instead of simulating the PNS interior for the PNS contraction and the diffusion
of neutrinos out of the PNS. However, steady-state wind studies could not predict the
important dynamical features from the presence of the neutrino driven wind termina-
tion shock, especially the deceleration of the wind material and the consequent entropy
as well as density and temperature increase during the deceleration. In this respect, the
investigation from Arcones et al. (2007) was a milestone in modeling the neutrino driven
wind consistently. On the other hand, they were focusing on parameters (luminosities
and mean neutrino energies) in agreement with the simulations of Bethe and Wilson
(1985) and Woosley et al. (1994). Although the dynamics is in general agreement,
several properties of the neutrino driven wind as well as the neutrino spectra emitted
differ significantly.

The present investigation follows a different approach. We simulate consistently
the dynamical evolution of the collapse, bounce and post bounce phases until the neu-
trino driven wind phase for more than 20 seconds. The simulations are launched from
the 8.8 M� O-Ne-Mg-core from Nomoto (1983,1984,1987) and the 10.8 and 18 M�
Fe-core progenitors from Woosley et al. (2002). Our numerical model is based on gen-
eral relativistic radiation hydrodynamics with spectral three-flavor Boltzmann neutrino
transport in spherical symmetry. The explosion mechanism of massive Fe-core progen-
itors is an active subject of research. To model neutrino driven explosions for such
progenitors in spherical symmetry, we enhance the electronic charged current reaction
rates artificially which increases the neutrino energy deposition and revives the SAS.
The mechanism including the tuned neutrino reaction rates will be further discussed
in §2 and §3. Such explosion models were investigated with respect to the nucleosyn-
thesis by Fröhlich et al. (2006 a-c). Here, we report on the formation of the neutrino
driven wind and the possibility of the wind developing supersonic velocities and hence
the formation of the wind termination shock. In addition, we will also illustrate the
explosion and the neutrino driven wind phases of the O-Ne-Mg core, where an explosion
is found in spherical symmetry even without artificially enhanced neutrino opacities.
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The results are in qualitative agreement with those of Mayle and Wilson (1988) and
Kitaura et al. (2006), who used a different EoS.

We find that for low progenitor masses, the neutrino driven wind termination shock
will develop, using the tuned neutrino reaction rates. When the neutrino reaction
rates are switched back to the standard opacities given in Bruenn (1985), the neu-
trino driven wind develops only a subsonic matter outflow. For intermediate progenitor
masses, the neutrino driven wind remains subsonic even with the artificially enhanced
neutrino emission and absorption rates. Since the neutrino driven wind depends sen-
sitively on the emitted neutrino spectra at the neutrinospheres, we believe accurate
neutrino transport and general relativity in the presence of strong gravitational fields
are essential in order to describe the dynamical evolution. Furthermore, the accurate
modeling of the electron fraction in the wind is essential for nucleosynthesis calcula-
tions, which can only be obtained using Boltzmann neutrino transport. In addition, it
is beyond the present computational capabilities to carry multi-dimensional simulations
with neutrino transport to several seconds after bounce. Hence, our investigations are
performed in spherical symmetry where we simulate the entire PNS interior rather than
approximating an interior boundary. We find significant discrepancies in comparison
with the assumptions made in previous wind studies. Material is found to be proton
rich for more than 10 seconds, where most wind models assume luminosities and mean
neutrino energies such that the neutrino driven wind becomes neutron-rich. We ques-
tion the validity of the approximations made in such wind studies. We believe that
an accurate and consistent modeling of the physical conditions in the wind is essential,
especially in order to be able to draw conclusions with respect to nucleosynthesis.

3.1.2 Enhanced neutrino emissivity and opacity

By our choice of a spherically symmetric approach, we implement the explosion mecha-
nism of massive Fe-core progenitor stars artificially to trigger neutrino driven explosions
during the post bounce evolution after the deleptonization burst has been launched.
Neutrino heating between the neutrinospheres and the SAS transfers energy from the
radiation field into the fluid. A part of this energy is converted into kinetic energy
which revives the SAS and launches the explosion. The neutrino heating timescale and
hence the neutrino driven explosions take place on a timescale of several 100 ms. The
resulting neutrino spectra from artificially induced explosions in spherical symmetry are
in agreement with the neutrino spectra of the very latest success of axially-symmetric
neutrino driven core collapse supernova explosions by Marek and Janka (2009).

During the post bounce evolution, heavy nuclei continue to fall onto the SAS and
dissociate into free nucleons. These free nucleons accrete onto the PNS surface. Hence
the dominant neutrino heating contributions behind the SAS are due to the electronic
charged current reactions. To trigger explosions in spherically symmetric core collapse
simulations of massive Fe-core progenitors, we enhance the emissivity j and absorp-
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tivity χ by a certain factor (typically 5 − 7) in the region between the SAS and the
neutrinospheres. This corresponds to matter with entropies above 6 kB/baryon and
baryon densities below 1010 g/cm3. The entropies ahead of the shock are lower and the
central densities of the PNS are higher, such that the artificial heating only applies to
the region between the neutrinospheres and the SAS. The artificially enhanced reaction
rates do not change the neutrino luminosities and mean neutrino energies significantly
for the electron-neutrinos and electron-antineutrinos. Furthermore, β-equilibrium is
fulfilled since the reverse reaction rates are obtained via the detailed balance. However,
the timescale for weak-equilibrium to be established is reduced and hence the electron
fraction changes on a shorter timescale. In combination with the increased neutrino
energy deposition, this leads to a deviation of the thermodynamic variables in compar-
ison to simulations using the standard opacities given in Bruenn (1985), which will be
further discussed in §3.1.9. The weak neutrino driven explosions obtained have explo-
sion energies of 6.5 × 1050 erg and 2 × 1050 erg for the 10 and the 18 M� progenitor
model respectively.

3.1.3 Explosion energy and mass cut

The explosion energy estimate is a quantity which changes during the dynamical evolu-
tion of the system. It is given by the total specific energy of the fluid in the laboratory
frame expressed in terms of the co-moving frame

Especific(t, a) = Γe+
2

Γ + 1

(
u2

2
− m

r

)
, (3.1)

which in turn is the sum of the specific internal energy e 1, the specific kinetic energy
given by the fluid velocity u = ∂r/α∂t squared and the specific gravitational binding
energy m/r with gravitational mass m and radius r. Γ(t, a) =

√
1− 2m/r + u2 and

α(t, a) are the metric functions in a non-stationary and spherically symmetric spacetime
with coordinate time t, baryon mass a and the two angular coordinates (θ, φ) describing
a 2-sphere of radius r(t, a) [see Misner and Sharp (1964)]. The explosion is determined
by the energy of the ejecta. Integrating Especific(t, a) with respect to the enclosed baryon
mass starting from the progenitor surface M toward the center

Etotal(t0, a0) = −
∫ a0

M
Especific(t0, a) da, (3.2)

gives the total mass integrated energy, at a given time t0 and mass a0. The expres-
sion (3.2) is negative during the collapse, bounce and the early post bounce phases

1The baryon contribution to the internal energy is composed of a thermal and nuclear part, i.e.
e = ethermal + enuclear. In NSE, e is given implicitly via the EoS of hot and dense nuclear matter. In
non-NSE, enuclear is the binding energy of the nuclei used in the reaction network.
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because the progenitor and central Fe-core are gravitationally bound. At some time
after bounce, expression (3.2) becomes positive in the region between the shock and
the neutrinospheres. It stays negative at large distances and close to the deep grav-
itational potential of the PNS, because the progenitor and the PNS continue to be
gravitationally bound. While the emission and scattering of neutrinos cool the PNS
interior, neutrino absorption deposits energy on a timescale τheating of the order 100
ms into the fluid near the neutrinospheres. This increases the specific internal energy
which matches at later (∼ 500 ms) post bounce times the gravitational binding energy
at a certain distance toward the center. This region is defined as the gain region {again}
where Etotal(t ≥ τheating, a) > 0, ∀ a ∈ {again}. On a suggestion by S. Bruenn, material
outside this region becomes gravitationally unbound and will be ejected where the en-
closed material will accrete onto the central PNS. The mass cut defines the transition
layer between ejected and non-ejected material as follows

acut = a (max (Etotal(t0, a))) , ∀a ∈ {again}, (3.3)

and the explosion energy estimate is defined as the total mass integrated energy given
at the mass cut

Eexpl = Etotal(t0, acut), (3.4)

at a given time t0 post bounce. It becomes clear from the above expressions that
the explosion energy estimate is sensitively determined by the balance of internal and
kinetic energies to gravitational binding energy.

From the time post bounce when the shock reaches low enough densities and tem-
peratures such that neutrinos decouple form matter completely, neutrino heating and
cooling does not affect the explosion energy estimate anymore. The additional energy
deposition from the neutrino driven wind, which will be discussed further below, might
affect the explosion estimate at later times. We will illustrate in particular the effect
of the formation of a supersonic neutrino driven wind and the wind termination shock
to the explosion energy estimate. In other words, only when the neutrino driven wind
disappears again the final value of the explosion energy can be obtained.

3.1.4 The neutrino observables

The neutrino radiation hydrodynamics equations are a coupled system which combines
the evolution of the matter properties given by the state vector y and the radiation field,
as documented in Liebendörfer et al. (2004) and references therein. The neutrino radi-
ation field is taken into account via the phase space distribution function fν(t, a, µ, E)
for each neutrino flavor ν = (νe, ν̄e, νµ/τ , ν̄µ/τ ). In spherical symmetry, it depends on the
time t, the enclosed baryon mass a as well as on the neutrino energy E and the cosine of
the propagation angle µ = cos(θ). The evolution of the distribution function is modeled
via solving the Boltztran transport equation. It determines the phase space derivative



90 Simulations of massive progenitor stars

of the specific distribution function Fν = fν/ρ, i.e. the distribution function divided by
the matter density ρ, in a co-moving frame (see for example Eq.(8) in ?) and due to
neutrino-matter interactions such as emission and absorption as well as scattering and
pair reactions.

In order to compare simulation results, neutrino observables can be defined. Com-
monly used are the neutrino luminosities, which are given by the phase space integration
of the distribution function as follows

Lν(t, a) = 4πr2ρ
2πc

(hc)3

∫ +1

−1

dµ

∫ ∞
0

E3 dE Fν(t, a, µ, E). (3.5)

In the general relativistic framework applied to the present investigation, the quantity is
understood as the number of neutrinos of energy E passing through the mass coordinate
a at time t taken in a co-moving frame at position r(t, a). Additionally useful quantities
are the root-mean-squared (rms) neutrino energies as well as the mean neutrino energies,
defined as follows

〈Eν(t, a)〉rms =

√√√√∫ +1

−1
dµ
∫∞

0
E4 dE Fν(t, a, µ, E)∫ +1

−1
dµ
∫∞

0
E2 dE Fν(t, a, µ, E)

, (3.6)

〈Eν(t, a)〉 =

∫ +1

−1
dµ
∫∞

0
E3 dE Fν(t, a, µ, E)∫ +1

−1
dµ
∫∞

0
E2 dE Fν(t, a, µ, E)

. (3.7)

We will use these three observables to illustrate the dynamical evolution of the radiation
field as well as for comparisons with previous studies.

3.1.5 Explosions in spherical symmetry

Progenitor stars more massive than 9 M� develop extended Fe-cores at the end of
stellar evolution. The explosion mechanism of such Fe-core progenitors is an active
subject of research. In the following section, we will investigate the neutrino driven
explosions of the 10.8 and 18 M� Fe-core progenitors from Woosley et al. (2002) in
spherical symmetry by enhancing the electronic charged current reaction rates artifi-
cially. Further below, we will investigate the explosion phase of the 8.8 M� O-Ne-Mg
core from Nomoto (1983,1984,1987), where the explosion is obtained without enhancing
the neutrino opacities.

Neutrino driven explosions of Fe-core progenitors

The neutrino luminosities and the rms as well as the mean neutrino energies are shown
in Fig.3.1 for the 10.8 (middle panel) and the 18 (right panel) M� progenitor model with
respect to time after bounce. Note that the more compact PNS of the 18 M� progenitor
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Figure 3.1: Electron-(anti) neutrino luminosities in the graphs (a), µ/τ -(anti)neutrino
luminosities in the graphs (b), rms neutrino energies in the graphs (c) and mean neutrino
energies in the graphs (d) (νe: solid lines, anti-νe: dashed lines, νµ/τ : dash-dotted lines),
with respect to time after bounce for the 8.8 M� O-Ne-Mg-core progenitor model from
Nomoto (1983,1984,1987) (left panel) and the 10.8 M� and 18 M� progenitor model
from Woosley et al. (2002) (middle and right panels respectively), measured in a co-
moving frame at 500 km distance.

model results in generally larger neutrino luminosities. The oscillating shock position
and the consequent contracting and expanding neutrinospheres during the neutrino
heating phase of the 10 and 18 M� progenitor models on a timescale of several 100 ms
are reflected in the electron-flavor neutrino luminosities, which correspondingly increase
or decrease respectively. During the heating phase, the mean neutrino energies of the
electron-(anti)neutrinos increase from about 8 (10) MeV after bounce to about 12 (14)
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Figure 3.2: Explosion energy estimate and shock position with respect to time after
bounce for the 10.8 M� progenitor model from Woosley et al. (2002). In addition, graph
(b) illustrates the position of the He-layer (dashed line) and the O-layer (dash-dotted
line).

MeV until the explosion is launched. The mean neutrino energy of the µ/τ -neutrinos
remains constant at about 18 MeV during the heating phase. The mean neutrino
energies are generally smaller than the rms-energies and follow the same behavior.
The explosions for both models are launched after about 300 ms post bounce, which
defines the neutrino heating timescale for the energy deposition in the gain region to
revive the SAS. Matter is accelerated to positive velocities and the SAS turns into the
dynamic explosion shock. It continuously propagates through the remaining domain to
the progenitor. After the explosions have been launched, the electron flavor neutrino
luminosities decay exponentially. Furthermore the jumps in the neutrino energies after
350 ms post bounce for the 10.8 and 18 M� progenitor models are due to the shock
propagation over the position of 500 km, because the luminosities and energies are
measured in a co-moving reference frame.

In addition, Fig. 3.2 shows the dynamical behavior of the explosion energy estimate
in graph (a) and the shock position in graph (b) with respect to time after bounce.
These figures illustrate the explosion phase of core collapse supernovae modeled in
spherical symmetry. After achieving a convergent value between 600 ms and 2 seconds
post bounce of 4.5 × 1050 erg, the explosion energy estimate is lifted slightly to about
6.5 × 1050 erg. This effect co-insides with the additional mass outflow obtained in the
neutrino driven and the appearance of the reverse shock, which will be discussed further
below. In simulations with a less intense(subsonic) neutrino driven wind, this effect is
much weaker and the explosion energy can be obtained already at about 1 second post
bounce.
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Figure 3.3: Evolution of the 8.8 M� progenitor model from Nomoto (1983,1984,1987)
during the collapse phase (top: progenitor configuration, middle: 24 ms before bounce,
bottom: at bounce). The composition in the graphs (a) are as follows: thin solid line
(C+O), dashed line (Ne+Mg), dash-dotted line (Fe+Ni), dotted line (He) and thick
solid line (Si+S).
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The O-Ne-Mg-core

A special star is the 8.8 M� progenitor model from Nomoto (1983,1984,1987). The
central thermodynamic conditions at the end of stellar evolution are such that only a
tiny fraction of about 0.15 M� of Fe-group nuclei are produced, where nuclear statistical
equilibrium (NSE) applies (see Fig. 3.3 (a) top panel). Instead, the central composition
is dominated by 16O, 20Ne and 24Mg nuclei. Because temperature and density increase
during the collapse, these nuclei are burned into Fe-group nuclei and the NSE regime
increases (see Fig. 3.3 (a) and (c) middle panel). The core continues to deleptonize,
identified at the decreasing Ye (see Fig. 3.3 (b)). We use our nuclear reaction network
as described in §2.2 to calculate the dynamically changing composition, based on the
abundances provided by the progenitor model. The size of the bouncing core ofMcore '
0.65 M� is significantly larger in comparison with the previous studies by Kitaura et al.
(2006) and Liebendörfer (2004), illustrated in Fig. 3.4(a) at different velocity profiles
before and at bounce. This is because we do not take the improved electron capture
rates from Hix et al. (2003) and Langanke et al. (2003) into account, which are based
on the capture of electrons on the distribution of heavy nuclei. It results in a lower
central electron fraction at bounce and a consequently more compact bouncing core of
about ' 0.1 M�, in comparison to the standard rates given in Bruenn (1985). The
remaining difference is most likely due to the stiff EoS from Shen et al. (1998a) applied
to the present study.
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Figure 3.4: Radial velocity profiles with respect to the baryon mass (a) and with respect
to the radius (b) for the 8.8 M� progenitor model from Nomoto (1983,1984,1987)

This progenitor is not only a special case due to the incomplete nuclear burning at
the end of stellar evolution but also due to the steep density gradient which separates
the dense core from the He- and H-envelope at 1.376 M�, see Fig. 3.3 (c). There, the
density drops over 13 orders of magnitude which makes it difficult to handle numerically.

