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I. AIM  
The aim of this project is to design and pre-clinically evaluate a new 

construct of recombinant vaccinia virus (r.VV) which efficiently presents 

recombinant antigens and decreases the intrinsic antigenicity of VV as a vector.  

Recombinant poxviruses expressing immunomodulatory molecules 

together with specific antigens might represent powerful vaccines for cancer 

immunotherapy [1]. A recombinant vaccinia virus encoding tumor associated 

antigens (TAA) with costimulatory molecules has been used successfully in vitro 

[2;3] and in phase I/II clinical trials [3;4] to induce specific cytotoxic T 

lymphocyte (CTL) responses against TAA. 

One of the problems encountered by this recombinant viral vector is 

related to pre-existing immunity to poxviruses and immunodominance of viral 

vector antigens. Upon re-infection, vaccinia virus specific CD8+ T cells and 

antibodies are able to rapidly clear out infected cells, therefore limiting the 

generation of an immune reaction against the antigenic transgenes.  

In order to further strengthen the efficiency of those viral vectors, we aim 

at specifically decreasing the viral MHC class-I restricted immunogenicity 

without affecting the presentation of the recombinant TAA epitopes. This is 

essential especially in cancer immunotherapeutic strategies which often require 

multiple rounds of vaccination to boost specific CD8+ T cells. A r.VV 

expressing the Herpes simplex virus (HSV) US12 gene coding for infective cell 

protein 47 (ICP47) was established. ICP47 inhibits TAP dependent presentation 

of viral and cellular antigens associated with major histocompatability complex 

class I (MHC class-I) proteins to CD8+ T lymphocytes. This inhibition of viral 

immunogenicity might improve the effectiveness of viral gene therapy vectors 

by decreasing epitope competition and cellular anti-viral responses targeting 

vaccinia virus vectors without affecting responses to transgenic antigens. 
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II. INTRODUCTION 

II. 1. IMMUNE SYSTEM AND CANCER 

The role of the immune system in cancer outgrowth and progression has 

received a great deal of attention. It is widely believed that enhancing immunity 

against tumors holds much promise for treatment.  

II.1.1. Tumor Antigens 
To take advantage of the immune system’s specificity, one must find 

antigens that clearly mark the cancer cells as different from untransformed host 

cells. To achieve this goal immunologists have been interested in defining 

different types of tumor associated antigens against which the immune system 

reacts and in investigating how antitumor immunity may be enhanced. 

Generally, tumors are poorly immunogenic. There are different types of 

tumor antigens: specific or associated. Some tumors express unique antigens 

which are not found in normal cells, called “tumor specific antigens” (TSA). 

TSA are typically expressed in tumor induced by infectious agents (e.g. EBNA-

1 antigen from Burkitt’s lymphoma induced by Epstein Barr virus (EBV)) or 

resulting from mutations, deletions or recombinations (e.g. the 210-kD chimeric 

protein with abnormal tyrosine kinase activity involved in chronic myelogenous 

leukemia resulting from the formation of a bcr-abl gene fusion)  [5]. However, 

TSA are rare and not always practical for vaccine design. Most antigens are 

tumor associated antigens (TAA) which are proteins expressed by normal cells 

but either produced in significantly higher amounts or with specific expression 

pattern in tumors [6]. Human TAA can be classified into different groups. One 

group is represented by the so called differentiation antigens; for example TAA 

expressed in melanoma and normal melanocytes. This group includes tyrosinase 

[7], MART-1/Melan-A [8], gp 100 [9] and TRP-2 [10]. Another group of 

antigens, the so called cancer/testis antigens, are expressed in cancers of 
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different histological origins and in the testis and it includes the MAGE family 

[11].  

II.1.2. Antigen Processing and Presentation 

 A major task of the immune system is to discriminate cells that have been 

infected by a virus, harbor mutations or undergo neoplastic transformation from 

healthy cells. Potentially antigenic determinants produced inside the cells are 

typically processed and presented on the cell surface by MHC class-I molecules. 

The MHC class-I complexes require a peptide to be bound to be stably 

expressed on cell surfaces [12].  

II.1.2.1. MHC class-I Antigen processing pathway 

MHC class-I molecules are highly polymorphic, with multiple alleles of 

several genes giving rise to the protein products. In humans, there are three 

MHC class-I loci (HLA-A, B and C). In mice the corresponding molecules are 

H2-K, H2-D and H2-L.  MHC class-I dimers consist of a heavy chain and β2-

microglobulin. The two chains are associated noncovalently. Only the α-chain is 

polymorphic. CD8 binds to the α3 transmembrane domain. The α1 and α2 

domains fold to make up a groove accomodating peptides, which are 8-10 amino 

acids in length. The primary purpose of MHC class-I molecules is to present 

representative peptide fragments produced inside the cell to circulating T cells. 

For instance, upon infection, viral peptides are presented, allowing the immune 

system to recognize and kill the infected cell. In the cytosol (fig.1), endogenous 

proteins are degraded by the proteasome, some of them at the end of their useful 

lifetime and some of them (about 40%) directly after synthesis.  

Most of the peptide fragments generated by the proteasome are further 

degraded by other cytosolic proteases into single amino acids used for the 

synthesis of new proteins. Some of the peptides escape degradation and are 

transported into the endoplasmic reticulum (ER) by the membrane spanning 
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transporter TAP [13]. There, the peptides can again be degraded by 

aminopeptidases including ERAP1 [14] or exported back into the cytosol, unless 

they are able to bind to an empty MHC class-I molecule. The loaded molecules 

leave the ER via the Golgi apparatus and the trans-Golgi network to the cell 

surface. Several hundred thousand copies of MHC-I molecules each containing 

a single epitope are presented at any time on the cell surface, where the epitopes 

are scanned by T cell receptors (TCR) as shown in figure 2 [15]. 

 

 

Figure (1): Overview of MHC I Antigen-processing pathway. TAP, transporter associated 
with antigen processing; ER, endoplasmic reticulum; MHC I, major histocompatability 
complex I; BiP, immunoglobulin binding protein; ß2m, ß2-microglobulin (modified from 
Abele et al., 2004) [16]. 
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Figure (2): MHC-I bound epitope is scanned 

by T-cell receptor [15]. 

 

 

 

The MHC I-peptide complex interacts with the TCR and CD8 molecules 

of CD8+ T cells, allowing eventual activation of T-cells and resulting in specific 

immune responses.  In normal, noninfected cells, the MHC class-I molecules 

bind to self protein derived peptides, but specific circulating T cells are tolerant 

to these epitopes and will not get activated. However, when the cell is infected 

by a virus, the MHC class-I presents pathogen-derived peptides at the cell 

surface  [16]. 

II.1.2.2. Transporter Associated with Antigen Processing (TAP) 

TAP is an ATP-binding cassette (ABC) transporter, which belongs to the 

largest and most diverse family of membrane-spanning transport proteins.  ABC 

transporters transport diverse molecules, from large proteins to ions, across 

plasma membranes, and are found in the animal and plant kingdom, bacteria, 

and archea [17]. 

TAP consists of two subunits, TAP1 and TAP2, both of which contain a 

C-terminal hydrophilic domain that binds ATP and a more hydrophobic N-

terminal transmembrane domain which may span the membrane six to eight 

times (fig.3).  Both subunits must be present for TAP to function, and both 

subunits hydrolyze ATP to power peptide transport. Although the ability of a 
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peptide to bind to TAP does not require ATP, peptide transport requires ATP 

hydrolysis [18]. 

 The genes encoding human TAP1 and TAP2 are located in the MHC 

class-II locus of chromosome 6, between the DQB1 and DPA1 loci, and they are 

8-12 kb in size. Deletion of either or both of the TAP genes results in greatly 

reduced surface expression of MHC class-I molecules and failure to present 

cytosolic antigens to cytotoxic T cells [17]. Promoter region of TAP contains 

interferons responsive elements which induce TAP1 gene expression and 

participates to the increase of MHC class-I presentation on the surface of 

infected cell [19]. 

   

Figure (3): structure of TAP. Both 
subunits, TAP1 and TAP2 (for 
Transporter Associated with antigen 
Processing), are required for normal 
presentation of intracellular antigens to 
T cells. These polypeptides form a 
heteromeric "peptide pump". The TAP1 
(also known as RING4 or PSF1) and 
TAP2 (also known as RING11 or PSF2) 
possess an ATP binding region and 6 to 
8 transmembrane helical segments. They 
are responsible for peptides selection in 
the cytosol and movement across the ER 
membrane to the binding site of MHC 
class-I molecules.  

 

II.1.2.2.1. Role of TAP in the function of the immune system 

After proteasome degradation of endogenous proteins into 3-22 residue 

peptides in the cytoplasm, a small fraction of the peptides diffuse to TAP at the 

ER.  Meanwhile, MHC class-I heavy chains assemble and bind to calnexin 

(fig.2), a chaperone protein, in the ER membrane.  Then β2-microglobulin binds 
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to the MHC class-I heavy chain and the dimers separate from calnexin and bind 

to calreticulin and Erp57 to form the MHC class-I complex.  Next, tapasin binds 

the complex to form the peptide-loading complexes and joins the complex with 

TAP.  Then the degraded cytosolic peptides are transported by TAP into the 

lumen of the ER and loaded onto an MHC class-I molecule.  It is uncertain 

whether the TAP-tapasin complex directly loads peptides onto MHC class-I 

molecules or whether the MHC class-I molecule scans the peptides once they 

are transported into the ER [16].   

The TAP-MHC class-I interaction in the peptide complex may help 

stabilize MHCclass-I:β2-Microglobulin [20]. In addition, the nucleotide binding 

site of TAP may transmit a signal for the peptide-loaded MHC class-I to 

dissociate from the complex. 

II.1.2.2.2. TAP related disorders 

A. Viruses affecting TAP   

 Several viruses, especially persistent viruses, interfere with TAP to 

decrease the presentation of MHC class-I, and thus, avoid the immune response.  

Herpes simplex virus type 1(HSV-1) encodes the protein ICP47, which binds the 

peptide binding site of TAP, blocking the first step in the translocation 

pathway. The critical amino acids of ICP47 required for TAP inhibition are 

located in the NH2-terminal region from residue 3 to 34. Moreover, This 

interaction between TAP and ICP47 is species specific [21].  

Human cytomegalovirus (HCMV) encodes an ER-resident protein called 

gpUS6 that inhibits TAP mediated peptide transport. The mechanism is 

probably due to binding of US6 to ER luminal part of TAP inhibiting peptide 

translocation but not affecting peptide binding [22] 

Adenoviruses (AdV) encode a protein, E3/19K that is well established to 

bind MHC class-I molecules, trapping them in the ER. It was also demonstrated 
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that E3/19K binds to TAP and inhibits the tapasin action, thereby preventing 

MHC class-I/TAP association [23].  

Human papilloma virus (HPV) may evade immune recognition by 

inducing downregulation of TAP1 protein expression. More significantly, the 

amount of TAP1 protein expression correlates inversely with the frequency of 

disease recurrence [24].  

Similar to HPV, EBV has evolved a strategy to avoid immune 

surveillance by downregulation of TAP. EBV expresses a protein, vIL-10, that is 

similar in sequence to human IL-10. vIL-10 downregulates TAP1 gene 

expression, thereby affecting the transport of peptides into ER  [25]. 

B. Genetic Diseases 

 There is little knowledge about genetic TAP defects in humans. Bare 

Lymphocyte Syndrome (BLS) is characterized by a severe downregulation or 

deficiency of MHC class-I and/or class II molecules. Some studies revealed that 

the disease may be caused by a genetic deficiency of TAP2, which is mainly due 

to a premature stop codon resulting in a non-functional TAP complex [26].  

C. Autoimmune Disease and Transplantation  

 Some patients with diverse MHC-linked autoimmune diseases, including 

type I diabetes, Sjogren's syndrome, Graves' disease and Haishimoto' disease, 

have a downregulation of mRNA levels for TAP1 and TAP2. These data suggest 

that defective transcription of TAP genes can contribute to reduced MHC class-I 

cell surface expression in autoimmune diseases [27]. The incidence and severity 

of acute rejection after renal transplantations seem to be influenced by TAP2 

gene polymorphism. It appears that donors’ APC expressing the TAP2*0103 

allele have an attenuated efficacy in the presentation of allospecific antigens to 

the recipient’s T cells[28].  
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D. TAP Deficiency and Tumor Development 

 Many tumors escape recognition by CTLs. In some cancers, including 

melanomas, this has been associated with ineffective antigen processing and 

presentation of tumor specific peptides due to low levels of MHC class-I 

molecules [29]. In murine as well as human cancers, a downregulation of TAP1 

expression by an unknown mechanism or a mutation of TAP resulting in a loss 

or decrease in class I surface expression has been demonstrated [30]. In breast 

carcinomas, downregulation of TAP1expression was found in 44% of the 

lesions [31]. 

II.1.2.3. MHC class-II antigen processing pathway 

MHC class-II antigen presentation is mostly utilized by professional 

antigen presenting cells to present exogenous peptides derived from captured 

proteins. Proteins are endocytosed and degraded by acid-dependent proteases in 

endosomes. The peptides are displayed on MHC class-II molecules.  

MHC class II molecules are heterodimeric (αß) cell surface glycoproteins. 

In humans, there are three MHC class-II molecules (HLA-DR, HLA-DP and 

HLA-DQ). In mice, the coressponding molecules are H2A and H2-E. Newly 

synthesized MHC class II α and β chains assemble in the ER with a third 

glycoprotein, the invariant chain (Ii) forming Ii-MHC class II complex [32]. The 

cytoplasmic tail of Ii contains a motif that targets the Ii–MHC class II complex 

to the endosomal pathway. Ii–MHC class II complexes are rapidly internalized 

into specialized compartments of the endocytic pathway (MHC class II 

compartments), where peptide loading occurs [33]. Maturation of the early 

endosome leads to activation of lysosomal enzymes. During transport, Ii is 

proteolytically cleaved, yielding a nested set of Ii derived peptides, termed CLIP 

[34]. CLIP is subsequently exchanged for tightly bound antigenic peptides 
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derived from internalized antigens or endogenous proteins. Dissociation of CLIP 

and loading of peptides is mediated by the MHC-like molecule HLA-DM. 

Possibly by its preferential binding of the open, peptide-less conformation of 

MHC class II, HLA-DM then catalyzes peptide exchange, favoring more stable 

peptide-MHC complexes [35]. These peptide–MHC class II complexes then 

traffic to the plasma membrane. These peptides loaded on MHC class-II 

molecules and expressed on the cell surface are recognized by TCR of CD4+ T 

cells (fig. 4). 

 

 

 

 

Figure (4): Overview of MHC II Antigen-processing pathway.  

Notwithstanding the critical role of CD8+ T cells, induction of tumor-

specific CD4+ T cells is also important not only to help CD8+ responses, but also 

to mediate anti-tumor effector functions through induction of eosinophils and 

macrophages to produce superoxides and nitric oxide [36].  
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Recognition of the antigen, along with triggering of co-stimulatory 

molecules (B7-CD28) results in activation of antigen-specific CD4+ T cells, 

which leads to lymphoproliferation and cytokine secretion. Depending on 

several conditions (e.g. strength of antigen signalling, co-stimulation and 

cytokines secreted by APC) CD4+ T cells differentiate into either TH1 or TH2 

type cells. TH1 cells secrete predominantly IFN-γ, which plays a role in the 

activation of cell mediated immune responses, culminating in activation of 

cytotoxic T lymphocytes. TH2 cells on the other hand secrete IL-4, which helps 

B cells to differentiate into antibody secreting plasma cells (figure 5) [36].  

Most potential tumor antigens are not expressed on the surface of tumor 

cells and thus are inaccessible to antibodies [37]. However, tumor cells could be 

ingested by host antigen presenting cell (e.g. dendritic cells), where antigens are 

processed and displayed by the host APC’s class I and class II MHC molecules. 

Therefore, eventual tumor antigens may be recognized by both CD8+ and CD4+ 

T cells. This process is called cross-presentation or cross-priming as one cell 

type (APC) presents antigen of another cell (tumor cell) and activates T 

lymphocytes specific for the second cell type [38]. Several other immune 

mechanisms may play a role in tumor rejection. Activated macrophages and 

natural killer (NK) cells are also capable of killing tumor cells in vitro [39].  
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Figure (5): Antigen specific immune response. Antigen taken by APC is presented by 
MHC class-I to CD8+ cells and MHC class-II to CD4+ cells. Antigen recognition along with 
co-stimulatory molecules results in activation of CD4+ cells (proliferation and cytokine 
secretion). CD4+ T cells differentiate into either TH1 or TH2 type cells. TH1 cells secrete 
predominantly IFN-γ, which plays a role in activation of cytotoxic T lymphocytes. TH2 cells 
on the other hand secrete IL-4, which helps B cells differentiate into antibody secreting 
plasma cells.   
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After recognition of a specific epitope, the CTL bind firmly to the surface 

of the target cells. Then, the lysis of target cells proceeds through a sequence of 

programmed steps. CTL have been shown to be responsible for elimination of 

transduced cells in vivo by effector mechanisms involving Fas-FasL interaction 

and perforin-granzymes release. The combination of perforin and granzymes 

significantly increases the lytic ability of CTL (picture 1) [40].  