The low density of the mass outside the O-Ne-Mg-core makes it possible to obtain
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Figure 3.5: Heating (> 0) and cooling (< 0) rates for the 8.8 M� progenitor model
from Nomoto (1983,1984,1987) during the explosion phase at 20 ms (left panel), 25
ms (middle panel) and 30 ms (right panel) post bounce. For a better comparison, the
velocities are plotted for the same post bounce times.
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the explosion in spherical symmetry supported via neutrino heating. Neutrino cooling
in the region of dissociated nuclear matter causes the expanding shock front to turn
into the SAS with no significant matter outflow. νe-cooling dominates over ν̄e-heating
by one order of magnitude. Only at the dissociation line of infalling heavy nuclei, the
neutrino energy deposition drives the SAS slowly to larger radii, for illustration see
the heating(cooling) rates and velocity profile in Fig. 3.5 (left panel) at 20 ms post
bounce. However, the cooling of νe still contributes to a large amount at 25 ms post
bounce over the heating of ν̄e and νµ/τ in Fig. 3.5 (middle panel) behind the SAS.
Only directly at the shock a small net-heating rate remains. Hence the influence of
the neutrinos to the explosion itself is of minor importance. More important is the
region of C-O-burning which produces Ne and Mg. The hydrodynamic feedback to
this thermodynamic transition can be identified already during the collapse phase of
the progenitor core at the velocity profiles in Fig. 3.4(a) at about 1.35 − 1.374 M�.
As material is shock heated post bounce, the transition layer where Ne and Mg nuclei
are burned into NSE propagates together with the expanding shock wave outwards. In
other words, NSE burns through the Ne-Mg-layer of the progenitor. Furthermore, the
transition (discontinuity) from C-O-burning is falling quickly towards the SAS. It was
found to be at about 350 km at 20 ms post bounce and at about 200 km at 25 ms
post bounce, illustrated at the velocity profiles (bottom) in Fig. 3.5 (left-right panels).
At about 30 ms post bounce, the entire Ne-Mg-layer is converted into NSE due to the
temperature increase obtained via shock heating. Hence, C and O nuclei are burned
directly into NSE.

In contrast to more massive Fe-core progenitors where O-burning produced an ex-
tended Si-S-layer, the amount of 28Si and 32S is less then 1% at the end of nuclear
burning for the O-Ne-Mg-core discussed here (see Fig. 3.3 (a) middle panel). This small
fraction of Si and S is already converted into NSE during the initial collapse phase, due
to the rapid density and temperature increase of the contracting core. Hence, C- and
O-nuclei are burned directly into NSE during the post bounce evolution. This sharp
transition is related to a jump in the density and the thermodynamic variables. As
the SAS propagates over this transition along the decreasing density, the shock acceler-
ates to positive velocities (see Fig. 3.5 right panel). The consequent explosion is hence
driven due to the shock propagation over the infalling transition between two different
thermonuclear regimes rather then by pure neutrino heating, illustrated at the velocity
profiles in Fig. 3.4(b). Although Kitaura et al. (2006) approximated nuclear reactions
during the evolution of the O-Ne-Mg-core progenitor, the results of their explosion
dynamics are in qualitative agreement with our findings.

The more massive Fe-core progenitors show the same thermo- and hydrodynamic
features as discussed above for the O-Ne-Mg-core due to the transition between differ-
ent thermonuclear regimes. However, the differences are smaller because C-O-burning
produces an extended layer composed of 28Si and 32S. The transition of Si-burning into
NSE is much smoother than the transition of C-O-burning into NSE. Furthermore, due
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to the more massive Si-S and C-O-layers for the Fe-core progenitors, the transitions
take more time of the order 100 ms to fall onto the SAS. The presence of neutrino
heating becomes important for the more massive Fe-core progenitors to drive the SAS
to large radii on a longer timescale. The effects of the shock propagation across the
transition between different thermonuclear regimes has been pointed out in Bruenn
et al. (2006) with respect to the explosion dynamics in axially-symmetric simulations
of massive Fe-core progenitors. In our spherically symmetric model we can not confirm
the driving force of explosions of Fe-core progenitors to be the shock propagation across
different thermonuclear regimes. It is rather the neutrino energy deposition, although
enhanced, which initiates the explosion. The shock is accelerated additionally when
crossing different thermonuclear regimes due to the density jumps at the transitions.

Comparison of the neutrino spectra

Striking is the agreement in the mean neutrino energies between all different progenitor
models (including the O-Ne-Mg-core and the Fe-core progenitors) during the explosion
phase, although the neutrino emissivities and opacities are enhanced for the Fe-core
progenitor models (see Fig. 3.1). The explosion phase for the O-Ne-Mg-core lasts only
until about 40 ms post bounce and is significantly shorter in comparison to the more
massive Fe-core progenitors. Furthermore, the luminosities are also smaller by a factor
of 2. For all models, the electron antineutrino luminosity is larger than the electron
neutrino luminosity on a timescale of 200 ms after the explosion has been launched.
This slight difference reduces again at later times where the electron neutrino luminos-
ity becomes again larger than the electron antineutrino luminosity. However, after the
explosion has been launched the behavior of the luminosities are in qualitative agree-
ment for all models. The same holds for the mean neutrino energies which increase
continuously during the neutrino heating phase. The electron (anti)neutrinos have rms
energies of about 12 (14) MeV where after the explosion has been launched rms energies
of about 11 (13) MeV are obtained. The values remain constant on the timescale of 1
second post bounce. The µ/τ -neutrino have rms energies of about 18 MeV during the
neutrino heating phase and about 15 MeV after the explosion has been launched. These
differences in the mean neutrino energies and luminosities during the neutrino heating,
initial and proceeding explosion phases are in correspondence with the electron fraction
of the material, as will be illustrated in the following section.

The electron fraction of the early ejecta

During the neutrino heating phase, the neutrino spectra are mainly determined by mass
accretion at the neutrinospheres. Neutron rich nuclei from the progenitor star with an
electron fraction of Ye ' 0.45 are falling onto the oscillating SAS and dissociate into
free nucleons and light nuclei, see Fig. 3.6 (d). These nucleons accrete than slowly onto
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the PNS surface at the center. Due to the increased electron-degeneracy behind the
SAS in Fig. 3.6 (c), weak-equilibrium is established at a lower value of the electron
fraction of Ye ≤ 0.15.
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Figure 3.6: Selected hydrodynamic variables during the explosion phase at three differ-
ent times after bounce for the 10.8 M� progenitor model from Woosley et al. (2002).

As soon as the SAS is revived and propagates outward, see the velocity and density
profiles in Fig. 3.6 (a) and (b), the electron degeneracy behind the expanding shock is
reduced and weak-equilibrium is established at a larger value of the electron fraction
of Ye > 0.56 2. The capture rates for electron-neutrinos at neutrons are favored over
electron-antineutrino captures at protons. This slight difference results in an electron
and hence proton excess. Consequently the explosion ejecta are found to be initially
proton-rich. This behavior of the electron fraction was found for all our explosion
models, for the 10.8 and 18 M� Fe-core progenitors with artificially enhanced opacities
and for the O-Ne-Mg-core using the standard opacities. Such explosion models were

2The EoS from Shen et al. (1998a) is limited to a maximum electron fraction of Ye ≥ 0.564. The EoS
has been extended by Gögelein (2007) to model asymmetric nuclear matter with an electron fraction
above 0.564. We assume an ideal gas of free nucleons and light nuclei, which is a sufficient assumption
for the conditions found in the region of the extremely proton-rich ejecta.
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investigated with respect to the nucleosynthesis in general and with respect to the
νp-process by Fröhlich et al. (2006a-c).

One of the main goals of the present investigation is to determine the behavior
of the electron fraction for the initially proton-rich ejecta on a long timescale of the
order 10 seconds, in a consistent manner. We explore the question if the material
ejected in the neutrino driven wind becomes neutron-rich and which are the conditions
(e.g. entropy per baryon, and expansion timescale) obtained in the neutrino driven
wind. These aspects are of special relevance for the composition of the ejecta, which is
determined via explosive nucleosynthesis analysis, in particular in order to be able to
draw conclusions with respect to a possible site for the production of heavy elements
via the r-process. Therefore, the continues expansion of the explosion ejecta must be
simulated, for which the inclusion of a large physical domain of the progenitor up to the
He-layer is required. Furthermore, since only the electronic charged current reactions
including the neutrino fluxes can determine the electron fraction, the PNS contraction
at the center and hence the contraction of the neutrinospheres are essential.

3.1.6 Simulation results of the neutrino driven wind

In this section we will investigate the post explosion evolution with special focus on the
properties of the ejecta, in particular the electron fraction. We will explore the problem
if the initially proton-rich ejecta become neutron rich at later times of the order 10
seconds and if the conditions might indicate a possible site for the nucleosynthesis of
heavy nuclei via the r-process. This has been assumed in static steady-state as well as
parametrized dynamic wind models, based on the results obtained by Woosley et al.
(1994). The ejected material in their simulations does never become proton-rich, the
electron fraction was found to continuously decrease with time after the explosion has
been launched. The ejecta were investigated with respect to the nucleosynthesis of
heavy elements where conditions could be obtained favorable for the r-process. The
stellar models applied to the present investigation of the neutrino driven wind are the
8.8 M� O-Ne-Mg-core and the 10.8 and 18 M� Fe-core progenitors, where for the latter
case the explosion is obtained using the artificially enhanced opacities as introduced in
S 3.1.3.

After the explosion has been launched, the region between the expanding explosion
shock and the neutrinospheres cools rapidly and the density decreases continuously as
illustrated in Figs. 3.9 and 3.10 (d) and (h). For most previous studies, the neutrino
reaction rates were assumed to freeze out at a distance of typically 10 km outside the
neutrinospheres. In terms of distance, we find this till too close to the neutrinospheres
to assume frozen neutrino reaction rates. The region where the neutrino reaction rates
freeze out depend on the thermodynamic conditions. Since these change continuously
during the dynamical evolution (e.g. density and temperature decrease during the ex-
pansion), we find such a static approximation to be rather simplified. In addition, the
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(a) The 10.8 M� progenitor model from
Woosley et al. (2002).
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(b) The 18 M� progenitor model from Woosley
et al. (2002).

Figure 3.7: Net-heating rates of the electron-flavor neutrinos. Including the charged
current reactions and neutrino-nucleon scattering (solid lines), the emission of neu-
trino pairs (dashed lines) and neutrino-electron scattering (NSE, dash-dotted lines) as
a function of the baryon density at three different times post bounce (thin: 1 second,
intermediate: 2 seconds, thick: 3 seconds) during the formation of the neutrino driven
wind.

thermodynamic conditions in the region where the neutrino driven wind develops cor-
respond not to the trapped and not yet to the free-streaming regime for the neutrinos
that diffuse out of the hot PNS on a timescale of the order of seconds. Hence, the
neutrino fluxes are important in addition to the neutrino reaction rates in order to
determine the evolution of the electron fraction Ye. Since the PNS and hence the neu-
trinospheres contract continuously due to the deleptonization, the degeneracy increases
and matter at the PNS surface is found to be neutron rich where Ye ≤ 0.1. This is
shown via the contracting neutrinospheres in Fig. 3.8 (a) and the electron fraction at
the corresponding neutrinospheres in Fig. 3.8 (b) (thin lines) with respect to time after
bounce.

Independent of the progenitor model, the region on top of the PNS surface is con-
tinuously subject to neutrino heating during the post explosion phase as shown in
Figs. 3.7(a) and 3.7(b) for the 10.8 and the 18 M� progenitor models respectively.
The dominant heating sources are the absorption of electron-(anti)neutrinos on free
nucleons, due to the large fraction of free nucleons (dissociated nuclear matter) in the
region on top of the PNS. In order to be able to compare the heating, we plot the
rates with respect to the baryon density in Figs. 3.7(a) and 3.7(b). The neutrino pair
production and thermalization processes, such as neutrino electron scattering, have a
negligible contribution to the net-heating outside the neutrinospheres. Figs. 3.9 (d) and
3.10 (d) show the contracting PNSs at the center via the radial baryon density profiles
and the electron-neutrinospheres. The region of interest corresponds to the density
domain of 107−1010 g/cm3. The degeneracy of the early ejecta favors proton-rich mat-
ter where a large electron fraction of Ye ' 0.54 is obtained. Hence, the absorption of
electron-antineutrinos on free protons dominates over electron-neutrino absorption on
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Figure 3.8: Neutrinospheres and electron fraction with respect to time after bounce for
the 10.8 M� progenitor model from Woosley et al. (2002). Graph (b) shows the electron
fraction from Boltzmann neutrino transport at the neutrinospheres (thin lines), at radii
of 5 km (intermediate lines) and 10 km (thick lines) outside the neutrinospheres.

free neutrons. The corresponding radial neutrino luminosities and root -mean-squared
(rms) energies are shown in Figs. 3.9 and 3.10 (e) and (g). In addition, for the first time
we were able to follow the deleptonization burst from core bounce for several seconds
over a large physical domain including several 105 km of the progenitor star. It can be
identify in the luminosities in the Figs. 3.9 (e) and 3.10(e) at 0.6 seconds after bounce
at a distance between 5× 104 and 105 km, leaving the computational domain between
1− 2 seconds post bounce.

After the explosion has been launched, the continued energy transfer from the neu-
trino radiation field into the fluid outside the neutrinospheres drives the matter entropies
to large values. The heat deposition at the PNS surface accelerates matter to positive
velocities, see Figs. 3.9 (s) and 3.10 (a) after ' 1 second post bounce. This matter out-
flow is known as the neutrino driven wind, which proceeds adiabatically at larger radii.
This is consistent with the constant radial entropy per baryon profiles in the graphs
(c). Furthermore, the rapidly decreasing luminosities reach values below 5× 1051 erg/s
already 1 second after bounce. The luminosities continue to decrease and reach values
below 1 × 1051 erg/s at 10 seconds after bounce, see Fig. 3.15 (a) and (b). The same
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holds for the mean neutrino energies where values below 10 MeV for the electron-flavor
neutrinos and below 12 MeV for the (µ/τ)-neutrinos are obtained.

Several previous wind studies achieved supersonic matter outflow velocities for the
neutrino driven wind due to the assumed large luminosities. In any case, the accelerated
material of the neutrino driven wind collides with the slower and subsonically expanding
explosion ejecta. In the case of a supersonic neutrino driven wind, this leads to the
formation of a reverse shock known as the wind termination shock. The formation of
the wind termination shock of the 10.8 M� progenitor model is illustrated in Fig. 3.11
and will be discussed in the following paragraph. In order to analyze the dynamical
evolution and the consequences of the formation of the reverse shock, steady-state wind
models can not be used. Radiation hydrodynamics is required in order to describe the
dynamical effects obtained consistently. Our results, obtained using general relativistic
radiation hydrodynamics based on spectral three flavor Boltzmann neutrino transport,
are in qualitative agreement with the detailed parametrized investigation by Arcones
et al. (2007).

During the initial and subsonic wind expansion, the matter entropies in Fig. 3.11
(c) increase slowly from 4 to 5 − 10 kB/baryon and the densities in Fig. 3.11 (b) and
temperatures in Fig. 3.11 (e) decrease on a long timescale over several seconds. Fur-
thermore, the reduced degeneracy in the wind increases the electron fraction shown in
Fig. 3.11 (d) slowly on the same timescale. When the material is accelerated superson-
ically with velocities of several 104 km/s up to radii of a several 103 km (see Figs. 3.11
(a) and (f)), the entropies increase from s ' 5−10 kB/baryon to s ' 40−60 kB/baryon
on a short timescale of the order of 100 ms. During this rapid expansion, the density
and temperature decrease drastically from 1010 g/cm3 to 104 − 102 g/cm3 and from 3
MeV to 0.1− 0.01 MeV respectively (see Figs. 3.11 (b) and (e)). It also corresponds to
a rapid decrease of the degeneracy which in turn is reflected in a rapid increase of the
electron fraction of the accelerated material on top of the PNS surface, from Ye ' 0.1
to Ye ' 0.56 (see Fig. 3.11 (d)). Furthermore, the supersonically expanding neutrino
driven wind collides with the explosion ejecta as can bee seen in Fig. 3.11 (a) (solid red
line) at radii of several 104 km. Consequently, the previously accelerated material decel-
erates behind the explosion ejecta as can be seen in the velocities in Fig. 3.11 (f). This
phenomenon becomes significant after about 2 seconds post bounce and corresponds to
the formation of the reverse shock, i.e. the wind termination shock. (see Fig. 3.11 (a)
dashed red line at radii of several 103 km). It causes an additional entropy increase to
the final values of s ' 50− 100 kB/baryon. During the rapid deceleration on the same
short timescale of the order 100 ms, the densities in Fig. 3.11 (b) and temperatures in
Fig. 3.11 (e) increase again slightly, where the degeneracy increases and hence the elec-
tron fraction reduces slightly to values of Ye ' 0.54. The following dynamical evolution
is given by the subsonic and adiabatic expansion of the explosion ejecta on a longer
timescale of the order of seconds. The density and temperature decrease slowly where
the entropies of s ' 50 − 100 kB/baryon and the electron fraction of about Ye = 0.54
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Figure 3.9: Selected hydrodynamic variables during the formation of the neutrino driven
wind at three different times after bounce for the 10.8 M� progenitor model from
Woosley et al. (2002). In addition, graphs (e) and (g) show the neutrino luminosities
and rms neutrino energies (solid lines: νe, dashed lines: ν̄e, dash-dotted lines: νµ/τ ). For
this progenitor model the neutrino driven wind becomes supersonic, using the enhanced
opacities.
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Figure 3.10: The same configuration as Fig. 3.9 for the 18 M� progenitor model from
Woosley et al. (2002). The neutrino driven wind remains subsonic for this progenitor
model.
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Figure 3.11: Hydrodynamic and thermodynamic properties of selected mass shells in
the neutrino driven wind as a function of time after bounce for the 10.8 M� progenitor
model from Woosley et al. (2002) where the enhanced opacities are used. Graph (a)
shows in addition gray-scaled the entropy per baryon, the position of the expanding
explosion shock (thick solid line) and the position of the wind termination shock (thick
dashed line).
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Figure 3.12: Selected mass shells in the neutrino driven wind from 1.3600 to 1.3639
M� for the 8.8 M� progenitor model from Nomoto (1983,1984,1987) where we use the
standard emissivities and opacities given in Bruenn (1985). The graphs show the same
configurations as Fig. 3.11 for the 10.8 M� progenitor model.
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Figure 3.13: Selected radial mass fraction profiles during the neutrino driven wind
phase for the 10.8 M� (left panel) and the 18 M� (right panel) progenitor model from
Woosley et al. (2002) at 1 second (top), 3 seconds (middle) and 5 seconds (bottom)
post bounce. The vertical lines represent the separation of NSE (EoS for hot and dense
nuclear matter) where heavy nuclei are represented by a single Fe-group nucleus ′Fe′
with average atomic mass and charge and non-NSE (nuclear reaction network) where
the most abundant Fe-group element is 56Ni, at temperatures of ' 0.5 MeV.
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remain constant. The latter aspects are essential for the nucleosynthesis analysis of the
ejecta. It can be understood in the sense that the neutrino reaction rates freeze out
and the matter conditions correspond to the neutrino free streaming regime.

Note that the strong neutrino driven wind for the 10.8 M� progenitor model is ob-
tained using the enhanced opacities as introduced in §2.3. We additionally illustrate
selected properties of the neutrino driven wind for the 8.8 M� progenitor model in
Fig. 3.12 where a strong neutrino driven wind was obtained using the standard emissiv-
ities and opacities given in Bruenn (1985). This is due to the low density of the region
between the neutrinospheres at the PNS surface and the expanding explosion shock,
where neutrino heating via the standard rates is sufficient to drive a strong supersonic
matter outflow. Matter entropies increase to s ' 10 kB/baryon during the initial accel-
eration of the wind and the densities and temperatures decrease slowly on a timescale
of seconds. The properties during the initial acceleration observed are similar to those
of the more massive 10.8 M� Fe-core progenitor. The same holds for the acceleration to
supersonic velocities. The timescale is reduced to 100 ms where the entropies increase
rapidly to s ' 20− 50 kB/baryon (see Fig. 3.12 (c)) and due to the reduced degeneracy
the electron fraction increases from Ye = 0.1 at the PNS surface to Ye = 0.56 (see
Fig. 3.12 (d)). Density and temperature decrease to 10 − 100 g/cm3 and 0.001 MeV
respectively (see Fig. 3.12 (b) and (e)). The difference to the more massive 10.8 M�
Fe-core progenitor is due to the less mass enclosed between the PNS surface and the ex-
panding explosion ejecta. For the more massive 10.8 M� Fe-core progenitor in Fig. 3.11
(f), the previously accelerated material collides with the explosion ejecta already after a
few 100 ms during the acceleration. Here the supersonic wind expands on a much longer
timescale up to several seconds before it collides with the explosion ejecta (see Fig. 3.12
(f)). During this adiabatic expansion, entropy and electron fraction remain constant.
The previously accelerated material collides with the much slower expanding explosion
ejecta where the material is decelerated and hence the reverse shock appears. This is
again similar to the formation of the reverse shock for the more massive 10.8 M� Fe-core
progenitor as discussed above. Matter entropies increase to several 100 kB/baryon (see
Fig.3.12 (c)), density and temperature increase sightly (see Fig.3.12 (b) and (e)) and
the electron fraction reduces slightly to Ye ' 0.52−0.54 due to the increased degeneracy
(see Fig.3.12 (d)). The following evolution is determined by the adiabatic expansion of
the explosion ejecta during which the entropy and electron fraction remain constant.

Comparing Figs. 3.9 and 3.10, the more compact wind region of the 18 M� progenitor
model produces a less pronounced neutrino driven wind in comparison to the 10.8 M�
progenitor model. The densities of the wind region are larger up to two orders of
magnitude and the temperatures are higher by a factor of 2. The resulting velocities
of the neutrino driven wind outflow are smaller by a factor of 2 and stay below 104

km/s. Hence, the neutrino driven wind remains subsonic for all times for the 18 M�
progenitor model (see Fig. 3.10 (a)) where the wind develops supersonic velocities for
the 10.8 M� progenitor model (see Fig. 3.9 (a)).
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In the following paragraph, we will discuss the composition of the neutrino driven
wind region to some extend. This is possible due to the recently implemented nuclear
reaction network. It includes the free nucleons and the symmetric nuclei from 4He
to 56Ni plus 53Fe, 54Fe and 56Fe. The initial composition is given by the progenitor
model. Mostly 28Si and 30S are shock-heated and burned to Fe-group nuclei due to
the temperature and density jump during the initial expansion of the explosion shock
(see Fig. 3.13 and compare with Figs. 3.9 and 3.10 (d) and (f)). The large fraction of
these Fe-group nuclei reduces behind the explosion shock due to photodisintegration,
indicated by the region of low density and high entropy in Figs. 3.9 and 3.10 (b) and
(c). This produces a large fraction of α-particles, which in our model represent light
nuclei. The region of α-particle domination behind the expanding explosion shock
increases with time. This behaviour is illustrated in Fig. 3.13 for both Fe-core progenitor
models under investigation. The position of the explosion shock is indicated by the
maximum of the mass fraction of Fe-group nuclei (in particular 56Ni). In addition,
density and temperature of the neutrino driven wind on top of the PNS surface decrease
continuously with time. The low temperatures and densities in that region do not justify
the assumption of NSE already at about 1 second after bounce, where temperatures
reach values below 0.5 MeV. Instead, our nuclear reaction network is used to determine
the composition in that region. There, the decreasing density and temperature and the
presence of a large fraction of free nucleons favor the freeze out of light nuclei. Finally,
the entire region between the expanding explosion shock and the PNS surface is found
to be dominated in our simulations by α-particles. In Fig. 3.13, the radii of the NSE to
non-NSE transitions are indicated by vertical lines. The slight mismatch between the
abundances between the heavy ’Fe’-group nuclei (the representative heavy nucleus with
average atomic mass and charge in NSE) and 56Ni (non-NSE) as well as between the
α’s is due to the different nuclear models used for the two regimes. Where in NSE the
EoS for hot and dense nuclear matter assumes 56Fe as the most stable nucleus due to
the smallest mass per nucleon for low temperatures and densities, the nuclear reaction
network applied in non-NSE calculates the composition dynamically based on tabulated
reaction rates.

3.1.7 Comparison with previous wind studies

The proton-to-baryon ratio of the wind

The approximations made in previous wind studies is a simplified description of the
radiation-hydrodynamics equations, see for example Duncan et al. (1986) and Qian
and Woosley (1996). More crucial is the absence of neutrino transport. Neutrino
heating and cooling is calculated only based on assumed neutrino luminosities and mean
energies. Hence, such models explore the neutrino driven wind by varying the neutrino
luminosities and energies, where the simplified radiation-hydrodynamics equations are
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solved (see for example Thompson et al. (2001)). Since neutrino transport is neglected,
the evolution equation for the electron fraction Eq. (2.27) cannot be solved because
the neutrino distribution functions are unknown. Hence, Eq. (2.30) is used in previous
static steady-state and parametrized dynamic studies of the neutrino driven wind.
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Figure 3.14: The Electron fraction approximations at a distance of 10 km outside the
electron-neutrinosphere for the 10.8 M� progenitor model from Woosley et al. (2002).

Fig. 3.14(a) compares the electron fraction behavior at a distance of 10 km outside
the electron-neutrinosphere, from Boltzmann neutrino transport (blue solid line) with
the approximations based on the neutrino capture rates (red dashed line) and based on
the luminosities and mean neutrino energies (red dash-dotted lines). The approxima-
tions are in qualitative agreement with Boltzmann transport. The differences on the
longer timescale are most likely due to the presence of light and heavy nuclei which
are not taken into account explicitly in the approximations. They change the number
of free nucleons available for the reactions. All descriptions agree qualitatively in the
prediction of a generally proton-rich material in the wind, based on the neutrino spectra
obtained via Boltzmann transport.

The neutrino observables in the wind

Comparing the neutrino spectra in Fig. 3.15 with the spectra assumed in previous static
steady-state and dynamic wind studies (see for example Thompson et al. (2001) and
Arcones et al. (2007)), we find two major differences: One, the neutrino luminosities
and mean neutrino energies assumed are significantly larger than those we find and two,
the assumed behaviour with respect to time is different.

The commonly used assumptions made in static steady-state and parametrised dy-
namic wind studies go back to the detailed investigation from Woosley et al. (1994),
who performed core collapse simulations based on sophisticated input physics. They
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investigated the neutrino driven explosion of a 20 M� progenitor star and followed the
evolution for 18 seconds post bounce into the neutrino driven wind phase. In their
simulations the electron (anti)neutrino luminosities decreased from initially 4 × 1052

(3×1052) erg/s at the onset of the explosion to 6×1051 (7.5×1050) erg/s at 10 seconds
after bounce, where strictly Lν̄e > Lνe after the onset of the explosion. The difference
between the neutrino and antineutrino luminosities remained small and constant with
respect to time up to 3 seconds post bounce and increased only significantly after 4− 5
seconds post bounce, after which the difference reached its maximum of 1.5×1050 erg/s
at the end of the simulation at about 18 seconds post bounce. The electron flavor neu-
trino luminosities in our models follow a different behaviour. They reach 1× 1051 erg/s
at about 5, 6 and 8 seconds post bounce for the 8.8, 10.8 and 18 M� progenitor models
respectively. The larger electron flavor neutrino luminosities for the more massive pro-
genitors are in correlation with the more massive PNSs and the hence larger number
of neutrinos emitted. However, the difference between electron-neutrino and electron-
antineutrino luminosities found in the present investigation is significantly smaller than
the difference in Woosley et al. (1994). During the initial explosion phase until about
300 ms after the onset of the explosion, the electron antineutrino luminosity is slightly
larger than the electron neutrino luminosity by about 1× 1050 erg/s which explains the
electron fraction of Ye > 0.5 of the early explosion ejecta. After about 900 ms post
bounce, the luminosities can hardly be distinguished where during the initial neutrino
driven wind phase after about 1 second after bonce the electron neutrino luminosity
becomes larger than the electron antineutrino luminosity by about 1× 1050 erg/s. This
difference reduces again at later times at about 6 seconds post bounce and the electron
flavor neutrino luminosities become more and more similar (see Fig. 3.15(a)).

Even more different are the values and the behavior of the mean neutrino energies,
see Fig. 3.15(c) and (d) and compare with Fig. 2 of Woosley et al. (1994). They found
(µ/τ)-neutrino energies of about 35 MeV which remained constant with respect to time.
Their electron-antineutrino energies increased slightly from about 20 MeV to 22 MeV
where the electron-neutrino energies decrease from 14 MeV to 12 MeV. This increasing
difference between the electron neutrino and antineutrino spectra favored neutron-rich
material, which was consistent with their findings of Ye < 0.5 for the material ejected
in the neutrino driven wind in Woosley et al. (1994). We cannot confirm these results
for the mean neutrino energies nor the evolution of the spectra. In contrast, all mean
neutrino energies decrease with respect to time for all our models, as a consequence of
deleptonization of the central PNS where the neutrinos are produced and diffuse out.
The electron (anti)neutrino energies decrease from about 10 (12) MeV at the onset
of the explosion to about 8.5 (9) MeV and the (µ/τ)-neutrino energies decrease from
16 MeV to 10 MeV at the end of the simulations. Hence, not only the mean energies
decrease also the difference between the electron flavor neutrino spectra decreases. The
reason for the neutrino spectra to become more similar with respect to time is related
to the evolution of the thermodynamic properties at the neutrinospheres, and will be
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discussed in the following subsection.
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Figure 3.15: Neutrino luminosities and mean energies with respect to time after bounce
for the 8.8 M� O-Ne-Mg-core from Nomoto (1983,1984,1987) (left panel) and the 10.8
M� (middle panels) and 18 M� (right panel) Fe-core progenitor models from Woosley
et al. (2002), measured in a co-moving reference frame at a distance of 500 km.

The PNS contraction

The behaviour of the neutrino spectra and hence the evolution and the properties of
the neutrinospheres is related to the PNS contraction. The contraction is caused by
a continuous deleptonization and translates to a continued steepening of the density
gradient at the PNS surface. Hence, the neutrinosphere radii for the electron flavor
neutrinos move closer together with time. The evolution of the neutrinosphere radii for
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both electron neutrino and antineutrino are illustrated in Fig. 3.16 (a) for the 10.8 M�
progenitor model. Their difference reduces from 740 m at about 1 second post bounce
to 370 m at about 5 seconds post bounce and further to 260 m at about 10 seconds
post bounce.

This contraction behaviour has consequences for the neutrino spectra, which are
determined during the neutrino driven wind phase by diffusion rather than by mass
accretion. Hence, the electron flavor neutrino luminosities can be determined as follows

Lν =
1

4
4π r2 uν |Rν , (3.8)

where uν ∝ T 4 is the thermal black body spectrum for ultra-relativistic fermions with
temperature T . The matter temperatures at the neutrinospheres decrease with respect
to time as shown in Fig. 3.16 (b), which is due to the continuous deleptonization of the
PNS. It explains the decreasing electron flavor neutrino luminosities and mean neutrino
energies with respect to time. Furthermore, the temperature difference decreases with
respect to time from 0.467 MeV at about 1 second post bounce to 0.362 MeV at about
10 seconds post bounce. Consequently the neutrino spectra become more similar with
respect to time. As illustrated in Fig. 3.15, the difference in the electron flavor neutrino
luminosities and mean neutrino energies decreases for all models under investigation.
It becomes additionally clear from the electron fraction approximation Eq. (2.30), not
the absolute values for the mean neutrino and antineutrino energies determine whether
matter becomes neutron- or proton-rich but their difference.
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Figure 3.16: Evolution of the neutrinosphere radii in graph (a) and temperature and
density at the corresponding neutrinospheres in graphs (b) and (c) respectively for the
10.8 M� progenitor model from Woosley et al. (2002).

Since this difference is small in our simulations, with initially at about 1 second post
bounce 〈Eνe〉rms ' 10 MeV and 〈Eν̄e〉rms ' 13 MeV and at later times at 10 seconds
post bounce only 〈Eνe〉rms ' 9 MeV and 〈Eν̄e〉rms ' 11 MeV, the values found for the
electron fraction of Ye > 0.5 (solid line in Fig. 3.14(b) for the Ye-approximation based
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on the luminosity and mean neutrino energies) clearly illustrate that the accelerated
matter in the neutrino driven wind stays proton-rich for more than 10 seconds. This
is in qualitative agreement with Boltzmann transport as discussed above and shown in
Fig. 3.14(a). Hence we find Eq.( 2.30) to be a good approximation to model the electron
fraction in the wind. On the other hand, most of the previous studies select the neutrino
luminosities and mean energies to investigate a neutron-rich neutrino driven wind. In
order to test the appearance of Ye < 0.5 under such conditions, we increase the difference
between the mean neutrino and antineutrino energies by hand. We evaluate expression
(2.30) shown in Fig. 3.14(b) at 10 km outside the electron-neutrinosphere for 1.2 (dashed
line) and 1.5 (dash-dotted line) times larger electron-antineutrino mean energies. For
the first value, Ye decreases but matter remains slightly proton-rich, where for the latter
value matter becomes neutron-rich. In other words, the larger the difference between
neutrino and antineutrino spectra are, the smaller becomes the electron fraction in
the wind. Please note that the luminosities and electron-neutrino energies remained
unmodified for this at-hock approach. Such an increase of the energy difference between
neutrinos and antineutrinos could perhaps be related to the uncertainty of the EoS for
nuclear matter, which will be discussed in the following paragraph.