 

 

 

Image figure (1): CTL binding to and 

destroying a tumor cell using perforin.  

(ASM MicrobeLibrary) 

 

Non mutated tumor associated antigens are relatively poorly 

immunogenic, since they are recognized as self proteins and they are 

accordingly tolerated. However, upon presentation by highly professional 

antigen presenting cells (APC) including mature dendritic cells (DCs), naïve or 

memory specific T cells have been shown to be expanded in response to 

antigenic stimulation. These lymphocytes usually carry T cell receptor of 

relatively low affinity, but they are still able to kill tumor cells expressing the 

antigenic epitopes in the context of appropriate MHC determinants.  

Different signals are required for T cell activation (fig. 6). T lymphocytes 

have antigen specific receptors (TCR) that recognize MHC restricted epitopes 

derived from processed antigens. APC activate naïve T cells by presentation of 

antigen within MHC antigens, the primary targets for allo-recognition. This 

process requires binding of antigen/MHC complex to the TCR/CD3 complex. 

This event initiates a cascade of signalling events that begins with the activation 

of several cytoplasmic protein tyrosine kinases. Recruitment of the CD4 or CD8 

Target cell

Cytotoxic T cell

Target cell

Cytotoxic T cell
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associated tyrosine kinase, Lck, into the vicinity of TCR complex is believed to 

induce phosphorylation of CD3 proteins ultimately leading to downstream 

signal progression. However, in order not to lead to anergy, activation of T cells 

requires signals not only through the TCR (signal 1) but also through co-

stimulatory molecules pathways (signal 2) such as CD28, CD2, CD30, CD44, 

CD154 and lymphocyte function-associated antigen-1 (LFA-1). After activation, 

a number of cell surface and soluble molecules including T helper 1 cytokines 

such as IL-12, which plays an important role in CTL activation, are known to 

further regulate the immune response (signal 3) [41]. 

HLA TCR CD8+

Lck

P

APC

CD3

CD8 co-receptor

Ag

CD28

CD80

Or CD86

SIGNAL 2
Co-stimulation

SIGNAL 1
Antigen binding and co-receptor ligation

IL-12

SIGNAL 3
Cytokines

HLA TCR CD8+

Lck

P

APC

CD3

CD8 co-receptor

Ag

CD28

CD80

Or CD86

SIGNAL 2
Co-stimulation

SIGNAL 1
Antigen binding and co-receptor ligation

IL-12

SIGNAL 3
Cytokines

HLA TCR CD8+

Lck

P

APC

CD3

CD8 co-receptor

Ag

CD28

CD80

Or CD86

SIGNAL 2
Co-stimulation

SIGNAL 1
Antigen binding and co-receptor ligation

IL-12

SIGNAL 3
Cytokines

IL-12

SIGNAL 3
Cytokines

 

Figure (6): Requirements for T cell activation. T cell activation requires signalling through 
TCR (signal 1), co-stimulatory pathways (signal 2) and cytokine secretion (signal 3).   
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II.1.3. Immune Mechanisms of Tumor Rejection 
The immune system has three primary roles in prevention of tumors. First, 

it can protect the host from virus induced tumors by eliminating infected cells or 

suppressing viral infections. Second, elimination of pathogens and timely 

resolution of inflammation can prevent the establishment of an inflammatory 

environment potentially conductive to tumorigenesis [42]. Third, the immune 

system can prevent the outgrowth of transformed cells or destroy these cells 

before they become harmful tumors. This mechanism called “immune 

surveillance” was first proposed in the 1950s by Burnet and Thomas [43].  

The term cancer immune surveillance may no longer be appropriate to 

accurately describe the immune reaction against tumors as it was thought to 

function only at the earliest stage of cellular transformation. Rather, it was 

proposed to use a broader term “cancer immunoediting” to describe more 

appropriately the host defensive and tumor sculpting actions of the immune 

system that not only promote elimination of some tumors but also generate a 

nonprotective immune state to others [44]. 

Cancer immunoediting includes three processes (3Es). Elimination, that 

corresponds to immune surveillance. The elimination phase can be complete 

when all tumor cells are cleared or incomplete when only a portion of tumor 

cells are eliminated.  

In case of partial tumor elimination, the theory of immunoediting is that a 

temporary state of equilibrium can then be established between the immune 

system and the developing tumor. During this period of Equilibrium, tumor cells 

either remain dormant or continue to evolve, accumulating further changes that 

may modulate the expression of tumor specific antigens [42]. The pressure 

exerted by the immune system during this phase can be sufficient to control 

tumor progression but if it fails to eliminate the tumor, the process results in the 

selection of tumor cell variants that are able to resist or suppress the antitumor 

immune response.  
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Escape is the process by which the immunologically sculpted tumor 

expands in an uncontrolled manner leading to development of clinically 

apparent tumors (fig.7) [44].  

 
Figure (7): Tumor suppression by the immune system (cancer immunoediting). Cancer 
immunoediting is considered as a process composed of 3 phases: elimination or cancer 
immune surveillance; equilibrium, a phase of tumor dormancy where tumor cells and 
immunity enter into dynamic equilibrium that keeps tumor expansion in check; and escape, 
where tumor cells emerge that either display reduced immunogenicity or engage 
immunosuppressive mechanisms to attenuate antitumor immune responses leading to the 
appearance of progressively growing tumors (Modified from  Smyth et al., 2006) [45]. 
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A number of clinical observations have provided evidence supporting 

each of the distinct phases of human tumor immunoediting. The phenomenon of 

spontaneously regressing melanoma lesions accompanied by the clonal 

expansion of T cells is presently the strongest evidence for the elimination phase 

of cancer immunoediting in humans [46;47]. 

In animal models, immunization against malignant melanoma can cause 

vitiligo [48]. Occurence of vitiligo suggests the development of an antitumoral 

response and is commonly believed to be a positive prognostic factor [49-51]. 

The association between malignant melanoma and hypomelanosis is thought to 

be the consequence of the dualistic immune mediated response against antigens 

shared by normal melanocytes and malignant melanoma cells. In malignant 

melanoma associated vitiligo, infiltration by specific CD8+ T cells, directed 

against tumor melanocytic antigens, has been described [52;53].  

Pharmacological immunosuppression to prevent transplant rejection is 

clearly associated with a heightened risk (3- to 100-fold increase) of developing 

certain types of malignancy [54]. These diseases are predominantly lymphomas; 

however, a range of solid tumors with no known viral association also occur 

with increased frequency. In addition to those tumors, a number of tumors 

(especially lymphomas) also occur most frequently in patients with primary and 

acquired immunodeficiencies [55].  

Tumor infiltration by T cells, NK cells or natural killer T cells (NKT) has 

been associated with an improved prognosis for a number of different tumors 

[56-58]. Spontaneous tumor regression accompanied by lymphocyte infiltration 

has also been noted for a number of other tumor types [59-63]. 

Clinical evidence supporting the existence of the equilibrium phase of 

immunoediting is provided by a number of findings. First, the existence of an 

immune response to premalignant monoclonal gammopathy of undetermined 
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significance (MGUS) cells that eventually progress to multiple myeloma is 

consistent with the equilibrium phase, with the immune system controlling, but 

not eliminating, MGUS cells that eventually evolve and progress to malignancy 

[64]. Passive immunization with idiotype-specific antibody, in conjunction with 

either cytokine therapy or chemotherapy, can induce remission in some patients 

with low-grade B cell lymphoma [65]. Moreover, a role for the immune system 

in establishing long-term remission has also been suggested by studies of 

pediatric acute myeloid leukemia patients treated with either chemotherapy or 

chemotherapy combined with autologous bone marrow transplantation [66].  

Clinical evidence also suggests that tumors can remain dormant in 

patients for many years, and cases of relapse after long periods (at least 10 

years) of tumor remission have been noted [67-69], making immune control 

with subsequent escape an interesting possibility in these cases. Similarly, cases 

of transmission of tumors from organ donor to recipient have also been noted. In 

such cases, it is possible that the tumor was being held under control by an 

immunological mechanism in the donor and that transplantation of the organ 

into an immunosuppressed host allowed tumor outgrowth [70;71]. 