The assumed PNS radii in previous wind studies reach about 10 km shortly (≤ 1
second) after the explosion has been launched. We define the radius of the PNS as
the position of the electron-neutrinosphere at the steep density gradient at the PNS
surface. The approximated inner boundary of the physical domain in most wind models
is close to but still inside this radius. The position of the neutrinospheres and the
contraction of the PNSs found in the present investigation differ significantly from the
assumptions made in most previous wind studies. We find PNS radii of about 40 km at
the time of the explosion and 20 km at about 2 seconds after bounce. During the later
evolution, the PNS contraction slows down. The PNS profile and hence the position of
the neutrinospheres as well as the contraction behavior itself is given implicitly by the
EoS for hot and dense nuclear matter as well as the PNS deleptonization. For the stiff
EoS from Shen et al. (1998a) and both the 10.8 and 18 M� progenitors, the PNSs reach
radii of 14.5−15 km only at about 10 seconds after bounce (see Fig. 3.16 (a)). The larger
radii of the neutrinospheres result in lower neutrino luminosities and mean energies and
a smaller differences between neutrino and antineutrino spectra in comparison to the
assumptions made in most previous wind models, rather than the PNS contraction only.
This is in agreement with Arcones et al. (2007) who additionally assume PNS radii of
15 km and find conditions that differ more from previous wind studies. They obtained
significantly larger values for the electron fraction. To summarize, this effects and the
different behaviour of the neutrino spectra assumed in the previous wind studies leads to
different matter properties of the neutrino driven wind. A detailed comparison study of
fast and slow contracting PNSs with respect to the neutrino driven wind, e.g. applying
EoSs with different compressibilities and asymmetry energies, would be necessary in
the context of radiation hydrodynamics simulations using spectral Boltzmann neutrino
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transport.

3.1.8 Long term post bounce evolution

During the neutrino driven wind phase, the neutrino luminosities and mean neutrino
energies decrease continuously, which leads to a constant decrease in the net-heating
rates. At luminosities below 1051 erg/s (see Fig. 3.15), the supersonic matter outflow for
the 10 M� progenitor model descents into a subsonic expansion. The wind termination
shock turns again into a subsonic neutrino driven wind. At later times, the neutrino
driven wind settles down to a quasi-stationary state with no significant matter outflow,
illustrated at the example of the 18 M� progenitor model in Fig.3.18 (a). The explosion
shock continues to expand and the material enclosed inside the mass cut accretes onto
the PNS at the center. In combination with the deleptonization, this leads to the con-
tinuous PNS contraction. However, the contraction proceeds on a timescale of seconds
and hence the PNS can be considered in a quasi-stationary state. The dense and still
hot and lepton rich PNS at the center is surrounded by a low density and high entropy
atmosphere, composed of light and heavy nuclei. See for example the abundances of
the 18 M� progenitor for the post bounce time of 22 seconds in Fig. 3.18 (e).

The internal temperature profile of the PNS is not constant. The central region of
the PNS did not experience shock heating immediately after the Fe-core bounce, since
the initial shock forms at the edge of the bouncing core. Its mass scales roughly with Y 2

e

and is typically around values of 0.5−0.6 M� for low and intermediate mass Fe-core pro-
genitors. Hence, the central temperature after bounce is given by the thermodynamic
conditions at bounce. The temperature changes only during the post bounce evolution
due to compressional heating and the diffusion of neutrinos. The shock heated material
inside the PNS shows significantly higher temperatures than at the center. The temper-
ature decreases again towards the PNS surface where the matter is less dense (for the
illustration of the radial temperature profile inside the PNS as well as the dynamical
evolution of temperature and density, see Fig.3.18 (f) and (b) at selected post bounce
times between 5 − 22 seconds). The neutrinos diffuse continuously out of the PNS
and carry away energy. This deleptonize the PNS where the central electron fraction
reduces from Ye ' 0.25 at the onset of the explosion to Ye ' 0.15 at 22 seconds after
bounce (see Fig.3.18 (d)). It relates to a temperature decrease from about 35 MeV
initially (at 3 seconds post bounce) to 23 MeV at about 22 seconds post bounce. This
corresponds to the initial and neutrino dominated cooling phase. Unfortunately the
achieved temperatures are not representative since important neutrino reactions, such
as the direct and modified Urca processes, are not yet taken into account.
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Figure 3.17: Comparing the mass accretion rate, timescale and entropy per baryon
approximations from our simulations and the approximations from Qian and Woosley
(1996) with respect to time after bounce for 8.8 (top), 10.8 (middle) and 18 M� (bottom)
progenitor models.
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3.1.9 Justification of the enhanced opacities

The neutrino driven wind was found to occur in all three progenitor models under inves-
tigation, the 8.8 M� O-Ne-Mg-core and the 10.8 and 18 M� Fe-core progenitor models.
Because the neutrino driven explosions for the Fe-core progenitors are launched using
artificially enhanced neutrino reaction rates, one may ask about the impact of these
modified rates on the neutrino driven wind. Therefore we performed additional runs
for which we switch back to the standard opacities given in Bruenn (1985) after the
explosion has been launched. The times when we switch back is about 500 ms after
bounce, chosen such that the dynamics of the explosion ejecta does not change anymore
significantly due to neutrino heating. However, the lower opacities translate to a signif-
icantly smaller net-heating by a factor of 5− 6 in the region on top of the PNS where
the neutrino driven wind develops. The energy deposition is still sufficient to drive the
neutrino driven wind but the matter velocities are smaller by a factor of 2− 5 in com-
parison to the wind velocities using the enhanced reaction rates (see Fig. 3.19 (a)). The
main effect of the artificially enhanced reaction rates and the hence increased neutrino
heating on the dynamics is clearly the stronger neutrino driven wind. For the 10.8 M�
progenitor model, the wind even develops supersonic velocities (as discussed above in
§4) in Fig. 3.19(a) (top panel). The supersonic wind collides with the explosion ejecta
where matter decelerates and hence the reverse shock forms, which additionally increase
the entropy in the wind (see Fig. 3.19(c) (top panel)). This additional entropy increase
is absent in the simulations using the standard opacities, where the wind stays subsonic.
The same holds for the 18 M� progenitor model (Fig. 3.19, bottom panel), even using
the enhanced opacities where the wind stays subsonic. This progenitor dependency of
the neutrino driven wind is related to the density of the envelope surrounding the PNS
after the explosion has been launched, which is significantly higher for more massive
progenitors and hence the neutrino driven wind is weaker. In addition to the neutrino
driven wind phase for the Fe-core progenitor models where the enhanced opacities are
used, the neutrino driven wind of the O-Ne-Mg-core is illustrated in Fig. 3.12 using
the standard rates from Bruenn (1985). The formation of a supersonic neutrino driven
wind could be confirmed including the formation of the wind termination shock. Hence,
one may speculate whether only low mass progenitors develop a strong neutrino driven
outflow where the influence of the wind to the matter properties of the ejecta becomes
small for more massive progenitors. The agreement of the time evolution of the mean
neutrino energies between all three progenitor models under investigation (using the
enhanced and standard opacities) in Fig. 3.15 is striking. In other words, the impact of
the artificial heating to the neutrino observables and hence to the electron fraction in
the wind is negligible. The influence on the composition of the wind is illustrated via the
electron fraction in Fig. 3.19 (d). Using the standard rates, the wind stays slightly more
proton-rich. Increasing the charged current reaction rates allows β-equilibrium to be
established on a shorter timescale. In addition, matter stays slightly more proton-rich
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for the the less intense neutrino driven wind, which develops for the Fe-core progenitors
using the standard neutrino opacities. The additional electron fraction reduction in
the neutrino driven wind for the models using the enhanced neutrino reactions is found
due to the larger degeneracy obtained in the stronger deceleration behind the explosion
ejecta. However, the findings of generally proton-rich ejecta as well as the generally
proton-rich neutrino driven wind does not change. The corresponding densities and
entropies per baryon in the wind are shown in Fig. 3.19 (b) and (c). The effects of the
artificial heating are slightly smaller entropies. The higher matter outflow velocities in
the wind region using the artificial heating results additionally in lower densities, shown
in Fig. 3.19 (b).

The artificially increased charged current reaction rates cannot be justified by phys-
ical uncertainties of the rates themselves. Similar to the large luminosities assumed
in Arcones et al. (2007), they could rather be seen as a lowest order attempt to take
the effects of multi-dimensional phenomena into account. For example, known fluid
instabilities increase the neutrino energy deposition efficiency. Convection allows mat-
ter to stay for a longer time in the neutrino heating region (see Herant et al. (1994),
Janka and Mueller (1996)). Present axially symmetric core collapse models of massive
Fe-core progenitor stars (even non-rotating) predict bipolar explosions (see Janka et al.
(2008)). The deviation from a spherical description and hence the deformation of the
SAS towards different modes due to fluid instabilities takes place during the neutrino
heating phase on a timescale of several 100 ms after bounce already during the explosion
phase. The luminosities are powered by a significantly larger mass accretion, compared
to spherically symmetric models, since the up-streaming neutrino heated matter is ac-
companied by a large down-stream of cold material. These larger luminosities may
power a supersonic neutrino driven wind behind the explosion ejecta while the neutrino
driven wind may remain absent in the angular wedges of the accreting material which
will not be ejected. However, we use spherically symmetric simulations since we be-
lieve that accurate Boltzmann neutrino transport and general relativistic effects are as
important for the physical conditions of the neutrino driven wind as the possibility to
follow the dynamical evolution for several seconds. This is by present standards beyond
the state-of-the-art of multi-dimensional core collapse simulations.

3.1.10 Nucleosynthesis discussion

Previous wind models have long been investigated as a possible site for the production of
heavy elements via the r-process, due to the expected neutron rich material ejected, the
large entropies in the neutrino driven wind and the short timescale of the neutrino driven
wind expansion (see Hoffman et al. (2007) and Panov and Janka (2009) and references
therein). The relevant quantities are shown in Figs. 3.11 and 3.12 for the 10.8 M�
and 8.8 M� progenitor models respectively. Illustrated are several selected mass shells
that are part of the region where the neutrino driven wind develops in our radiation
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Figure 3.18: Radial profiles of selected hydrodynamic variables for the 18 M� progen-
itor model at three different post bounce times, illustrating the disappearance of the
neutrino driven wind and the PNS cooling and contracting. Graph (e) illustrates the
composition at 22 seconds post bounce.
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Figure 3.19: Comparing selected hydrodynamic variables using the standard reactions
rates of Bruenn (1985) (solid lines) with the artificially enhanced rates (dashed lines)
for the 10.8 M� (top) and the 18 M� progenitor model (bottom).

hydrodynamics model based on spectral three flavor Boltzmann neutrino transport.
The inclusion of neutrino transport in a dynamical model is essential in order to obtain
consistent neutrino spectra which determine the evolution of the electron fraction and
the PNS contraction due to deleptonization and mass accretion. In comparison to
previous static steady-state and dynamic wind models - where these ingredients were
assumed - we confirm several properties of the accelerated material in the neutrino
driven wind, such as the fast expansion and the large matter outflow rate shown in
Fig. 3.17(a) and (b), the high velocities in the Figs. 3.11(f) and 3.12(f)) and the rapidly
decreasing density and temperature of the accelerated material in Fig. 3.11 (b) and (c)
respectively. The expansion timescale in Fig. 3.17(b) is given by the following expression

τdyn =
r

v

∣∣∣
T=0.5MeV

,

evaluated at the surface of constant temperature of T = 0.5 MeV, compared with an
alternative definition of the dynamic timescale which has been introduced in Thompson
et al. (2001)

τρ =

∣∣∣∣1v 1

ρ

∂ρ

∂r

∣∣∣∣−1

T=0.5MeV
,
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as well as a timescale approximation which has been derived in Qian and Woosley
(1996) Eq.(61)

τQW ∝
1

Lν̄e

1

εν̄e
RPNSMPNS,

where additionally an approximation for the mass outflow rate is derived as follows

dM

dt

∣∣∣∣
QW
∝ L

5/3
ν̄e ε

10/3
ν̄e R

5/3
PNSM

−2
PNS,

where RPNS and MPNS are the PNS radius and mass respectively, which we take to
be given by the electron-antineutrinosphere, and εν̄e =

〈
E2
ν̄e

〉
/ 〈Eν̄e〉 where 〈Eν̄e〉 is the

mean electron-antineutrino energy and Lν̄e is the electron-antineutrino luminosity, both
taken at the surface of constant temperature of T = 0.5 MeV. In comparison with pre-
vious wind studies (see for example Fig. 4 of Arcones et al. (2007)), we find generally a
longer timescale of τdyn = 30− 100 ms for the neutrino driven wind which corresponds
to a mass outflow rate of 10−3 − 10−5 M� s−1 shown in Fig. 3.17 (a) and (b) respec-
tively. However, we find generally a much longer timescale than the approximation τQW

which is of the order ∼ 1− 5 ms. The same holds for the mass outflow rate dM/dt|QW

which is smaller by one order of magnitude. This may be related to the crucial assump-
tions made during the derivation of the above expressions, e.g. hydrostatic equilibrium,
RPNS = 10 km, Lνe ' Lν̄e , εν̄e = 20 MeV, which differ significantly from our findings.
However, the wind entropies of 40 − 100 kB found (initially driven due to neutrino
heating and additionally due to the deceleration in the reverse shock) are significantly
smaller than often assumed in the literature and the previously accelerated matter does
not become neutron rich as the neutrino driven wind decelerates behind the explosion
ejecta but stays slightly proton-rich where Ye ' 0.54 for more than 10 seconds. This, in
combination with the much slower PNS contraction illustrated via the neutrinospheres
in Fig. 3.16 in comparison to static steady-state and dynamic wind models suggest that
the assumptions made in previous wind studies should be carefully reconsidered. These
assumptions are based on the detailed investigation of Woosley et al. (1994). They
followed a neutrino driven core collapse supernova explosion of a 20 M� progenitor star
for 18 seconds after bounce into the neutrino driven wind phase. Their numerical model
was developed by J. R. Wilson and is based on sophisticated neutrino radiation hydro-
dynamics. The behaviour of the neutrino luminosities of all three flavors is in general
agreement with our results. However, the mean neutrino energies differ significantly.
We find generally smaller mean neutrino energies which decrease with respect to time
after bounce, where the mean electron-neutrino energy decreases slightly and the mean
electron-antineutrino energy increases slightly in the simulation analysed in Woosley
et al. (1994) (see Fig.3). This results in an increasing difference between the electron
flavor neutrino mean energies, where in our simulations this difference decreases. This
fact in combination with the different PNS properties found in Woosley et al. (1994),
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result in a strong neutrino driven wind where high entropies up to 400 kB/baryon and
a low electron fraction of Ye ' 0.35− 0.45 was obtained. These properties of the neu-
trino driven wind differ quantitatively from our results, where entropies of 60 − 100
kB/baryon are obtained and matter stays proton-rich (Ye ' 0.52− 0.54) for more then
10 seconds.
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3.2 Protoneutron star evolution of massive Fe-core
progenitors

In this section I will report on the emitted neutrino signal from failed core collapse
supernova explosions and the formation of black holes via PNS collapse. For a re-
view and previous studies of black hole formation including neutrino transport, see
for example Baumgarte et al. (1996), Beacom et al. (2001), Liebendörfer et al. (2004)
and Sumiyoshi et al. (2007). We performed general relativistic simulations in spherical
symmetry using spectral three-flavour Boltzmann neutrino transport. By our choice
of a spherically symmetric approach, we assume that accurate neutrino transport and
general relativistic effects are more important for the analysis of the emitted neutrino
signal, than multi-dimensional phenomena which are investigated in Marek et al. (2009).
The simulations are launched from several massive progenitors stars of 40 and 50 M�.
I will present results from the investigation of the differences in the emitted neutrino
signals for several massive progenitor models from different stellar evolution groups,
such as Woosley and Weaver (1995), Heger and Woosley (2002), Umeda and Nomoto
(2008) and Tominaga et al. (2007), during the accretion phase before black hole forma-
tion. For such progenitors, the presence of strong gravitational fields implements that
general relativistic effects are important and must be taken into account.

The emitted neutrino signal depends on the matter conditions during the dynamical
evolution of the PNS contraction, which are given by the EoS for hot and dense nu-
clear matter. Sumiyoshi et al. (2007) compared two different EoSs with respect to the
compressibility of nuclear matter and illustrated the different emitted neutrino signals,
especially the different timescales for the PNSs to become gravitationally unstable dur-
ing the accretion phase of failed core collapse supernova explosions. We point out the
importance of the progenitor model for the emitted neutrino signal. We demonstrate
that it is hardly possible to draw any conclusions from the neutrino signal about the EoS
or the progenitor model separately, as both quantities have similar effects on the emitted
neutrino spectra. Moreover, we analyse the feasibility of approximating the electron-
neutrino luminosity at large distances (typically of the order of a few 100 km and more)
depending explicitly on the progenitor model (the mass accretion rate) and the tem-
perature at the neutrinosphere. Liebendörfer (2005) presented a density-parametrized
deleptonisation scheme which can be applied in multi-dimensional simulations during
the collapse phase. We introduce a simple model to illustrate the dependency of the
electron-(anti)neutrino luminosity from the matter conditions at the PNS surface.

(µ/τ)-(anti)neutrinos are assumed to interact via neutral current reactions (as in-
troduced in §2.1.3 above) only as the thermodynamic conditions do not favour the
presence of a large fraction of µ/τ . Hence the muonic charged current reactions are
suppressed. On the other hand, the (µ/τ)-(anti)neutrino emission is rather important
for the cooling at the (µ/τ)-neutrinospheres and needs to be handled carefully. In an
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earlier study, Liebendörfer et al. (2004) emphasized the (µ/τ)-(anti)neutrino luminos-
ity increase during the accretion phase of a 40 M� progenitor model. Fischer et al.
(2007) extended this study and presented preliminary results investigating the connec-
tion between the (µ/τ)-(anti)neutrino luminosity increase and the contraction of the
PNS during the accretion phase. Here, we compare selected pair creation reactions
separately and analyse the consequences of these different reactions to the post-bounce
evolution of massive progenitors before black hole formation.

The work which is summarised in the following sections has already been published
in Fischer et al. (2009a).

3.2.1 Aspects of PNS evolution and black hole formation

Fig. 3.20 illustrates the physical conditions during the collapse of a PNS to a black
hole. The PNSs are modelled as the central object in failed core collapse supernova
explosions of massive progenitors of (40 and 50 M�). As the central density in Fig. 3.20
(b) exceeds a certain critical value (depending on the EoS), nuclear forces and neutron
pressure fail to keep the PNS stable against gravity and the central part of the PNS
starts to contract. This can be identified at the radial velocities in Fig. 3.20 (a). During
the subsequent compression, the central matter density in Fig. 3.20 (b) continues to
rise above 1015 g/cm3 while the shock position remains almost unaffected at 30 − 35
km. In addition, the hydrodynamical timescale for the PNS to become gravitationally
unstable and to collapse to a black hole is reduced to milliseconds.

The moment of black hole formation is reached when the central lapse function
(α in Fig. 3.20 (c)) approaches zero with respect to time. Due to our co-moving co-
ordinate choice, no stable solutions of the differential equations for momentum and
energy conservation can be found. In addition, Fig. 3.20 (d) shows the relativistic fac-
tor Γ =

√
1− 2m/r + u2 and α as a function of the enclosed baryon mass a for three

snapshots directly before and during the PNS collapse, illustrating the region where
relativistic effects become important.

The neutrino signal from PNS accretion from two different EoSs

In the following paragraphs, I compare the soft EoS from Lattimer and Swesty (1991)
(formerly EoS1) with the compressibility of 180 MeV with the stiff EoS from Shen et al.
(1998a) (formerly EoS2) with the compressibility of 281 MeV during the accretion phase
of a core collapse simulation of the 40 M� progenitor model from Woosley and Weaver
(1995) before black hole formation.

Fig. 3.21 compares the neutrino luminosities in graph (a) and the mean neutrino
energies in graph (b) as a function of time after bounce for EoS1 and EoS2. The
larger electron-neutrino luminosity slightly before and at bounce is due to the different
thermodynamic conditions achieved at bounce as illustrated in Fig. 3.22. These different
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Figure 3.20: Radial velocity and density profiles as a function of the radius. The
relativistic factor Γ and the lapse function α as a function of the enclosed baryon mass
at three different times after bounce during the PNS collapse (solid line 433.6 ms,
dashed 435.4 ms, dash-dotted 435.5 ms), at the example of a 40 M� progenitor from
Woosley and Weaver (1995). In addition, the lapse function at the centre is plotted
with respect to time after bounce.
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Figure 3.22: Bounce conditions for the core collapse simulation of a 40 M� progenitor
model from Woosley and Weaver (1995), comparing EoS1 (thin lines) with EoS2 (thick
lines).
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Figure 3.23: The last stable configuration of the PNSs (solid lines) before becoming
gravitationally unstable and starting to collapse (dashed lines) to a black hole (dash-
dotted lines), using the 40 M� progenitor model from Woosley and Weaver (1995).
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EoS T ρ Ye
[MeV] 1014 [g/cm3]

eos1 (a) 29.78 12.0 0.299
eos1 (b) 96.05 5.86 0.270
eos2 (a) 50.27 9.16 0.297
eos2 (b) 92.04 4.37 0.271

Table 3.1: Thermodynamic conditions of the PNSs in Fig. 3.23, comparing the central
data (a) with data corresponding to the maximum temperatures obtained (b).

conditions are a direct hydrodynamic consequence of the more compact bouncing core
using EoS1 (see the higher central density in graph (a)), which results in a larger central
deleptonisation in graph (b). The corresponding entropy and temperature profiles are
shown in graphs (c) and (d) respectively. At intermediate densities and temperatures,
heavy nuclei appear with slightly larger average atomic charge and number using EoS1
(see graph (e)). On the other hand, the fractions of light nuclei in graph (f) differ
quite a lot. This is a deficit of EoS1 and has been noticed by the authors J. Lattimer
and F. D.Swesty. During the postbounce phase, the simulation using the soft EoS1 is
characterized by a short accretion time of ' 500 ms and thus a rapid PNS contraction
before becoming gravitationally unstable and collapsing to a black hole.

Fig. 3.23 illustrates the last stable configuration before the PNSs (identified via the
νe-spheres) become gravitationally unstable. The Figure compares the baryon density,
electron fraction, entropy, temperature and velocity profiles in the graphs (a) - (e)
respectively with respect to the enclosed baryon mass for the two EoSs (EoS1: left
panel, EoS2: right panel).

The configuration achieved using the stiff EoS2 is supported via larger pressure
and nuclear forces, which stabilise the PNS against gravity and allow more mass to
be accreted. The maximal masses for both (hot and dense) EoSs were found to be
2.196 M� for EoS1 and 3.15 M� for Eos2 respectively. This results in an extended PNS
accretion phase of ' 1.4 s using EoS2 for the progenitor model under investigation.
The corresponding thermodynamic conditions for the PNS configurations illustrated in
Fig. 3.23 are shown in Tab. 3.1. (a) compares the central data with (b) the maximum
temperatures achieved, illustrating the region where the PNSs become gravitationally
unstable and start to collapse. However, both of the PNS collapses to a black hole
proceed along similar paths although the model using EoS2 is much more massive and
has reached a higher degree of deleptonisation. Note that the PNS collapse proceeds
adiabatically and the higher densities found during collapse correspond to β-equilibrium
that is established at a higher electron fraction in Fig. 3.23 graphs (b). In other words,
the entropy per baryon in Fig. 3.23 graphs (c) should be conserved. This is not quite
the case for both models using EoS1 and EoS2 due to the temperatures of T > 100
MeV reached during the PNS collapse, for which both EoSs are not valid for.
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Our results are in qualitative agreement with an independent study on the subject
of an EoS comparison, recently published by Sumiyoshi et al. (2007).

3.2.2 The electron-(anti)neutrino signal from protoneutron star
accretion

The core of massive stars are optically opaque, the only sources of information that
is able to leave are gravitational waves and neutrinos. An indirect insight into the
happenings inside the Fe-core is given by the observed composition of the ejecta in
the case of an explosion. However, gravitational waves have proven difficult to detect
and nucleosynthesis calculations are model dependent. Neutrinos on the other hand
(especially the electron-flavour neutrinos), are of interest for neutrino detector facilities,
such as Super-Kamiokande and SNO, being able to resolve the neutrino signal from a
Galactic core collapse supernova on a tens of millisecond timescale. The understanding
and modeling of the neutrino emission, absorption and transport is essential in core
collapse supernova models to be able to compare the predicted neutrino signal with a
possible future measurement.

With special focus on multi-dimensional simulations of the post-bounce phase, we
present an analysis of the electron-neutrino luminosity. We construct an electron-
neutrino luminosity approximation, which depends only on the physical conditions at
the electron-neutrinosphere Rνe and can be applied after the neutronisation burst after
bounce has been launched. We will also compare the approximation with spherically
symmetric simulations using three-flavour Boltzmann neutrino transport.

Electron-neutrino luminosity dependencies

The long term sources of energy for the electron-neutrino luminosity are the total change
of the potential energy given by the amount of accreted mass per unit time (accretion
luminosity)

LṀ =
GM

r
Ṁ, (3.9)

at Rνe . Short term neutrino emission depends on the temperature increase at the
neutrinosphere (diffusion luminosity)

LD = 4πR2
νec uνe , (3.10)

where uνe ∝ T 4 is the thermal black body energy spectrum for ultra-relativistic fermions
with matter temperature T . Hence, LD depends only on the thermodynamic conditions
at the electron-neutrinosphere, which are given by the PNS contraction behavior and
is correlated to the mass accretion rate. The accurate neutrino number density from
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Boltzmann transport is (in spherical symmetry) given by

〈nνe〉|Rνe =
4π

(hc)3

∫ ∞
0

E2dE

∫ +1

−1

µdµfνe(t, a, µ, E), (3.11)

at the electron-neutrinosphere Rνe . fνe(t, a, µ, E) is the electron-neutrino distribu-
tion function, which depends (in spherical symmetry) on the phase space coordinates
(t, a, µ, E) where µ = cos θ is the cosine of the neutrino propagation angle θ and E is
the neutrino energy. We have found that the assumption of a thermal electron-neutrino
number spectrum at Rνe ,

〈nνe〉 ≡ nν ∝ T 3,

does not generally apply for all progenitor models. The measure of deviation is denoted
as

β =
〈nν〉
nν

. (3.12)

Comparing the electron-neutrino luminosity from Boltzmann transport calculations
(outside the neutrinosphere at large distances; typically of the order of a few 100 km
or more) with the luminosities given by Eq. (3.9) and Eq. (3.10), we find the following
approximation for the electron-neutrino luminosity

Lνe = min

(
1

4
LD, β LṀ

)
. (3.13)

The pre-factor 1/4 is in agreement with Janka (2001) (see §6.1) and expresses the ap-
proximate amount of outward directed transported thermal neutrinos. These neutrinos
are assumed to carry information about the local thermodynamic matter conditions,
since the neutrino temperature can be approximated by the matter temperature at Rνe .

Due to the lack of the neutrino momenta in approximate neutrino transport calcula-
tions, it is usually not possible to calculate the coefficient β. However, since β depends
only on the mass accretion induced deviation of the neutrino spectrum from a black
body spectrum, an exponential behavior of the quotient of the accretion luminosity and
the diffusion luminosity was empirically found

β ' 1

2
e
L
Ṁ
LD . (3.14)

β can be understood as a function of the temperature scaled with Ṁ , since the tem-
perature at Rνe is adjusted by the PNS contraction given by the mass accretion rate.

In the following subsections, I will compare the approximation Eq. (3.13) with three-
flavour Boltzmann neutrino transport during the postbounce evolution of different pro-
genitor models.
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Thermal electron-neutrino spectra

The large mass accretion rates of ' 1− 2 M�/s of the 40 and 50 M� progenitor models
from Woosley and Weaver (1995) in Fig. 3.24(a) and from Tominaga et al. (2007);
Umeda and Nomoto (2005) in Fig. 3.24(b) respectively (see graphs (c)) result in fast
contracting PNSs (see graphs (d)). The electron-neutrino number densities differ only
slightly from a thermal spectrum after the neutrino burst has been launched after about
50 ms post-bounce. Hence, the electron-neutrino luminosities at large distances (here
500 km) in the graphs (b) are dominated by the diffusion luminosity over the accretion
luminosity due to the limiter in Eq. (3.13). Graphs (a) compare β from Boltzmann
transport calculations via Eq. (3.12) and via Eq. (3.14). β were found to be 0.7,
increasing after 100 ms after bounce up to 0.8.

Finally, the fast contracting PNSs become gravitationally unstable rather quickly
(due to the soft EoS eos1 and the large mass accretion rate) and collapse to black holes
after 435.5 ms after bounce for the 40 M� progenitor model and after 487.3 ms after
bounce for the 50 M� progenitor model.

Non-thermal electron-neutrino spectra

Here I will continue the analysis from above and present data from core collapse sim-
ulations of massive progenitors with small mass accretion rates. These models show
a different electron-neutrino luminosity dependency with respect to the approximation
Eq. (3.13) during the post-bounce phase. Fig. 3.24(c) and Fig. 3.24(d) illustrate the
post-bounce evolution of a 40 M� progenitor model from Woosley et al. (2002) and a 50
M� progenitor model from Umeda and Nomoto (2008) respectively (both using EoS1).

We have found the electron-neutrino luminosities are initially (until ' 150 ms post-
bounce) dominated by the diffusion approximation of Eq. (3.13), as the matter temper-
atures are moderately high. This is in agreement with an earlier study by Liebendörfer
et al. (2004). However, as the accretion rates in Fig. 3.24(c) and Fig. 3.24(d) graphs
(c) decrease drastically after ' 150 ms post-bounce (even below 0.5 M�/s). The tem-
perature at Rνe increases less rapidly and the neutrino number density at Rνe differs
from a thermal spectrum. β in Fig. 3.24(c) and Fig. 3.24(d) graphs (a) were found to
be generally smaller, between 0.6 and 0.7. The PNS contraction times exceed more
than 1 second, as can be seen from the slowly contracting neutrinospheres in graphs
(d). The electron-neutrino luminosities in Fig. 3.24(c) and Fig. 3.24(d) graphs (b)
are generally smaller (< 0.5 erg/s) in comparison to the thermal dominated spectra in
Fig. 3.24(a) and Fig. 3.24(b). For low accretion rates, the electron-neutrino luminosities
are dominated by the accretion luminosity as described by the limiter in Eq. (3.13).

As an example of an intermediate mass progenitor model with a small mass accretion
rate, we apply the same analysis to a core collapse simulation of the 15 M� progenitor
from Woosley and Weaver (1995) in Fig. 3.25 (using EoS2), which often served as a
reference model (e.g. Liebendörfer et al. (2005)). Due to the small mass accretion
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(a) 40 M� (Woosley and Weaver (1995)).
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(b) 50 M� (Tominaga et al. (2007)).
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(c) 40 M� (Woosley et al. (2002)).
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(d) 50 M� (Umeda and Nomoto (2008)).

Figure 3.24: The electron-neutrino luminosity approximation and Boltzmann neutrino
transport calculations during the post-bounce evolution for several massive progenitors,
comparing β in the graphs (a) from simulations with Boltzmann neutrino transport
Eq. (3.12) (dashed line) and Eq. (3.14) (solid line) and the graphs (b) illustrate the dif-
ferent luminosities separately (solid line: diffusion part of Eq. (3.13), dashed: accretion
part of Eq. (3.13), dash-dotted: Boltzmann neutrino transport). In addition, graph (c)
shows the mass accretion rate at the radius of the electron-neutrinosphere and graph
(d) shows the contracting electron- and (µ/τ)-neutrinospheres.
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rate in graph (c), the neutrinospheres in graph (d) contract on timescales of hundreds
of milliseconds. In contrast to the massive progenitors with a small mass accretion
rate, the neutrino number spectrum at the electron-neutrinosphere differs only slightly
from the thermal one and β in graph (a) was found to be quite large, between 0.7
increasing up to 0.8 as for the massive progenitors with a large mass accretion rate.
The electron-neutrino luminosity in graph (b) agrees initially (until 200 ms post-bounce)
with the approximation Eq. (3.13) due to the limiter and is dominated by the diffusion
luminosity. Note, although the electron-neutrino Luminosity can be approximated by
the accretion luminosity after 200 ms post-bounce, the difference from the diffusion
luminosity is only ' 10%. On a longer timescale, the accretion luminosity becomes too
large.
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Figure 3.25: The same presentation as Fig. 3.24(d) for a 15 M� progenitor model
from Woosley and Weaver (1995) with a small mass accretion rate. In contrast to the
massive progenitors with a comparable mass accretion, the electron-neutrino luminosity
is dominated by the diffusion part of Eq. (3.13).

So far, it has been demonstrated that the electron-neutrino luminosity in the post-
bounce phase of core collapse supernovae depends sensitively on the progenitor model
induced neutrino-spherical data and does not generally follow a thermal spectrum.
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3.2.3 Dependency of the emitted neutrino signal on the progen-
itor model

The shock dynamics during the post-bounce evolution of failed core collapse supernova
explosions take place in the innermost ' 200 km in spherical symmetry. Note that
present axially symmetric core collapse models are more optimistic. The dynamical
evolution outside the Fe-core is determined by the progenitor structure and does not
evolve significantly during the simulation time. Material from the gravitationally un-
stable surrounding regions continues to fall onto the SAS. Nuclei dissociate into free
nucleons and light nuclei, which accrete slowly onto the PNS at the centre. The PNS
contraction is determined by the evolution of the baryon mass

∂a

α∂t

∣∣∣∣
Rνe

=
4πr2uρ

Γ
(3.15)

at the radius of the electron-neutrinosphere Rνe . u = ∂r/α∂t is the radial velocity of
the accreting matter, ρ is the matter density, Γ is the relativistic factor and α is the
lapse function. For the derivation of the expression for the evolution of the gravitational
mass, see the appendix of Liebendörfer et al. (2001a).