The escape phase is the best defined of the three phases in both mice and 

humans. For example, the growth of melanomas clearly results in the priming of 

a tumor-specific immune response, even though this response is often 

insufficient to completely eliminate tumors [72]. In the same way, the antitumor 

immune response seen in patients with paraneoplastic autoimmune syndromes 

(disease symptoms experienced in patients with tumors and caused by activation 

of an immune response specific for self antigens expressed on tumor cells) 

indicates that an ongoing immune response is, in many cases, insufficient to 

control tumor growth, even when it is sufficient to destroy normal self tissues 

[73-75]  
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II.1.4. Evasion of Immune Response by Tumors 

A number of processes that dampen the immune response are exploited by 

tumors to escape immune surveillance. There are different mechanisms that 

contribute to tumor escape (Fig. 8). Many tumors down-regulate or eliminate 

their expression of MHC class-I molecules, which are necessary restricting 

elements for CTLs and whose absence renders the tumor cells invisible to CTLs 

[76;77]. Some tumors stop expressing the antigens that are the target of an 

immune attack. These tumors are called antigen loss variants [78]. Other tumors 

create an immunosuppressive milieu by secreting immunosuppressive cytokines 

such as IL-10 and transforming growth factor-b (TGF-ß) [79]. IL-10 inhibits 

antigen presentation and antigen-specific T cell expansion [80] but TGF-β 

directly inhibits T cell activation and proliferation [81].  

T lymphocytes can also be rendered anergic by factors secreted in the 

tumor microenvironment. For example, indoleamine-2,3-dioxygenase (IDO) 

enzyme, which is involved in tryptophan catabolism, is overexpressed in defined 

tumor types. Depletion of tryptophan in the tumor microenvironment blocks 

activation and expansion of T cells which are dependent on tryptophan for cell 

cycle progression [82]. Tryptophan depletion may also promote apoptosis and/or 

induce T cell tolerance [83]. In addition, there is a family of receptors that are 

expressed on the T cells and act to downregulate T cell activation. This family 

includes: cytotoxic T-lymphocyte antigen 4 (CTLA-4), which binds to CD80 

and CD86 on APCs, transmitting an inhibitory signal to T cells [84] and 

programmed death-1 (PD-1) which binds to programmed death ligand-1 (PDL-

1) and PDL-2 on APCs. PD-1-PD-L1 interaction inhibits activation, expansion 

and acquisition of effector functions of T cells [85]. 

Another immunosuppressive mechanism in cancer is represented by  the 

expansion of immature myeloid cell (iMC) populations which has been observed 

to be associated with profound suppression of T cell responses [86;87]. The 
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mechanism of iMC suppression appears to involve production of either arginase 

(ARG) enzyme [88] or inducible nitric oxide synthase  (iNOS) by tumor cells 

[89]. Arginine depletion might lead to loss of T cell recognition of antigens and 

impaired T cell function [90].  

 
 
Figure (8): How tumors evade immune responses?  
Antitumor immunity develops when T cells recognize tumor antigens and are activated. 
Tumor cells can evade immune responses by losing expression of MHC molecules, antigens 
or TCR or by producing immunosuppressive cytokines. 
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II.2. CANCER VACCINES 

For many years, the treatment of cancer has been based on surgery, 

chemotherapy, and irradiation. However, new biological therapies are being 

developed. Cancer vaccines represent a promising type of biological therapy 

including a number of innovative treatments that are likely to become important 

in treating cancer. Similar to vaccines against infectious agents, the aim of 

cancer vaccines is to stimulate the immune system to recognise cancer cells and 

destroy them [91].  

Vaccines intended to prevent or treat cancer appear to have safety profiles 

comparable to those of traditional vaccines [92]. However, the most commonly 

reported side effect of cancer vaccines is inflammation at the site where the 

vaccine is injected into the body. Reported symptoms include redness, pain, 

swelling, heightened temperature, itchiness, and occasionally a rash [93]. 

II.2.1. Cancer Immunotherapy 

The potential of cancer immunotherapy was first documented by William 

Coley in 1890, when he was trying to replicate the fever and ‘cytokine storm’ 

that he had witnessed following septicemia when he observed the regression of 

some tumors. Bacterial products (Coley's toxins) were administered for 

advanced inoperable cancers with dramatic responses [94]. Today, we 

understand that the components of bacterial extract stimulated the immune 

response unspecifically. 

In general terms, tumor immunotherapy refers to the use of elements of 

the body's natural immune system to fight cancer. Patients typically associate 

the term vaccine with the prevention of infectious diseases, such as measles. 

Recent research has indicated that the vaccine approach may also be useful in 

the prevention and treatment of cancer. 
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Tumor vaccines typically include tumor antigens that can be used to 

stimulate an immune response. However, limited success has been achieved with 

traditional immunotherapy, as cancer cells tend to evolve mechanisms that evade 

immune detection. A wide array of gene therapy techniques are being used to 

overcome these limitations [95]. 

Different types of vaccines are used to treat different types of cancer. 

Typically, patients receive tumor vaccine therapy on an out-patient basis. 

Vaccines are delivered through an injection into the skin or directly into the 

tumor. Recent clinical trials of second and third generation vaccines have shown 

encouraging results with a wide range of cancers, including lung cancer, 

pancreatic cancer, prostate cancer and malignant melanoma [96].  

Vaccines to prevent infectious diseases are prophylactic or preventive 

vaccines. In contrast, cancer vaccines are expected to be mainly therapeutic 

(attacking a tumor which has already developed). However, some cancer 

vaccines, known as cancer preventive vaccines are designed to prevent cancers 

induced by infectious agents. For example, HPV16 and HPV18 together account 

for 70% of cervical cancers, and a vaccine developed against these two strains 

shows great promise [97]. Cancer therapeutic vaccines are intended to treat 

already existing cancers by strengthening the body's natural defenses against 

cancer. Designing these vaccines presents more challenges than preventive 

vaccines against infectious diseases as tumor antigens are mostly self antigens 

so inducing strong and long term immunological responses against tumor 

antigens often correlates with producing autoimmunity [98].  
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II.2.2. Immunotherapeutic Approaches: Melanoma as M odel for 
Cancer Vaccine 

Skin cancer is currently considered as a global epidemic. Primary 

melanoma is a malignant tumor of melanocytes and, less frequently, of retinal 

pigment epithelial cells (of the eye). Metastases may colonize skin and lymph 

nodes, or visceral sites like lung, liver, bone, brain and small intestine [99]. 

Melanoma is considered as the fourth common malignancy in Western 

countries. Worldwide, its incidence is increasing steadily at a yearly rate of 3-

5% [100]. In Europe, the incidence in average risk regions has tripled for males 

and females within two generations, reaching 10.3 and 13.3 per 100,000 per 

year, respectively [101]. Identified melanoma risk factors are Caucasian skin 

types, childhood sun exposure, sunburn and intense intermittent sun exposure, 

typical of leisure activities [102]. 

Malignant melanoma has always been regarded as an immunogenic 

tumor, as regression zones within tumoral lesions can be observed frequently 

together with a dense infiltration of T cells possibly resulting from recognition 

of tumor-associated antigens either on antigen-presenting cells or on the surface 

of tumor cells by T lymphocytes [103]. Vitiligo is generally considered as a sign 

of good prognosis in melanoma. This observation suggests that vitiligo might 

result from an antitumoral response directed against differentiation antigens 

shared by normal melanocytes and melanoma cells. The particularly high 

frequency of vitiligo in melanoma patients treated with recombinant cytokines 

[104;105] further supports this hypothesis, and it is indicative of the 

involvement of cellular immune effectors. Furthermore, an inverse correlation 

between prognosis and the degree of lymphocytic infiltration of the primary 

tumor suggest that the activation of anti-tumoral immunity might be beneficial 

in attempts to induce the regression of established tumors or to prevent 

recurrence. 
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Active antigen-specific immunotherapy (AASIT) is currently being 

investigated in a number of clinical centres as a treatment option for advanced-

stage melanoma. A large number of melanoma TAAs have been molecularly 

characterized and are being used in vaccination trials in various molecular forms 

and according to various immunization protocols [4].  