Above, we have discussed the connection between the emitted neutrino spectra and
the matter properties at the neutrinospheres. In the following, we will explore whether
there is a correlation between the different neutrino spectra and the structure of the
progenitor.

The progenitor models under investigation are the 40 M� from Woosley and Weaver
(1995) (40WW95), the 40 M� from Woosley et al. (2002) (40W02), the 40 M� from
Umeda and Nomoto (2008) (40U08), the 50 M� from Umeda and Nomoto (2008)
(50U08) and the 50 M� from Tominaga et al. (2007); Umeda and Nomoto (2005)
(50T07). All are non-rotating and of solar metallicity. These models differ in the size
of the iron-cores (see Tab. 3.2). The masses of the iron-cores are thereby determined
intuitively, as Fe-group nuclei (52Fe, 53Fe, 56Fe and 56Ni) are more abundant then 28Si
and 32S.

Fig. 3.26(a) and Fig. 3.26(b) illustrate the post-bounce luminosities and mean neu-
trino energies of the progenitor models listed in Tab. 3.2. As discussed above, the
different mass accretion rates result in different PNS contraction timescales and differ-
ent electron-neutrino luminosity dependencies.

The models 40WW95, 40U08 and 50T07 with large mass accretion rates at the
PNS surface are identified with a short accretion phase after bounce before black hole
formation. This corresponds to large luminosities (Lνe > 0.5 − 1 erg/s, Lµ/τ > 0.4
erg/s) in the graphs (a) and (c). The (µ/τ)-(anti)neutrino mean energies in the graphs
(c) increase rapidly after bounce and reach 34 MeV. On the other hand, the models
40W02 and 50U08 with small mass accretion rates at the neutrinospheres show before
black hole formation an extended accretion phase of more than 1 second with smaller
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(a) The 40 M� progenitor models from 40U08
(solid lines), 40WW95 (dashed lines) and 40W02
(dash-dotted lines).
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(b) The 50 M� progenitor models from 50T07
(solid lines) and 50U08 (dashed lines).

Figure 3.26: Neutrino luminosities in the graphs (a) and (c) and mean neutrino energies
in the graph (b) and (d) for the different progenitor under investigation with respect
to time after bounce.

luminosities after the neutrino burst has been launched (Lνe < 0.5 erg/s, Lµ/τ < 0.2
erg/s). The electron-neutrino flavour mean energies in the graphs (b) and (d) follow
a similar behavior for all progenitor models while the (µ/τ)-(anti)neutrino energies
increase over a longer timescale during the PNS contraction. For the model 40W02, the
(µ/τ)-(anti)neutrino energies increase only after 700 ms after bounce from 22 MeV up
to only 30 MeV. For the model 50U08, the PNS does not reach equivalent compactness
during the post-bounce accretion phase before becoming gravitationally unstable and
collapsing to a black hole. The (µ/τ)-(anti)neutrino energies increase from 22 MeV to
24 MeV only after 1.1 s after bounce. The progenitor models under investigation are
based on different stellar evolution models. They involve different treatments of, for
instance, nuclear burning, mixing, neutrino losses and the EoS. Hence, all models show
differences at the final stage of stellar evolution, as illustrated in Fig. 3.27(a) for the 40
M� progenitor models under investigation and Fig. 3.27(b) for the 50 M� progenitor
models under investigation. To be able to compare the progenitors, we evolve each
model until the same central densities are reached. These are 9.12× 109 g/cm3 for the
40 M� and 1.58× 1010 g/cm3 for the 50 M� progenitor models.

Consequently, the central region of all models are very similar. The 40 M� pro-



3.2 Protoneutron star evolution of massive Fe-core progenitors 137

Model Fe-core tbh
[M�] [ms]

40WW95 1.76 435.5
40W02 1.56 1476.5
40U08 1.74 548.4
50U08 1.89 1147.6
50T07 Unknown 487.3

Table 3.2: The size of the iron core and time between bounce and black hole formation
for the different progenitor models.

genitors have electron factions of Ye ' 0.44, temperatures of ' 0.85 MeV and infall
velocities of ∼ 1000 km/s. The more massive 50 M� progenitors have similar infall ve-
locities but higher central temperatures of 0.9 MeV and are slightly more deleptonised
with Ye ' 0.43. Note that the central hydrodynamical variables are rather similar
compared to the properties outside the Fe-cores (see Fig. 3.27(a) and Fig. 3.27(b)).
There, the differences of the baryon density can be more than one order of magnitude
for the same progenitor mass while temperatures and infall velocities can differ by a
factor of 2. These differences are responsible for the different dynamical evolution in
the post-bounce phase and will be discussed in the following paragraph.

The central regions evolve in a similar manner and are synchronised at core bounce
for all progenitor models, as illustrated in Fig. 3.28(a) and Fig. 3.28(b). As demon-
strated above, the PNS contraction behavior and the subsequent electron-neutrino lumi-
nosity are determined by the mass accretion rate at the neutrinosphere, which depends
on the amount of mass that falls through the SAS from regions outside the Fe-core.
Hence, the mass accretion rate at the neutrinosphere is given by the progenitor structure
at bounce as illustrated in Fig. 3.28(a) and Fig. 3.28(b).

The infall velocities in Fig. 3.28(a) and Fig. 3.28(b) (a) are similar for all progenitor
models. On the other hand, for the same progenitor mass differ the matter densities
in the graphs (b) outside the Fe-cores substantially, comparing the models from the
different stellar evolution groups.

The models 40WW95, 40U08 and 50T07 have high matter densities outside the Fe-
cores. This corresponds to large mass accretion rates at the neutrinospheres and short
post-bounce accretion times before the PNSs reach the critical masses and collapse
to black holes (see Fig.3.26(a) and Fig.3.26(b)). The electron-neutrino luminosities
correspond to thermal spectra.

The opposite holds for the models 40W02 and 50U08, with small matter densities
outside the Fe-cores. This leads to small mass accretion rates at the neutrinospheres and
consequently extended post-bounce accretion phases (see Fig.3.26(a) and Fig.3.26(b)).
The electron-neutrino luminosities correspond to accretion spectra.

We have found a correlation between the electron flavour neutrino luminosities and
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Figure 3.27: Selected hydrodynamic variables for the different progenitor models un-
der investigation at the final stage of stellar evolution, evolved until the same central
densities are reached.
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Figure 3.28: Selected hydrodynamic variables for the different progenitor models under
investigation at core bounce.
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the progenitor structure. The latter has a direct impact on the mass accretion rate at the
neutrinosphere and hence on the electron-neutrino spectra. We find that the structure
of the progenitor has a non-negligible influence on the emitted neutrino spectra. This
is in contradiction to Sumiyoshi et al. (2008), who attribute differences in the emitted
neutrino emission mainly to the properties of the EoS. This is due to their selective
choice of progenitor models, which all have large accretion rates producing thermal
electron-neutrino spectra. However, for models that have been used in both studies,
e.g. 40WW95 and 50T07, the results are qualitatively similar.

3.2.4 The (µ/τ)-neutrino signal

In the following, the analysis of Liebendörfer et al. (2004) is extended, who investigated
the drastic (µ, τ)-(anti)neutrino luminosity increase during the late PNS accretion phase
of failed core collapse supernova explosions of massive progenitors.

The evolution of the neutrino luminosities depends on the production rates and the
diffusion timescale, which in turn depend on the assumed matter conditions. These
conditions and the production rates for all neutrino flavours are plotted in Fig. 3.29
for a core collapse simulation of a 40 M� progenitor model applying the full set of
pair, i.e. electron-positron annihilation, N − N -Bremsstrahlung and the annihilation
of trapped electron-flavour neutrino pairs. In order to separate the different regimes,
we plot all quantities with respect to the baryon density. Note, that the electron-
(anti)neutrinospheres are at lower densities than the (µ/τ)-neutrinospheres, since the
latter do not interact via charged current reactions.

Most (µ, τ)-(anti)neutrino pairs are produced at ρ ' 1013 g/cm3. This finding re-
mains rather constant during the late accretion phase, because the matter temperature
T and the electron fraction Ye do not change at that density, as can be seen in Fig. 3.29
(e) and (f). In contrast, at the (µ/τ)-neutrinosphere (ρ ' 1011 g/cm 3) we find a dras-
tic increase in temperature and Ye. Due to the continuous contraction of the PNS, the
electron-degeneracy reduces which favours more electron-positron-pairs. These ther-
malised electron-positron-pairs increase the (µ/τ)-neutrino pair reaction rates in graph
(d) via electron-positron annihilation), which increases the (µ/τ)-(anti)neutrino lumi-
nosity contribution from lower densities. In addition, the diffusion time scale of the
(µ/τ)-neutrinos is reduced during the PNS contraction. The corresponding optical
depths (at 300 km distance) are shown in graph (c).

3.2.5 Improvements of the neutrino opacities

Finally, we will investigate corrections of the standard neutrino opacities (Bruenn
(1985)), following the suggestions by Horowitz (2002) regarding the effect of weak mag-
netism, nucleon recoil and corrections for the strangeness of nucleons, as already briefly
explored in Liebendörfer et al. (2003) using a 15 M� progenitor model. We will illus-
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trate the effects using the example of a failed supernova explosion of a 40 M� progenitor
model from Umeda and Nomoto (2008) during the post-bounce evolution.

The separate consideration of weak magnetism is a higher order extension of the
zeroth order scattering cross section, which reduces the antineutrino and increases the
neutrino cross sections. On the other hand, recoil reduces both neutrino- and antineu-
trino cross sections, as discussed in Horowitz (2002). The total modified cross section
for the electronic charged current reactions

νe + n→ p+ e−,

ν̄e + p→ n+ e+,

can be written as
σ = σ0R(E),

with zeroth order cross section σ0. R depends on the neutrino energy E. For aver-
age neutrino energies, R ' 1 for the electron-neutrinos, and R < 1 for the electron-
antineutrinos. As discussed in Horowitz (2002), this effect reduces the electron-antineutrino
opacity from regions inside the neutrinosphere, as illustrated in Fig. 3.30 resulting in
a larger electron-antineutrino luminosity in graph (a) and larger mean neutrino ener-
gies in graph (b). The electron-neutrino luminosity and mean neutrino energies remain
almost unaffected. This phenomenon becomes important during the PNS accretion
phase, as the matter density rises and more neutrinos are found at higher energies,
where the higher order corrections become significant. The electron-antineutrino lumi-
nosity rises above the electron neutrino luminosity, here after 400 ms post-bounce, as
the PNS contraction reaches a certain level of compactness.

The correction from the strange quark contributions are taken into account by a
modified axial-vector coupling constant, for (anti)neutrino-nucleon scattering

ν +N → ν +N.

The larger electron-antineutrino cooling rates inside the neutrinosphere result in a
more compact PNS supporting higher matter temperatures, compared to core collapse
simulations of the same progenitor model with otherwise identical input physics. The
largest differences are found at the (µ/τ)-neutrinosphere, while the contribution from
lower matter densities remains unaffected. The higher matter temperatures are directly
reflected in larger neutrino-pair reaction rates at regions near the (µ/τ)-neutrinosphere,
while the contribution from high matter density at ρ ∼ 1013 g/cm3 remains constant.
The larger (µ/τ)-neutrino pair reaction rate increases the (µ/τ)-neutrino luminosity
from regions with intermediate matter density ρ ∼ 1011 − 1012 g/cm3. This increases
the effect of cooling, which supports a more compact PNS. The more rapidly contracting
PNS at the centre consequently leads to a shorter PNS accretion time, before becoming
gravitationally unstable and collapsing to a black hole. For the model considered here,
the difference is ' 20 ms as can be seen in Fig. 3.30.
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lines: 400 ms thick black lines: 500 ms), illustrating the effects of the PNS contraction
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Figure 3.30: Comparing the standard neutrino opacities (thick black lines) (see Bruenn
(1985)) with the corrections (thin blue lines) given in Horowitz (2002), plotting the
neutrino luminosities and the mean neutrino energies as a function of time after bounce,
for all three neutrino flavours (solid line: νe, dashed: ν̄e, dash-dotted: µ/τ -neutrinos)
at 500 km distance.
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3.3 The quark-hadron phase transition in core col-
lapse supernovae

After the deleptonisation burst has been launched 10 − 20 ms post bounce and the
bounce shock has turned into the SAS, the post bounce evolution of massive progenitor
stars is determined by mass accretion on timescales of 100 ms. The mass accretion
rate is given by the progenitor model and the consequent PNS contraction behaviour
depends on the EoS for hot and dense nuclear matter, during which the central density
and temperature increase continuously. The post bounce PNS evolution is illustrated
in Fig. 3.37 for the 10.8 M� model from Woosley et al. (2002) and in Fig. 3.32 for the
40 M� model from Woosley and Weaver (1995). The figures show selected properties of
mass shells between 0.1 and 1.5 M� from the innermost PNS domain. The graphs (a)
show the infalling material before bounce and the post bounce contraction at the centre,
during which the temperature in the graphs (b) increases above 10 MeV and the density
in the graphs (c) increase above nuclear saturation density ρ0 (vertical dashed line). On
the timescale of 100 ms, the two progenitor models evolve very similar. For the more
massive 40 M� progenitor, the post bounce temperatures are slightly higher and reach
20 MeV at the centre (in comparison to 15 MeV for the 10.8 M� progenitor) as well as
slightly higher central densities, up to 5 × ρ0 (in comparison to 1.5 × ρ0 for the 10.8
M� progenitor). Furthermore, matter at the central part of the PNSs is high iso-spin
asymmetric. The proton-to-baryon ratio (give by the electron fraction Ye obtained at
core bounce even reduces to Ye ' 0.25. Matter at such conditions inside PNS interiors
is treated in core collapse supernova simulations as normal nuclear matter. However,
one may ask on the validity of this description at densities above nuclear saturation and
temperatures of tens of MeV. At such conditions, the transition from hadronic matter
to quark matter might occur. For that reason, we apply a quark matter EoS based on
the well known and widely applied MIT bag model (see §2.7.3) to simulations of low
and intermediate mass Fe-core progenitors.

The first attempt investigating the quark-hadron phase transition in simulations
of massive stars goes back to Takahara and Sato (1988). They try to find a relation
between the appearance of quark matter and the multi-peaked neutrino signal from
SN1987a (see e.g. Hirata et al. (1988), Bionta et al. (1987)), applying general relativistic
hydrodynamics in spherical symmetry and a parametrised EoS. More sophisticated
input physics was applied to the investigation of Gentile et al. (1993). They applied
general relativistic hydrodynamics and a description of deleptonisation during the Fe-
core collapse as well as a sophisticated EoS for both hadronic and quark phases. The
transition between these two phases was constructed via a co-existence region, i.e. the
quark-hadron mixed phase. They found a significant softening of the EoS in the mixed
phase as well as the formation of an additional shock wave which appeared due to
the quark-hadron phase transition. The additional shock follows and finally mergers
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Figure 3.31: PNS evolution of selected mass elements between 0.1 to 1.15 M� for the
low mass 10 M� Fe-core progenitor model. The dashed line in the graphs (c) illustrates
nuclear saturation density.
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Figure 3.32: The same configuration as Fig. 3.37 but for the massive 40 M� progenitor
model.
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with Fe-core bounce shock, shortly after its appearance. Both studies could not make
predictions of possible features in the neutrino signal emitted due to the lack of neutrino
transport post bounce. Simulations of the QCD phase transition of extremely massive
100 M� Fe-core progenitors have recently been studied by Nakazato et al. (2008). Their
core collapse model is based on general relativistic three-flavour Boltzmann neutrino
radiation hydrodynamics in spherical symmetry and employs the sophisticated EoS
from Shen et al. (1998a) for hadronic matter. They applied the MIT bag model with
a large bag constant and hence a high critical density. The transition from hadronic
matter to free quarks was modelled via an extended mixed phase applying a Gibbs
conditions. They confirmed a significant softening of the EoS in the mixed phase due
to the reduced adiabatic index. They could also not conclude to the neutrino signal
emitted due to the immediate formation of a black hole during the phase transition.

In the following subsections, results from core collapse simulations will be presented
where the quark-hadron phase transition takes place during the early post bounce
evolution. The EoS applied is based on the hadronic model from Shen et al. (1998a),
which was extended by a quark EoS for strange quark matter developed by Sagert et al.
(2009a) based on the MIT bag model (see §2.3.7) at high densities and temperatures.
The resulting EoS table contains contributions from hadrons and quarks. The phase
transition is constructed applying Gibbs conditions, which results in an extended mixed
phase. The conditions (i.e. T , Ye,ρc) for the phase transition, i.e. the critical points in
the phase diagram (in other words the critical density which depends on the temperature
and the electron fraction), are already introduced in §2.3.7 and depend on the bag
constant. In order to agree with data from heavy ion collision (HIC) experiments 3

and neutron star mass measurements 4, we chose the two values B1/4 = 162 and 165
MeV for the bag constants which provide neutron stars with maximum stable masses
of 1.56 and 1.50 M� of baryon mass for the two bag constants B1/4 = 162 and 165 MeV
respectively. These two values result in critical densities of the order ρ0 (see the phase
diagrams in §.2.3.7 Fig. 2.7), which is not in contradiction with HIC data due to the
high iso-spin asymmetry in core collapse supernova matter.

First, the dynamical evolution of the PNS during the QCD phase transition will
be discussed. The PNSs are modelled as central object in core collapse supernova
simulations of low and intermediate mass progenitors in spherical symmetry where no
explosions could be obtained. Below, the consequences of the QCD phase transition
and the possible observation in the neutrino signal emitted will be illustrated. The very
first results of this investigation based on core collapse supernova simulations of 10.8
and 15 M� progenitor models are already published in Sagert et al. (2009b).

3HIC matter is more or less iso-spin symmetric with Ye ' 0.5 and considered of only up- and
down-quarks, which results in a high critical density typically ρc > 2× ρo. Hence, HIC matter differs
from form supernova matter and the critical density reduces significantly for the latter case discussed
here.

4At present, the most precise neutron star mass measurement, Hulse-Taylor pulsar with 1.44 M�
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3.3.1 The dynamics of the phase transition

The simulations are launched from low and intermediate mass Fe-core progenitors of
10, 13 and 15 M�, using models from the series of Woosley et al. (2002) which we
evolve through the Fe-core collapse, bounce and early post-bounce phases. Without the
enhanced neutrino heating as discussed in §3.1, such progenitor stars will not explode
during the post-bounce evolution and the PNSs will contract on a timescale of 100 ms.

Remark 18 The conditions for the appearance of quark matter are monitored by the
quark volume fraction XQ as follows

Hadronic phase → XQ = 0,

Mixed phase → 0 < XQ < 1,

Quark phase → XQ = 1.

The appearance of strange quarks can be understood via flavour changes (exchange of
W± bosons) and is justified since β-equilibrium conditions are fulfilled

u+ d↔ u+ s.

The two values chosen of the bag constant already produce XQ > 0 for the conditions
obtained at core bounce. However, XQ stays small (< 10%) and reduces again due to
the density decrease during the shock expansion shortly after bounce. It only increases
again as the PNS starts to contract.

Fig. 2.8 illustrates the final baryon EoS (hadrons and quarks) with respect to the
baryon density. For matter elements that reach the mixed phase during the PNS con-
traction, the adiabatic index (i.e. the pressure gradient) reduces. This softens the EoS
and higher densities are favoured in comparison to the pure hadronic EoS. In addition
to the softening of the baryon EoS for matter in the mixed phase, the higher densities
and temperatures result in a different electron degeneracy. β-equilibrium is established
at a lower value of the electron fraction during the post-bounce accretion phase, in
comparison to simulations where the pure hadronic EoS was used. In this sense, also
the electron pressure reduces for matter in the mixed phase during the post-bounce
accretion phase. However, the timescale for this softening of the EoS during the post-
bounce accretion phase is correlated with the density and temperature increase of the
PNS due to mass accretion (given by the progenitor model) and hence of th order 100
ms. Only when a certain fraction of the PNS is in the mixed phase where XQ > 0.5
(∼ 0.2 M�) during the PNS contraction, the reduced adiabatic index causes matter in
the mixed phase to contract. This is illustrated in Fig. 3.33, graphs (a) where the quark
fraction in the graphs (d) increases and the PNS starts to contract (middle panel). The
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Figure 3.33: PNS collapse during the QCD phase transition due to the reduced adiabatic
index in the mixed phase.
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contraction proceeds into an adiabatic collapse with supersonic infall velocities (right
panel) as more and more matter is converted into the mixed phase. The increased
densities in the graphs (b) and temperatures in the graphs (d) cause β-equilibrium to
be established at a lower value of the central electron fraction, from initially Ye ' 0.25
to 0.2. However, the additionally emitted neutrinos can not escape because the matter
conditions are such that neutrinos are fully trapped. The collapse only halts as matter
that has gone through the mixed phase during the PNS collapse and reach the pure
quark phase, where the adiabatic index increases again (see Fig. 2.8). In other words,
the EoS stiffens for matter in the pure quark phase. Consequently, a stagnation wave
forms at the boundary between the pure hadronic and quark phases. It propagates out-
wards and turns into a shock front at the sonic point. This additional accretion shock is
standing at the phase boundary between the soft mixed phase and the stiff pure quark
phase, while the first SAS remains unaffected from the happenings inside the PNS at
about 100 km. The timescale is reduced from 100 ms during the post bounce accretion
(PNS contraction) to milliseconds, similar to the discussion of black hole formation via
PNS collapse in §3.2. The accretion shock inside the PNS will be referred to as quark
shock in the following, in order to distinguish both shocks inside the simulated domain.

The subsequent evolution of the quark shock is determined by the dissociation of
infalling nucleons into up-, down- and strange quarks, which in turn is given by the
balance between ram pressure ahead of the quark shock and thermal pressure from the
appearance of free quarks behind the quark shock. For all situations studied, i.e. the
two choices of the bag constant and progenitor models of 10, 13 and 15 M�, the thermal
pressure behind the quark shock dominates and causes the quark shock to expand slowly
(see Fig.3.34 graph (a) left panel). The presence of the quark shock (i.e. matter is shock
heated) reduces the electron degeneracy and β-equilibrium changes to a larger value
of the electron fraction, as can be seen in Fig.3.34 graph (c) left panel. As soon as
the expanding quark shock reaches the steep density gradient between the mixed and
the pure hadronic phase, the quark shock detaches from the mixed phase and turns
into a dynamic shock with positive matter outflow (Fig.3.34 graph (a) and (d) middle
panel). In this expanding regime, the central density and temperature reduce slightly
(see Fig.3.34 graph (b) and (c) middle panel). On the other hand, the temperature
of the shock heated hadronic material increases from 8 MeV to 25 MeV. This reduces
the electron degeneracy and β-equilibrium establishes at an even higher value of the
electron fraction, i.e. from Ye = 0.1 to Ye = 0.3 (compare Fig.3.34 graphs (c) and (e)
middle and right panels). The situation differs from the early shock propagation after
the Fe-core bounce where heavy nuclei are dissociated into light nuclei and nucleons.
The matter falling onto the quark shock is already fully dissociated and composed
of free nucleons only. The impact of the additional shock heating are higher Fermi-
levels of the nucleons that are occupied. There are no energy losses due to dissociation
processes. Even further, an additional difference to the situation after core bounce is
the much steeper density gradient at the PNS surface which allows for a significantly
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Figure 3.34: Early post quark evolution of the PNS, determined by the quark shock
propagation and acceleration.



150 Simulations of massive progenitor stars

larger acceleration of the quark shock. The expanding and dynamic quark shock takes
over the SAS (that can be found at ' 70 km) (see Fig. 3.35), after which the density
gradient decrease is less intense and the shock expansion slows down.

Remark 19 The matter outflow reaches velocities at its maximum of about 1.5 × 105

km/s, which is 50% the vacuum speed of light. At such high matter velocities, kinetic
relativistic effects become important and must be taken into account for both fluid dy-
namics and radiation transport.

After the quark shock has taken over the SAS, an explosion can be obtained. Addi-
tionally, a region of neutrino cooling develops between the expanding (now) explosion
shock and the PNS surface at the centre. There, matter outflow stagnates and proceeds
into infall. This infalling matter develops into a standing accretion shock on top of the
PNS surface on a timescale of 100 ms while the explosion shock continues to expand
to large radii (see Fig. 3.35 dashed line). The obtained explosion energies and PNS
masses are illustrated in Table 3.3 for all models under investigation. The post bounce
time tpb is chosen at the quark-hadron phase transitions induced PNS collapse. The
PNS masses are given in baryon mass. Please note that the simulations are not carried
out long enough for several models to finally estimate the explosion energy and PNS
masses conclusively. In other words, the explosion energies and PNS masses might
change slightly if evaluated at some later post bounce times.
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Figure 3.35: Velocity profiles during the explosion phase at three different times post-
bounce.

A special case is the 15 M� progenitor model using the quark EoS based on the
large bag constant B1/4 = 165 MeV. The PNS exceeds the maximum stable mass given
by the quark EoS. Consequently and similar to the study by Nakazato et al. (2008),
the PNS collapse due to the softening of the EoS for matter in the mixed phase can
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Prog. bag constant tpb MPNS Eexpl ρc Tc Ye
[M�] [MeV] [ms] [M�] [1051 erg] [1014 g/cm3] [MeV]
10.8 162 248 1.434 0.361 7.364 13.561 0.225
10.8 165 429 1.482 1.080 7.688 14.214 0.225
13 162 241 1.467 0.146 8.525 13.666 0.221
13 165 431 1.498 0.323 8.346 14.121 0.221
15 162 209 1.608 0.420 8.166 14.433 0.223
15 165 3305 1.700 unknown6 8.437 13.966 0.217

Table 3.3: Selected properties of the PNSs for the different models under investigation.

not be halted again sufficiently due to the stiffening for matter at higher densities in
the pure quark phase. The collapse proceeds into the formation of a black hole after
the QCD phase transition when the quark shock has already formed. Nevertheless, the
simulations could be carried out for long enough to turn the quark shock into a dynamic
shock. Due to our co-moving coordinate choice, the lapse function approaches zero and
no (stable) solutions for the equations of energy and momentum conservation could be
obtained. However, an explosion can not be excluded for this model. The time tpb in
Table 3.3 for this model determines the time of black hole formation and the PNS mass
is the enclosed baryon mass before the formation of the apparent horizon.

3.3.2 The neutrino signal from the QCD phase transition

The dynamical aspects from the quark-hadron phase transition discussed and illustrated
above are interesting but relay strongly on the quark model and the description of the
transition between the hadronic and quark phases. In other words, since the EoS at such
conditions is uncertain the predictions from phenomenological calculations are highly
speculative. On the other hand, if it was possible to reduce the QCD phase transition
and the dynamical features observed to observables that could possible be detectable,
one could use these observations to constrain the nuclear physics input and the EoS.
Most interesting uncertainties are the thermodynamic conditions, i.e. the temperature
and asymmetry dependent critical density, for the onset of the phase transition. For the
range of parameters applied to the present study, a strong phase transition is predicted.
In such a scenario, the critical conditions correspond to the formation of the quark shock
inside the PNS. These conditions are reached via the PNS contraction which in turn
is given by the mass accretion rate (i.e. the progenitor model) and the compressibility
of nuclear matter (hadronic EoS). Although the latter is uncertain, the density and
temperature increase (as well as the Ye decrease) can be approximated for a given
progenitor model with respect to time after bounce. Furthermore, the additional shock
heating of the previously dissociated matter due to the quark shock propagation causes
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Ye to increase (as discussed above) due to the lifted degeneracy. As soon as the quark
shock propagates crosses over the neutrinospheres, the additionally emitted neutrinos
can escape, which cause a second burst of neutrinos (see Fig. 3.36). This burst is
dominated by electron-antineutrinos that are emitted via positron captures which are
favoured in the shock heated neutron-rich environment. If such a second neutrino burst
will be confirmed by observations of a future Galactic event from ground based neutrino
detector facilities, its delay after the first deleptonisation burst provides correlated
information about the progenitor model, the hadronic EoS and the thermodynamic
state for the quark phase transition. In other words, for a given progenitor model
and an assumed PNS contraction behaviour, the conditions for the quark-hadron phase
transition can be extracted from the neutrino signal emitted. In order to illustrate this
argument, Fig. 3.36 shows the neutrino signal for the 10.8 M� progenitor model using
the two quark EoS. The model using B1/4 = 162 MeV (left panel) corresponds to the
early onset of the phase transition (i.e. the low critical density and low temperature)
and hence the second neutrino burst (in other words the quark-hadron phase transition)
occurs already at about 248 ms post-bounce. For the model using B1/4 = 162 MeV
(right panel), the phase transition is delayed to about 429 ms post-bounce due to the
higher density and temperature required for the quark-hadron phase transition. The
central conditions (ρc, Tc, Ye) for all models are listed in Table 3.3. This is a powerful
way of reprocessing constraints on nuclear physics from astronomical observations using
astrophysical models. Unfortunately, the only observed neutrino signal from a core
collapse supernova explosion, i.e. SN1987a (see Hirata et al. (1988)), did provide only
very few (namely 12) events and does allow therefore only poor statistics.

The post quark oscillation of the neutrino signal is due to the formation of the
additional accretion shock on top of the PNS surface due to neutrino cooling. This
shock is oscillating, i.e. expanding via neutrino heating and descending due to cooling.
This behaviour is reflected in the neutrino signal since the dominant source for the
neutrinos is the mass accretion (as discussed in §3.2.2). The significant increase in the
mean neutrino energies, especially for the µ/τ -neutrinos (see Fig. 3.36 (c)), is due to
the quark shock expansion of the shock heated material over the position of 500 km
where the neutrino observables are measured in a co-moving reference frame. After
the quark shock (and hence the ejecta) have passed the radius of 500 km, the mean
energies return to the pre-quark values on a timescale of 100 ms except for the decay
(luminosities and mean energies) which is due to the explosion obtained.

3.3.3 Relevance for nucleosynthesis investigations

If the assumption holds true that quark matter can be found in compact stars, it is
natural to investigate all possible phases. On its evolution from a massive star on
the main sequence between 9 - 75 M� to an isolated neutron star, quark matter can
appear. Since nuclear physic models rely on mostly phenomenological attempts to
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Figure 3.36: Neutrino luminosities and mean neutrino energies taken in a co-moving
reference frame at 500 km, comparing the quark EoSs (thin lines) with B1/4 = 162 MeV
(left panel) and B1/4 = 165 MeV (right panel) with the pure hadronic EoS (thick lines)
for the 10.8 M� progenitor model.

answer the question about the conditions for the quark-hadron phase transition, the
wide parameter range used in such models can be explored to investigate the appearance
of quark matter in astrophysical scenarios. A comparison with observations is required
to favour one set of parameters over the other. It can thereby not only be due to the
neutrino signal. Other observables are for example

1. The gravitational waves emitted from the quark-hadron phase transition,

2. The consequent nucleosynthesis of the ejecta due to the presence,

3. Explosion energies and the kinetics of the ejecta,

4. Remnant properties, such as the maximum stable mass and the possible kick
velocity.
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Picking one of these additional aspects(evidences) for the appearance of quark matter
and the subsequent hydrodynamic evolution discussed above, the nucleosynthesis of the
ejecta is a very powerful indication to exclude or confirm particular aspects.

The main focus of nucleosynthesis investigations, which are done via post processing
of ejected mass elements, is to explain the abundances observed. In order to illustrate
thermodynamic properties of selected mass elements that will be ejected, Fig. 3.37 shows
results from the 10.8 M� progenitor model that has gone through the quark-hadron
phase transition as discussed above. Notice the low electron fraction of the innermost
ejecta where Ye ' 0.4 in graph (d). This was a first strong evidence for the possibility
of the r-process, which takes place during the expansion below temperatures where the
charged particle reactions freeze out typically below 0.5 MeV. (for the post bounce time,
see the temperature trajectories in graph (b)). However, the low entropies in graph (e)
of s ' 28− 40 kB/baryon indicate the low entropy r-process. These speculations have
to be confirmed via full r-processes nucleosynthesis calculations, taking effects of the
short timescale into account.

After about 1.5 s post bounce the second post quark accretion shock on top of the
PNS surface is revived via the continuous neutrino energy deposition, after which the
neutrino driven wind appears in the same manner as introduced and discussed above in
§3.1. Material on top of the PNS is accelerated in the wind where it becomes proton-
rich and mixes with the neutron-rich ejecta of the explosion shock. This increases the
electron fraction and the entropies per baryon of the innermost ejecta. The formation of
the neutrino driven wind can be identified at the slight density and temperature increase
in the graphs (c) and (b) respectively after about 2 s post-bounce. The strong increase
in entropy after about 4 s post-bounce in graph (e) is due to the formation of the reverse
shock. Unfortunately the simulation setup was not ideally suited for the neutrino driven
wind evolution, especially the formation of the reverse shock and the simulations are
not carried out much further. Long story short, the appearance of the neutrino driven
wind might lead to a less successful r-process scenario in the context of the quark-
hadronic phase transition induced explosion mechanism. Alternative scenarios should
be explored, e.g. first a neutrino driven explosion where matter becomes proton-rich
at high entropies per baryon followed by the quark-hadron phase transition during or
after the neutrino driven wind phase.
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Figure 3.37: Thermodynamic properties of selected mass shells from 1.4830 to
1.5020 M� with respect to time after bounce of the 10.8 M� progenitor model us-
ing the quark EoS based on B1/4 = 165 MeV. The peaked behaviour at t = 429 ms
after bounce corresponds to the quark-hadron phase transition and the formation of
the quark shock.