II.2.3. Recombinant Viruses as Cancer Vaccines Vect ors 

One advantage of virus based cancer vaccines is that they are self 

adjuvanted as they are able to induce the appropriate “danger signals”. A 

number of trials utilizing recombinant viruses expressing tumor antigens, some 

with immuno-stimulatory molecules, have been reported or are in progress 

[106]. For vaccination purposes, the ideal viral vector should be safe and enable 

efficient presentation of expressed antigens to the immune system. It should also 

exhibit low intrinsic immunogenicity to allow for its re-administration in order 

to boost relevant specific immune responses [1]. Many viral vectors have been 

used successfully including retroviruses, poxviruses, adenoviruses, adeno-

associated viruses, herpes simplex viruses and alphaviruses.   

Avipox, vaccinia and adenovirus vectors have been mainly used for 

immunotherapeutic approaches. The avipox viruses which infect birds, do not 

replicate in mammalian cells. Therefore, there is little induction of a neutralising 

antibody response which could limit the efficacy of multiple vaccinations. 

However, the avipoxviruses have been shown to induce antitumor T cell 

responses, when used to deliver the CEA tumor antigen [107]. 

Recombinant adenoviral vectors (r.AdV) are being considered as a cancer 

vaccine platform because they are very efficient at transducing target cells in 

vitro & in vivo and can be produced at high titres [108]. r.AdV encoding 

MART-1 or gp100 melanoma antigens have been used to vaccinate patients with 

metastatic melanoma [109]. 
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Adeno-associated viral vectors are one of the most extensively studied 

and highly used vectors for gene therapy appraoches. Simplicity of design, lack 

of pathogenicity, low immunogenicity and safety have made these vectors 

attractive for clinical applications [110-112].  

VV exhibits a broad host range, allowing infection of many laboratory 

animals. This makes VV easy to study in the laboratory in animal models, and 

preclinical results can be more readily translated into clinical trials. 

Recombinant poxviruses expressing immunomodulatory molecules together 

with specific antigens might represent powerful vaccines for cancer 

immunotherapy [1]. This is in contrast to, for example, human adenovirus, for 

which a lack of good animal models has remained a major obstacle. 

Development in recombinant DNA technology has made efficient manipulation 

of the VV genome a reality [113].  
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II.3. VACCINIA VIRUS  

Vaccinia is a highly immunogenic virus capable of inducing strong 

humoral as well as cell-mediated immune responses [114;115]. VV represents a 

unique opportunity for cancer immunotherapy approaches. In the context of 

cancer therapy, VV has been used mainly as a delivery vector to deliver TAAs 

to elicit antigen-specific immune responses [3;106], or to deliver immune 

modulating genes such as cytokines and costimulatory molecules directly into 

established tumors to change the local microenvironment [116;117]. 

Furthermore, it can also be used as a replication selective tumor-specific 

oncolytic virus [118]. In vivo administration of vaccinia virus appears to 

naturally possess an intrinsic ability to selectively infect cancer cells and 

generate antitumor immunity [119]. Oncolytic VV may also be prepared ex vivo 

by infecting tumor cell lines to form VV oncolysates with augmented 

immunogenicity and then administered in vivo [120]. Indeed, a number of 

cancer vaccines based on VV vectors have shown promising results in 

preclinical animal models and numerous clinical trials [117].  

II.3.1. Properties 

Vaccinia virus is a member of the genus Orthopoxvirus of the family 

Poxviridae. Poxviruses comprise a large family of viruses characterized by a 

large, linear dsDNA genome, a cytoplasmic site of replication and complex 

virion morphology. The best characterized member of the poxvirus family is 

variola, the causative agent of smallpox. The laboratory prototype virus used for 

the study of poxviruses is vaccinia; this virus was used as a live, naturally 

attenuated vaccine for the eradication of smallpox in the 1970s [121].   
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II.3.1.1. Origin 

Vaccinia virus is closely related to the virus that causes cowpox. The 

precise origin of VV remain obscure due to the lack of record-tracking as the 

virus was repeatedly cultivated and passaged in research laboratories for many 

decades. The most common note is that vaccinia virus, cowpox virus and 

variola virus were all derived from a common ancestral virus [122].  

II.3.1.2. History  

The original vaccine for smallpox, and the origin of the idea of 

vaccination, was cowpox, reported on by Edward Jenner in 1798. The Latin 

term used for cowpox was variolae vaccinae, essentially a direct translation of 

"cow-related pox". That term lent its name to the whole idea of vaccination. 

When it was realized that the virus used in smallpox vaccination was not, or 

was no longer, the same as the cowpox virus, the name ` vaccinia ` stayed 

with the vaccine-related virus [123].      

II.3.1.3. Taxonomy 

VV is the most studied virus of the poxviridae family. The poxviruses 

represent a family of large DNA viruses that replicate in the cytoplasm. They are 

subdivided into the entomopoxvirus (EnPV) and chordopoxvirus (ChPV) 

subfamilies (Entomopoxvirinae and Chordopoxvirinae), which infect insects and 

chordates, respectively. The ChPVs are further divided into eight genera 

(Avipoxvirus, Molluscipoxvirus, Orthopoxvirus, Capripoxvirus, Suipoxvirus, 

Leporipoxvirus, Yatapoxvirus and Parapoxvirus), whereas the EnPVs are 

divided into three genera (A, B and C). Several strains of vaccinia virus are 

existing, some are replicating (Copenhagen, Wyeth, WR, Lister and NYCBOH), 

others are in contrast highly attenuated strains unable to replicate or replicating 

poorly in human cells (MVA, NYVAC, ALVAC and TROVAC)  [124].  
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II.3.1.4. Morphology  

Both the morphogenesis and structure of poxvirus virions are unique 

among viruses. Poxvirus virions apparently lack the symmetry features common 

to other viruses such as helical or icosahedral capsids or nucleocapsids. Instead 

poxvirus virions appear as “brick shaped” or “ovoid” membranebound particles 

with a complex internal structure.  

To exit from the cell, viral particles are propelled by a mechanism 

involving the cytoskeleton of the infected cells. The first indication that VV was 

able to interact with the cytoskeleton during its complex assembly process came 

from high voltage electron microscopy studies which showed virus particles at 

the tips of large microvilli-like projections in infected cells [125]. Indeed, VV 

induces the nucleation of actin tails from outer membrane surrounding the 

intracellular enveloped virus (IEV) [126]. 

 Imp Colle2006 Imperial College 

Imperial College London Imperial College London 

Figure (9): Structure of Vaccinia virus particle A. Virus particles labelled with a green 
fluorescent protein can be studied by modern microscopy techniques by Live Cell Imaging 
or fixed and processed for confocal and electron microscopy. Blue areas are cell DNA and 
viral DNA, the red filaments are actin tails which propel the green virus particles away from 
the cell surface [127]. B. the virus appears as a slightly flattened barrel with overall 
dimensions of approximately 360 x 270 x 250 nm. It is encased in an outer membrane that 
contains a lipid bilayer. Within the membrane is the core, which is also barrel shaped and 
contains two indentations, one on each of the largest surfaces. Filling the spaces between 
the core wall and the membrane that are created by the indentations in the core are “lateral 
bodies”. 
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In figure 9, the virus appears as a slightly flattened barrel with overall 

dimensions of approximately 360 x 270 x 250 nm. The particle is encased in an 

outer membrane, which itself consists of two component domains. The 

outermost membrane domain is 9 nm thick and the innermost membrane domain 

is 5 nm thick. The membrane contains a lipid bilayer, which probably 

corresponds to the inner membrane domain. Within the membrane is the core, 

which is also barrel shaped with two indentations, one on each of the largest 

surfaces. The core is defined by a core wall, which is also comprised of two 

layers. Filling the spaces between the core wall and the membrane that are 

created by the indentations in the core are “lateral bodies” [128]. 

II.3.1.5. Nucleic acid 

Vaccinia virus genome is a linear double stranded DNA molecule 

characterized by a natural cross-linking at both termini of the two DNA 

molecule strands, essentially resulting in a single stranded circular DNA 

molecule [129]. The total genome length of the Copenhagen strain of VV is 192 

kbp with a relative purine or pyrimidine bases composition of 66.6% A/T. 198 

protein-coding regions “major” and 65 overlapping “minor” regions were 

identified, for a total of 263 potential genes [130]. In addition, the VV genome 

contains very long inverted terminal repeats (ITR) which are identical but 

oppositely oriented sequences at both ends of the genome. ITRs are important 

features required for VV DNA replication. A central region of the genome is 

highly conserved between different Orthopoxviruses. In contrast, the ends are 

hypervariable [129]. VV genes are largely nonoverlapping, which makes it 

relatively easy to manipulate the VV genome.  