156 Simulations of massive progenitor stars



Chapter 4

Summary

One of the most important topics in astrophysics is the origin of heavy elements, next
to the origin and character of dark energy and dark matter. The production of heavy
elements in astrophysical processes can be understood from nucleosynthesis considera-
tions which are based the theory of weak and strong interactions. Such nucleosynthesis
models simulate the evolution of a subset of elements of the nuclear chart based on
thermodynamic trajectories, which in turn are given from simulations of astrophysical
processes such as explosions of massive stars. The latter is known as supernovae (SNe)
which can be divided into two subclasses: (a) Thermonuclear (SN Ia) and (b) core
collapse (SN Ib, Ic, II). The explosion mechanism of SN Ia is understood to a large
degree where the progenitor remains a mystery and is an active subject of research.
On the other hand, the progenitor models for core collapse SNe are well known from
stellar evolution calculations but the explosion mechanism is uncertain. Such stellar
evolution calculations predict progenitors with high central densities and temperatures
where a large fraction of Fe-group nuclei are produced at the end of stellar evolution,
which causes the Fe-core to become gravitationally unstable and collapse. That is the
origin of the classification core collapse SN, because all progenitor stars more massive
than ' 8 M� suffer the same fate at the end of stellar evolution. The lower central
temperatures obtained in stars less massive than 8 M� (such as our sun) leave a degen-
erate C-O white dwarf as remnant and heavy elements such as 56Fe and 56Ni cannot be
produced in such low mass stars. Hence, core collapse supernovae of massive stars are
investigated as one of the main sources for the production of the elements heavier than
56Fe in the Universe.

The final composition of the ejecta of such SNe are obtained when the explosion
reaches the stellar surface, where the theoretically predicted results from explosive nu-
cleosynthesis calculations can be compared with observations. Of particular interest are
the well known solar abundances. We explore the evolution of stellar cores of massive
progenitor stars consistently in core collapse supernova simulations based on general
relativistic neutrino radiation hydrodynamics. For the post processing nucleosynthesis
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investigations, the dynamical evolution of the proton-to-baryon ratio, which is given by
the electron fraction Ye, is required. Since Ye depends not only on the charged current
reaction rates but also on the neutrino and antineutrino fluxes, accurate three flavour
Boltzmann neutrino transport becomes essential at high densities where neutrinos can
only diffuse as well as at intermediate densities where neutrinos transfer form the trap-
ping to the free streaming regimes. Ye determines which nuclear process are favoured
over the other, e.g. neutron(proton) captures are favoured in a neutron(proton)-rich
environment. Three-flavour Boltzmann neutrino transport is computationally very ex-
pensive and can only be applied in spherical symmetry where we use the numerical
model AGILE-BOLTZTRAN. With this approach we can explore general relativistic
effects, which become important in the presence of strong gravitational fields and rel-
ativistic matter velocities, and the input physics, such as neutrino reactions and the
equation of state (EoS), to a high accuracy. This would be beyond the state-of-the-art
of present multi-dimensional core collapse models due to the present computational
limitations.

During the detailed studies of the past 4 years, I have began to develop a systematic
understanding of the fate of massive stars and the importance and relevance of the
involved microphysics. The results obtained are summarised in the following sections.

Neutrino driven explosions and the long term evolution
of low and intermediate mass stars

For the first time, spherically symmetric core collapse supernova simulations based
on general relativistic radiation hydrodynamics and three-flavour Boltzmann neutrino
transport are performed consistently for more than 20 seconds. We follow the dynamical
evolution of low and intermediate mass progenitors of 8.8, 10.8 and 18 M� through the
collapse, bounce, postbounce, explosion and neutrino driven wind phases. The neutrino
driven explosions of the 10.8 and 18 M� Fe-core progenitors are modelled by applying
artificially enhanced opacities, while the explosion of the 8.8 M� O-Ne-Mg-core was
obtained using the standard opacities. For all models under investigation, we confirmed
the formation and illustrated the conditions required for the appearance of a neutrino
driven wind during the dynamical evolution after the explosion has been launched.

A comparison with approximate and static steady-state as well as parametrized dy-
namic wind models leads to a discrepancy in the physical properties of the neutrino
driven wind. Although the evolution of the hydrodynamic variables are in general
agreement, we find smaller neutrino luminosities and a different behavior of the mean
neutrino energies in comparison to steady-state and parametrised dynamic wind mod-
els. In particular, the differences between the neutrino and antineutrino luminosities
and mean neutrino energies are smaller. These differences reduce with time as the PNS
contracts on a much longer timescale and results in a generally proton-rich neutrino
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driven wind for more than 10 seconds. Hence, the suggestion that the physical condi-
tions found in the neutrino driven wind could be favourable for the r-process could not
be confirmed.

The simulations are carried out until the neutrino driven wind settles down to a
quasi-stationary state and the neutrino heating rates become negligible. We illustrate
the disappearance of the neutrino driven wind and discuss the quasi-static PNS evo-
lution, which corresponds to the initial and neutrino dominated PNS cooling phase.
Unfortunately, important neutrino cooling processes are not yet taken into account but
a smooth connection to isolated neutron or protoneutron star cooling studies comes
into reach for future work (Henderson and Page (2007)).

This work has recently been submitted to the journal Astronomy & Astrophysics
and is currently under revision, see Fischer et al. (2009b).

The evolution of massive stars and the formation of
black holes

Additionally, we performed spherically symmetric core collapse simulations of massive
progenitors. In the absence of an earlier explosion, the continuous mass accretion of
material onto the central object, a protoneutron star (PNS), will eventually lead to the
formation of a solar mass black hole, on timescales up to seconds for progenitors in the
mass range of 40 to 50 M�.

The neutrinos emitted during core collapse supernovae are, besides gravitational
waves and nucleosynthesis yields, the only source of information leaving the stellar
core. In addition, the available neutron star (NS) properties from observations provide
information about the remnants of core collapse supernova explosions. However, gravi-
tational waves are difficult to detect, nucleosynthesis calculations are model dependent
and NS mass measurements provide information about the EoS of hot and dense nuclear
matter. Hence, we believe that up to now neutrinos are the most promising source of
information that gives a direct insight into the happenings inside the stellar interiors.
The understanding of the emission, absorption and transport of neutrinos is essential
for the accurate modeling of core collapse supernovae. Special focus is devoted to the
cooling at the sphere of last scattering where neutrinos decouple from matter, the neu-
trino energy dependent neutrinospheres, and heating between the neutrinospheres and
the expanding shock during the post-bounce evolution.

We confirm the results from Sumiyoshi et al. (2007), that a stiff EoS for hot and
dense nuclear matter leads to an extended accretion phase of several seconds (as has
been explored here at the example of a 40 M� progenitor model).

However, comparing progenitors of the same mass from different stellar evolution
groups shows that a small mass accretion rate at the electron-neutrinosphere also leads
to an extended accretion phase of several seconds. For the same progenitor mass but
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different mass accretion rates at the electron-neutrinosphere, we even find a different
electron-neutrino luminosity dependency. Models with large mass accretion are deter-
mined by a diffusion dominated electron-neutrino spectrum, while small mass accretion
rates lead to accretion dominated spectra. Different EoSs of hot and dense nuclear
matter are unable to change a diffusion dominated electron-neutrino spectrum into an
accretion dominated one. Different EoSs might extend or delay the accretion phase
due to different compressibilities and asymmetry energies or may provide a different
composition. However, the electron-neutrino spectra will always stay either diffusion
or accretion dominated, determined only by the progenitor model. In this sense, the
progenitor model has a non-negligible influence on the emitted neutrino spectra. This
is in contradiction to the recently published work by Sumiyoshi et al. (2008). They
investigated different progenitor models with similar mass accretion rates and thus find
the progenitor dependency less relevant for the emitted neutrino signal. We would like
to point out that the emitted neutrino signal contains correlated information about the
EoS, the progenitor star and the neutrino physics. If analysing the neutrino luminosi-
ties, one has to take all these dependencies into account.

Finally, three-dimensional core collapse models have to make use of some form of
neutrino transport approximation scheme due to present computational limitations.
For that reason, we introduced an electron-neutrino luminosity approximation which
can be applied to any progenitor model and for large distances, typically from a few 100
km to the remaining physical domain of the progenitor. This approximation depends
only on the mass accretion rate, given by the progenitor model, and the tempera-
ture at the electron-neutrinosphere. We compared this approximation with accurate
three-flavour Boltzmann neutrino transport calculations for several different massive
progenitor models and find qualitatively good agreement.

In addition to the electron-flavour neutrino spectra, the (µ/τ)-neutrinos are anal-
ysed in the full Boltzmann model and their importance with respect to cooling at the
(µ/τ)-neutrinosphere is explored. We compared different (µ/τ)-neutrino pair reactions
separately and during the accretion phase of failed core collapse supernova explosions of
massive progenitors. A large (µ/τ)-neutrino luminosity corresponds to a large cooling
rate and consequently supports a more compact PNS as well as a shorter PNS accretion
phase of the order of a few milliseconds. In addition, the connection between the drastic
(µ/τ)-neutrino luminosity increase during the accretion phase and the PNS contraction
has been investigated. We find that the changing thermodynamic conditions (especially
the increasing temperature) at the (µ/τ)-neutrinosphere establish β-equilibrium at a
larger value of the electron fraction, which leads to an increase of the (µ/τ)-neutrino
pair reaction rate. This increases the (µ/τ)-neutrino luminosity from regions with low
and intermediate densities. Additionally, following Horowitz (2002), an update of the
standard neutrino emissivities and opacities has been investigated, using the example
of a failed core collapse supernova of a massive 40 M� progenitor.

This analysis has been published recently in Fischer et al. (2009a) and addresses a
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deeper understanding of the origin and the dependencies of the emitted neutrino signal
of all three-flavours, examined using failed core collapse supernova explosions of massive
stars and the formation of solar mass black holes.

Strange quark matter in core collapse supernovae

The properties of the internal nucleon substructures are well understood from deep-
inelastic lepton-nucleon scattering experiments and are known as quarks. The nucleon
is composed of two quark flavours, up- and down-quarks. The additional quark flavours
strange, bottom, top and charm are known today. The description of quark matter
properties based on quantumchromodynamics (QCD) is difficult and by the present
standard knowledge limited to describe the phase diagram. One of the most studied
subjects in QCD is the transition from hadronic matter to quark matter and the related
thermodynamic state given by temperature, baryon chemical potential (or equivalent
density) and iso-spin asymmetry energy. However, confinement which allows for the
interpretation of the bound state of quarks as hadrons cannot be provided by QCD cal-
culations at present. The current models are either of phenomenological nature, such
as e.g. MIT bag, NJL, PNJL, or have to relay on numerical solutions of the QCD equa-
tions in a discrete from on a lattice, which are computationally extremely expensive to
obtain. Several models predict a smooth transition from hadronic matter to quark mat-
ter at high temperatures ∼ 100 MeV and low baryon densities, defining so called critical
point(s) in the phase diagram. However, the behaviour of the phase boundary between
the hadronic and quark phases at finite and even large baryon densities is uncertain.
Based on the MIT bag model, our collaborators Sagert et al. (2009b) constructed an EoS
for strange quark matter and replaced and extended the hadronic EoS from Shen et al.
(1998a) at high baryon densities and temperatures where appropriate. A smooth tran-
sition between these two phases is modelled following the Gibbs construction which
results in an extended quark-hadron mixed phase. This approach is not unique and
turns out to be very powerful and extremely useful in developing EoSs for astrophysical
applications where matter properties change according to a phase transition. The be-
haviour of the critical density, which defines the quark-hadron phase boundary, in the
phase diagram depends not only on the temperature but also on the iso-spin asymmetry
which in turn is given by the electron fraction. Based on the MIT bag model, it has
been demonstrated that high temperatures and a low electron fraction favour a lower
critical density. Note that this behaviour of the critical density might change if differ-
ent nuclear models are used for the description quark matter. However, Sagert et al.
(2009b) constructed two combined hadron-quark EoSs where the free parameter (based
on the MIT bag model for quark matter) is the bag constant, which determines the
confinement and in this sense the temperature and electron fraction dependent critical
density in the phase diagram. Since the EoS is meant to be applied to astrophysical
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applications, certain constraints on the bag constant must be fulfilled. Observations of
isolated (or in a binary system) neutron star (NS) mass measurements indicate max-
imum NS masses above 1.44 M� (Hulse-Taylor pulsar Lattimer and Prakash (2004)),
which determines a lower limit of the bag constant. Note, that NS matter is given at
(T = 0, Ye = 0). In addition, nuclear physics excludes the existence of absolutely stable
strange quark matter. The EoSs must also not violate heavy ion collision experiments,
where the situation differs because matter is iso-spin symmetric (i.e. Ye ' 0.5) and mat-
ter is composed of up- and down-quarks only because the timescales are too short to
produce strangeness. The two values for the bag constant chosen, i.e. B1/4 = 162 MeV
and B1/4 = 162 MeV, give stable NSs with maximum baryon masses of 1.56 M� and
1.50 M� respectively. Since top-, bottom-, and charm-quarks have large rest masses,
only strange quarks are taken into account next to the mass-less considered up- and
down-quarks. A strange quark mass of 100 MeV is assumed, in accordance with the
Particle Data Group and Eidelman (2004).

The two resulting EoSs have been implemented into our spherically symmetric core
collapse model. With this approach, we assume that general relativistic effects on both
fluid dynamics and neutrino radiation transport are more important than the develop-
ment of fluid instabilities and multi-dimensional effects. In fact, this turns out to be
the case. The domain above or near nuclear saturation density and high temperatures,
where the QCD phase transition takes place, lays inside the deep gravitational potential
of the central PNS where the lapse function is found to be α << 1 and strong general
relativistic effects can be observed. The simulations are launched from low and inter-
mediate mass Fe-core progenitors in the range of 10.8 to 15 M�, and are carried out
through the core collapse, bounce and postbounce phases. The thermodynamic state
at core bounce already produces free quarks. In terms of mass fractions, about 10%
quarks are produced. In this sense, no phase transition has taken place at core bounce
only a softening of the EoS due to the appearance of the quark-hadron mixed phase.
During the early post-bounce shock expansion, this small fraction of quarks reduces
again due to the slight density and temperature decrease. Only when the expanding
shock turns into the SAS (due to neutrino losses and the dissociation of heavy nuclei)
and hence the central density and temperature increase as well as the electron fraction
decreases, the quark fraction rises on a timescale of 100 ms (corresponding to the PNS
contraction timescale due to mass accretion). Since the adiabatic index reduces for
matter in the mixed phase, the EoS is much softer. As a certain fraction of the PNS
(typically ' 0.7 M�) is in the mixed phase where more than 50% of quarks are pro-
duced, nuclear forces and pressure fail to keep the PNS stable against gravity and the
PNS starts to contract. The contraction proceeds into a collapse which halts as matter
reaches the pure quark phase where the EoS stiffens. A second accretion shock forms
at the phase boundary between the mixed and infalling hadronic phases. This second
shock accelerates to positive velocities of the order 1.5× 105 km/s (= 50% the vacuum
speed of light!) as it propagates outwards along the decreasing density gradient at the
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PNS surface. The second shock overtakes the first SAS which remains unaffected at
about 80 km by the happenings inside the central PNS. A new explosion mechanism for
low and intermediate mass progenitor stars was discovered, which leads to explosions
even in spherical symmetry where moderate explosion energies of 1× 1051 erg could be
obtained.

The question about the detectability and hence observational indications of the QCD
phase transition remains to be answered. The primary goal of the initial investigation
was to find evidence in the emitted neutrino signal from the QCD phase transition.
Our first estimate was motivated by the densities above nuclear saturation where the
QCD phase transition occurs, which means the neutrinos are fully trapped and their
transport to lower densities is given by diffusion only on a timescale of seconds. How-
ever, the presence of a dynamic shock as a direct consequence of the phase transition
changes everything. As soon as this shock propagates across the neutrinospheres, where
neutrinos decouple from matter, additional neutrino-matter interactions emit a large
number of neutrinos due to shock heating and the changed β-equilibrium. These neu-
trinos escape and become observable in the neutrino spectrum as an additional burst
of neutrinos, accompanied by a significant increase in the mean neutrino energies. The
first neutrino burst from the Fe-core bounce is a deleptonisation burst and only due to
electron-neutrinos emitted via additional electron captures. The second neutrino burst
is dominated by electron-antineutrinos and (µ/τ)-neutrinos due to the reduced degen-
eracy and hence increased number of charges. The burst has a width of about 5 − 20
ms and can be observed at present neutrino detector facility such as Super-Kamiokande
and SNO for a future Galactic event (see therefore the analysis from Dasgupta et al.
(2009)). The delay of the second neutrino burst with respect to the first one provides
correlated information about the thermodynamic state of the critical density for the
onset of the phase transition, the EoS for hadronic matter and the progenitor model.
Additional observations, e.g. gravitational waves, remnant properties and the composi-
tion of the ejecta, can be considered to sharpen the constraints on the involved nuclear
physics. This way of back-tracing engineering science is a powerful technique and may
provide, in addition to experimental evidence from detector facilities such as the LHC,
RHIC and FAIR at the GSI, incontrovertible constraints on the nuclear physics.
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