II.3.1.6. Routes of infection of poxviruses 

Poxviruses can infect their host by different routes: through the skin by 

mechanical means, via respiratory tract (e.g. Variola virus infection of humans), 
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or by oral route [131]. Because one early gene of VV encodes a polypeptide 

termed viral growth factor (VGF) [132], with structural and functional 

homology  to epidermal growth factor (EGF) and TGF-α [133], It has been 

suggested that the epidermal growth factor receptor (EGFR) is a receptor for 

vaccinia virus. However, the expression of VGF by vaccinia virus or EGFR by 

the target cells influenced neither virus adsorption to cells nor penetration. These 

results indicate that the EGFR is not a receptor for vaccinia virus [134].    

II.3.1.7. Poxviruses replication 

 Poxviruses are unique among DNA viruses in that they reside exclusively 

in the cytoplasm of the host cell, where they replicate DNA, synthesize mRNA, 

and assemble progeny virus. This apparent autonomy from the nucleus is 

possible because these viruses encode many of the proteins that function in 

nucleic acid biosynthesis, including a DNA polymerase, RNA polymerase, 

transcription factors, and a nearly complete repertoire of mRNA modification 

enzymes [135]. 

Vaccinia virus coordinates its progression through its replicative cycle by 

expressing individual proteins at specific times. The temporal regulation of gene 

expression is controlled at the level of transcriptional initiation. The 

multisubunit viral mRNA polymerase, which structurally resembles its cellular 

counterparts, is responsible for all mRNA synthesis. Virus-encoded transcription 

factors are required for transcription of the early, intermediate, and late classes 

of gene promoters which are activated in that order. The factors required for 

activation of each class are products of the preceding class, establishing a 

cascade for gene activation [136]. 

All poxviruses replicate in the cytoplasm of infected cells by a complex, 

but largely conserved, morphogenic pathway (figure 10). Replication of vaccinia 

virus DNA occurs very efficiently within infected cells. It typically begins 1-2 

hours after infection and results in the generation of 10,000 genome copies per 
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cell within hours of infection, of which half are ultimately packaged into 

infectious virions [137;138].  

Two distinct infectious virus particles, the intracellular mature virus 

(IMV) and the extracellular enveloped virus (EEV)  can initiate infection [139]. 

The IMV and EEV virions differ in their surface glycoproteins and in the 

number of wrapping membranes [140]. 

The general scheme of VV replication (fig.10) can be summarized in five 

steps. (i) The binding of the virion to the cell membrane and is determined by 

several virion proteins and by glycosaminoglycans (GAGs) on the surface of the 

target cell or by components of the extracellular matrix. Fully permissive viral 

replication is characterized by three waves of viral mRNA and protein synthesis 

(known as early, intermediate and late), which are followed by morphogenesis 

of infectious particles. (ii) The transcription of early genes under control of early 

promoters begins few minutes after release of the core in the cytoplasm of 

infected cells. During this early infection phase, early RNA is transcribed by the 

virion associated RNA polymerase. (iii) Two to five hours after infection, the 

core liberates the viral DNA for cytoplasmic DNA replication and intermediate 

transcription occurs. (iv) Late RNA is then transcribed under control of late 

promoters. (v) The last step of the replication leads to morphogenesis of new 

viral particles by assembling viral proteins and the newly synthesized DNA 

[129]. The initial IMV is transported via microtubules (not shown in the figure) 

and it is wrapped with Golgi-derived membrane, after which it is referred to as 

an IEV. The IEV fuses to the cell surface membrane to form cell-associated 

enveloped virus, which is released to form free EEV. The EEV might also be 

formed by direct budding of IMV, therefore bypassing the IEV form [141]. 
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Figure (10): Poxvirus replication cycle. Two distinct infectiousvirus particles, the 
intracellular mature virus (IMV) and the extracellular enveloped virus (EEV) — can initiate 
infection. The binding of the virion is determined by several virion proteins and by 
glycosaminoglycans (GAGs) on the surface of the target cell or by components of the 
extracellular matrix. Fully permissive viral replication is characterized by three waves of viral 
mRNA and protein synthesis (known as early, intermediate and late), which are followed by 
morphogenesis of infectious particles. The initial intracellular mature virus (IMV) is 
transported via microtubules (not shown in the figure) and is wrapped with Golgi-derived 
membrane, after which it is referred to as an intracellular enveloped virus (IEV). The IEV 
fuses to the cell surface membrane to form cell-associated enveloped virus (CEV; not shown), 
which is either extruded away from the cell by actin-tail polymerization (not shown) or is 
released to form free EEV. EEV might also form by direct budding of IMV, therefore 
bypassing the IEV form. Poxviruses also express a range of extracellular and intracellular 
modulators, some of which are defined as host-range factors that are required to complete the 
viral replication cycle. 
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II.3.2. Advantages of VV as a Delivery Vehicle for Cancer Immunotherapy 

Although the global eradication of smallpox in the early 1980 was made 

possible by vaccination with VV, this virus is no longer needed for smallpox 

immunization, but now serves as a useful vector for expressing genes within the 

cytoplasm of eukaryotic cells. As a research tool, recombinant vaccinia viruses 

are used to synthesize biologically active proteins and analyze structure-function 

relations, determine the targets of humoral- and cell-mediated immunity, and 

investigate the immune responses needed for protection against specific 

infectious diseases. Upon generation of data on safety and efficacy, recombinant 

vaccinia and related poxviruses became candidates for live recombinant 

vaccines and for cancer immunotherapy [142]. The advantages of VV as a 

vector are outlined below. 

II.3.2.1. Cytoplasmic Replication  

VV replication occurs exclusively in the cytoplasm. This facilitates 

introduction of foreign genes into the viral genome by marker transfer and also 

the radiolabeling, detection, and isolation of proteins expressed by recombinant 

viruses. Furthermore, there is no risk of integration into the host cell genome 

and/or phenotypic transformation [113]. 

II.3.2.2. Wide Host Range  

VV has a wide host range, capable of infecting almost all human cell 

types with high efficiency. It replicates in both primary cell cultures and many 

different cell culture lines isolated from virtually any animal species. VV also 

grows in almost all types of experimental animals commonly used in the 

laboratory [143].  
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II.3.2.3. large Viral Genome  

The 192 kb genome of VV readily tolerates both large insertions of 

foreign DNA and deletions of viral sequences to further expand the quantity of 

insert. The ability to accommodate and express at least 25 kb of foreign DNA 

sequence by the virus is an important factor to be considered to construct a 

polyvalent vaccine [144]. 

II.3.2.4. Viral Transcriptional Machinery  

VV transcribes its genome by using unique viral enzymes, viral 

transcription signals, and ancillary transcription factors [145]. Foreign 

transcripts will be capped and polyadenylated by VV enzymes and will serve as 

efficient messages for the translation of relatively high levels of the foreign 

protein within the infected cell. 

II.3.2.5. Safety  

VV was the first viral vaccine used by Edward Jenner to prevent 

smallpox. Thus, we might consider that it has been in clinical trials since 1798 

[146]. Although complications such as postvaccination encephalitis or 

progressive VV infections can occur in immunocompromised recipient, overall 

VV is quite safe and effective vaccine, as evidenced by its successful use to 

eradicate smallpox from the human population globally. 

II.3.2.6. Cost  

Because of its broad host range, VV can easily be grown to high titers in a 

variety of cell lines or animal hosts [146]. It is cost effective to deliver as a 

vaccine as it is cheap to be produced. It is “off the shelf” reagent. 
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II.3.2.7. Stability  

The VV virion is very stable, maintaining infectious titer while frozen for 

many years. Furthermore, VV particles can be stored as dry powder for 

prolonged periods, rehydrated, and inoculated with only minimal losses in 

infectivity, thus permitting easy transport and clinical application [147].  

II.3.2.8. Ease of Administration  

Classical intradermal administration of VV-based vaccine does not 

require the same level of medical training as an intravenous injection.  

II.3.2.9. Replicating VV as Oncolytic Agent  

Efficient replication, cell lysis, broad host range and spread, remarkable 

safety along with natural tropism of VV for tumor tissues, make vaccinia virus a 

very attractive vector for developing oncolytic viruses. Genetic modifications of 

VV have been designed to create oncolytic vectors that favour the natural 

tropism for tumor cells. One approach is to delete viral genes that are critical for 

efficient viral replication in normal cells but dispensable in tumor cells. For 

example, a recombinant VV with thymidine kinase gene (TK) deletion has 

demonstrated enhanced tumor selectivity over normal tissues [148]. VGF is 

expressed early during VV infection cycle and is secreted from infected cells. It 

binds growth factor receptors on surrounding resting cells and stimulates cell 

proliferation. Recombinant VV with double deletion of TK and VGF was found 

to have markedly enhanced tumor specificity [149].   

II.3.3. Limitations of Vaccinia Virus as a Vector  

Despite those benefits mentioned before, VV used as a gene therapy 

vector (for delivery of tumor antigens and immunoregulatory molecules), has 

encountered limited clinical success in cancer therapy. Among the possible 

issues, the high immunogenicity of the virus, which limits the possibility of 

repeated injections [150]. Immunodominance and immunoprevalence of viral 
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antigens may also represent a problem in the competition with the weaker 

recombinant tumor antigens for the cellular responses [151;152]. 

II.3.3.1. Long term memory response to vaccinia virus  

 Vaccinia virus replicates in the cytoplasm of infected cells and it is not 

thought to persist or become latent after the acute phase of infection. However, 

long-lived vaccinia virus-specific memory cytotoxic T-cells were identified in 

adults who had been immunized against smallpox as children.  

Some authors observed that the capacity of VV to induce an immune 

response against heterologous proteins could be greatly impaired in recipients 

who had immunity against VV as vaccination with vaccinia had eradicated 

smallpox in 1980. Initially, vaccinia virus-specific T cells were detected in 

peripheral blood mononuclear cells while screening for human 

immunodeficiency virus type 1 (HIV-1)-specific T-cell responses in HIV-1-

seropositive subjects. These individuals had not had contact with VV since their 

primary immunization in early childhood. Several vaccinia virus-specific CD4+ 

T-cell clones were derived from these donors and characterized. Healthy, HIV-

1-seronegative donors who had been immunized against smallpox many (35 to 

50) years earlier were also screened for VV -specific T-cell immunity and 

significant CD8+ and CD4+ T-cell responses to VV was found after in vitro 

stimulation, indicating that these memory cells are maintained in vivo for many 

years [153]. It was concluded that specific VV T-cell immunity can persist for 

up to 50 years after immunization against smallpox in childhood in the 

presumed absence of exposure to the virus. 

 Antiviral antibody response remained stable between 1-75 years after 

vaccination [154]. The human CD8+ T-cell response to vaccinia is robust at 

early times after vaccination and can be very diverse within an individual [155]. 

Several candidate immunodominant antigens, containing multiple epitopes, have 
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been described. These antigens and epitopes should be useful in evaluating 

modified poxviruses being developed as vectors for heterologous antigens [156].  

II.3.3.2. Immunodominance of poxviral-specific CTL 

 Many recombinant poxviral vaccines are currently in clinical trials for 

cancer and infectious diseases. However, these agents did not succeed to 

generate T cell responses specific for recombinant gene products at levels 

comparable with T cell responses associated with natural viral infections. The 

recent identification of vaccinia-encoded CTL epitopes allows the simultaneous 

comparison of CTL responses specific for poxviral and recombinant epitopes 

[157]. 

Harrington et al., had developed a simple intracellular cytokine staining 

(ICS) assay using VV-infected syngeneic cell lines expressing MHC class I and 

class II proteins to quantitate VV-specific CD8 and CD4 T-cell responses. Using 

this assay, they monitored the magnitude and duration of T-cell responses to the 

vector (VV) and also to the foreign epitope following infection of mice with 

r.VV expressing the NP118-126 CTL epitope of lymphocytic choriomeningitis 

virus (LCMV). They also proved that VV specific effecter CD8+ and CD4+ T 

cells are able to produce IL-2, IFN-γ and TNF-α in response to vaccinia virus. 

|They found that the total number of CD8 T cells responding to NP118-126 were 

about   20- to 30-fold lower than the number responding to the VV vector [151]. 

   These results demonstrate that immunodominant vaccinia-specific CTL 

responses limit the effectiveness of poxviruses in recombinant vaccination 

strategies and that more powerful priming strategies are required to overcome 

immunodominance of poxvirus-specific T cell responses 

Although vector specific immune responses, especially CD4+ T cells, 

may initially be beneficial for the induction of CTL responses against 

transgenes, they may also prevent multiple use of the same vaccine [158]. In 
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particular, responses against the vector and its immunodominant epitopes may 

out-compete the anti-tumor response specific for recombinant antigens 

[151;159]. 

These limitations of using VV as a vector were the initiative issues 

addressed by the hereby presented project which is designed to overcome the 

problem of long lived memory immune response against VV and counteract the 

immunodominance of VV epitopes. 
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II.4. IMMUNOMODULATIONS OF CANCER VACCINES 

A key limitation of tumor immunotherapy arises from the fact that the 

host is tolerant for most tumor self antigens and T cells exhibit low avidity for 

these antigens. Breaking this tolerance is therefore a major goal of 

immunotherapy and requires the development of novel strategies for modulating 

the antitumor immune response through identification of immune adjuvants that 

can activate and amplify these residual low-avidity tumor-reactive T cells. The 

pattern and duration of immune responses associated with these new modalities 

differ from those associated with cytokines and cytotoxic agents. In addition, 

vaccines are being developed that may ultimately target TAA in combination 

with these immunomodulatory therapies [160]. Limited number of adjuvants is 

licensed for use in humans due to their potential severe side effects [161].  

Strategies that enhance numbers and the effector functions of T cells have 

been demonstrated according to the three different signal stages needed to 

activate T cells: antigen, costimulation and cytokine environment.  

II.4.1. Antigen Formulation (first signal) 

Binding of antigen/MHC complex to the TCR/CD3 complex provides the 

first signal for activation of naïve T cells. Different approaches have been used 

to provide the antigen and optimize the formulation. From the simple cells lysate 

to complex nanoparticles, we will here describe only the option that we have 

been using for vaccinia vector. 

- Minigene Formulation for Specific HLA Restriction 

As CTL recognize antigens as short peptides presented by MHC class-I 

molecules, characterization of these antigen fragments denominated cytotoxic T 

cell determinants or epitopes, has allowed the design of immunization strategies 

based on the use of subunit vaccines [162]. In the case of tumor cells, many 

epitopes belonging to different tumour antigens and different HLA restrictions 
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have been characterized during the last years [163]. Whereas corresponding 

synthetic peptides are simple to obtain and to be used, their relative lack of 

intrinsic immunogenicity and instability render this approach in human 

application relatively inefficient if not properly adjuvanted. On the other hand, 

the formulation of these epitopes via intracellular expression, based on plasmid 

DNA or viral vectors, of minigenes encoding for these specific peptides has 

been successfully developed and clinically applied.  

- Induction of Multiepitopic Immune Responses against Tumor  

A common feature of “fast growing” entities such as cancer and viruses is 

that, facing a monovalent immune response recognizing a single antigen, they 

rapidly select variants that are no longer expressing or presenting the recognized 

epitope. In order to decrease chances of rapid variant selection, but also allowing 

larger spectra of immune responses, strategies combining several antigens have 

been formulated. Thus, the use of multiple TAA epitopes is an attempt to 

circumvent antigen expression heterogeneity and to limit immune escape 

[3;164]. 

- Targeting the Endoplasmc Reticulum 

To facilitate the entry of the antigenic epitope into the endoplasmic 

reticulum, a sequence coding for adenovirus E3/19K leader peptide was added. 

Infection with r.VV expressing ER-targeted minigene elicited a stronger CTL 

response as compared to non-targeted or addition of exogenous peptide. These 

ER-targeted minigene formulations, for specific HLA restrictions, enable 

bypassing of a number of antigen processing steps, therefore avoiding limiting 

factors and ultimately result in an overall increased surface presentation of 

antigenic peptides within HLA molecules. Their capacity to generate epitope 

specific immune responses is thereby enhanced, as compared to vectors 

encoding the full antigen (figure 11) [165]. 
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Figure (11): Minigene formulation.  

TAA minigene is formulated in ER-targeted form which enables the encoded epitopes to pass 
directly to ER to be restricted by HLA molecule and bypass number of antigen processing 
steps. Viral proteins encoded from viral full genes undergo proteaomal degradation into 
small peptides that diffuse to TAP to be transported to ER, and then loaded on HLA 
molecule and recognized by specific T cell receptor (TCR). 
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- Epitope enhancement 

Modification of the amino acid sequence of epitopes, commonly referred 

to as epitope enhancement, can improve the efficacy of vaccines through several 

means: (a) increasing affinity of peptide for MHC molecules [166]; (b) 

increasing TCR triggering [167]; or (c) inhibiting proteolysis of the peptide by 

serum peptidases [168]. Whenever the peptide sequence is altered, it is 

important to demonstrate that the T cells induced still recognize the native 

peptide sequence.  

- Vectors  

To increase the efficiency of antigen-dependent immune modulation, 

researchers started to investigate novel vectors for antigen delivery [169]. Viral 

vectors are potent gene delivery platforms because of their ability to efficiently 

infect host cells. Removal of the replicative and pathogenic ability of viruses, 

combined with their capacity to carry the therapeutic transgene and an ability to 

efficiently infect various mammalian cell types makes them amenable for use in 

gene therapy. However, the immune system has evolved to fight off invading 

pathogens, which makes viral vectors subject to immune responses that have to 

be either blocked or avoided to achieve therapeutic transgene expression [170]. 

Adamina et al., have developed liposomal vectors that protected tumor 

epitopes against peptidases [171], and then these vectors were refined into 

immuno-stimulatory reconstituted Influenza virosomes (IRIV) containing 

Influenza virus A derived hemagglutinin and neuraminidase [172]. It was shown 

that IRIV are able to improve the generation of CTL responses specific for 

encapsulated peptides in vitro [173] and in vivo [172;173].  
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II.4.2. T-Cell Co-stimulation (second signal) 

T cells depend on signals additional to antigen recognition (Signal 2) to 

achieve full activation. The term costimulation usually describes the 

modification of T cell activation processes by the interaction of membrane-

bound ligands with their T cell-expressed receptors. Costimulatory signals 

transduced via CD28 and TNFR family members (figure 12) play paramount 

roles in modulating innate, adaptive, and regulatory immunity [174]. Agonistic 

ligands for this class of immunomodulatory receptors have potential to serve as 

effective components of therapeutic cancer vaccines. 

 

 

 

 

Figure (12): costimulatory molecules. 

 

 

 

 

- B7 molecules 

Interaction of the B7 molecules B7.1 (CD80) and B7.2 (CD86) on APC 

with CD28 on T cells is generally regarded as the primary costimulatory 

pathways involved in T cell activation. To enhance the immunogenicity of 

TAAs, transgenes for different T-cell costimulation molecules are placed into 

viral vectors along with the transgenes for the TAA [175]. The use of B7 co-

stimulatory molecules as adjuvants in prime boost vaccination strategies has 

enhanced the generation of CTL when expressed along with TAA  [3;176;177].  

APC T cellAPC T cell
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- ICAM-1/LFA-1  

LFA-1 is the best known costimulatory member of the integrin family. 

LFA-1 is a key accessory molecule expressed on T cells that interacts with 

intercellular adhesion molecule 1(ICAM-1 or CD54) on APCs [178].  In the 

context of antitumor immunity, ICAM-1/LFA-1 interactions could be important 

for T cell priming by APCs as well as for transendothelial migration and tumor 

cell recognition at the tumor site, cytokine production and protection from 

apoptosis. A TRIad of COstimulatory Molecules (TRICOM; B7-1, ICAM-1 and 

LFA-3) has been shown to enhance T-cell responses to TAAs to levels far 

greater than any one or two of the costimulatory molecules in combination [179-

183].  

- CTLA-4 molecule  

CTLA-4 is an inhibitory receptor on T cells that binds to B7 molecules 

with higher affinity than CD28. Engagement of CTLA-4, which is upregulated 

on activated T cells, counterbalances the activating effects of CD28 and leads to 

the inhibition of cell cycle progression and IL-2 production [184]. New 

immunotherapies targeting critical regulatory elements of the immune system 

may overcome tolerance and promote a more effective anti-tumor immune 

response. These include the use of monoclonal antibodies that block CTLA4 to 

prevent inhibitory signals that downregulate T-cell activation [185;186].  
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II.4.3. Costimulatory Molecules with Additional Fun ctions (signal 3 
and beyond) 

After activation of T cells, a number of cell surface and soluble molecules 

are known to further regulate the immune response (signal 3). Certain 

costimulatory molecules, in contrast to B7, act predominantly on activated T 

cells. In particular, OX40L, 4-1BBL, CD70 and all members of TNF 

superfamily (e.g. CD40L), appear to have somewhat distinct roles as 

costimulators of activated CD4+ and CD8+ subsets of T cells (Figure 13). One 

of the suggested effects of these ‘signal-3’ molecules is to extend the lifespan of 

the stimulated effector cells by suppressing genes associated with apoptosis 

[187]. 

 

 

 

 

 

Figure (13): signal 3 costimulatory 

molecules. 

 

 

 

 

- OX40L 

Fowlpox viral vector expressing OX40L either alone (r.f-OX40L) or in 

combination with TRICOM costimulatory factors (r.f-TRICOM/OX40L) 

demonstrated that (a) OX40L plays a role in sustaining the long-term 

proliferation of CD8+ and CD4+T cells following activation, and (b) the anti-

apoptotic effect of OX40L on T cells is likely the result of sustained expression 

of anti-apoptotic genes while genes involved in apoptosis are inhibited. In 

APC T cellAPC T cell
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addition, the use of r.f-TRICOM/OX40L both enhances initial activation and 

then further potentiates sustained activation of naive and effector T cells [188]. 

- 4-1BB ligand (4-1BBL) 

4-1BB is an inducible costimulatory member of the TNFR family 

expressed on activated CD4+ and CD8+ T cells. Its ligand, 4-1BBL, is 

expressed on activated APC. 4-1BBL-mediated costimulation is highly effective 

in expanding and activating T cell memory responses to influenza virus and 

EBV and does so with faster kinetics than B7.1 [189].  

- CD154 (CD40Ligand) 

CD40 belongs to TNFR family and was first identified and functionally 

characterized on B lymphocytes. CD40 is expressed much more broadly on 

monocytes, dendritic cells, endothelial cells, and epithelial cells. In addition, the 

CD40-ligand (CD40-L/CD154), a member of the TNF family, is also expressed 

more widely on activated CD4+ T cells [190].  

The interaction of DC expressed CD40 with CD40L on activated CD4 

cells can profoundly enhance T cell responses, since CD40 signals result in the 

upregulation of MHC molecules and costimulatory molecules in DCs [191]. 

Thus the role of CD40L in T cell stimulation is indirect one through induction of 

T cell costimulatory ligands such as CD80 and CD86 on APC [192]. 

Recombinant VV expressing CD40L has provided an efficient adjuvance 

during the induction of CTL specific response for Mart-1/Melan-A27-35 TAA 

[193]. 
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- Cytokines  

Cytokines have become an integral part of cancer therapy and are also 

under trial together with cancer vaccines as post-surgical adjuvant therapies 

providing significant gains in long term survival rates. 

IFN-alpha exhibits enhancing effects on T-cell and dendritic cell functions 

[194;195]. It is assumed that IFN-α has an antitumor and immunoadjuvant effect 

when used in combination with recombinant poxviruses [196]. Furthermore, 

immunization of stage IV melanoma patients with MART-1/Melan-A and gp100 

peptides plus IFN- resulted in induction of CTL immune response and 

activation of monocytes/dendritic cell precursors [197].   

IL-2 is known to promote the expansion of TAA specific CTL. When IL-2 

was paired with peptide vaccines in patients with resected stage III and IV 

melanoma, it appeared to boost the immune response to the vaccine [198;199].  

After approval of GM-CSF use in stem cell and bone marrow 

transplantation, it was also suggested that GM-CSF might have application as 

immunotherapy in melanoma after surgical resection. The theory is that GM-

CSF would activate antigen-presenting cells, and thus the ability to mount an 

immune response [200;201].  

IL-2 and IL-15 appear to be comparably effective in the induction of CTL 

proliferation in response to MART-1/Melan-A27-35 targeted active specific 

immunotherapy [202]. 

- Toll like receptor (TLR) agonists 

TLRs bind to one or more distinct pathogen-expressed molecules and can 

function as an “alarm signal” for the immune system, initiating appropriate host 

immune defenses. For example, TLR4 detects LPS which is specifically 
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expressed by Gram-negative bacteria. In response to LPS, TLR4 activation 

induces the secretion of proinflammatory cytokines and chemokines by host 

immune cells [203;204]. A synthetic agonist for TLR4, monophosphoryl lipid 

A, has been developed as a vaccine adjuvant [205].  

  TLR-9 recognizes unmethylated bacterial CpG-DNA and its clinical use 

is expected for cancer therapy as a potent inducer of a helper T cell 1 (Th1)-type 

T-cell response [206]. It was shown that TLR9 agonists stimulate dendritic cell 

maturation and ultimately induce a more effective immune response [207;208]. 

Early studies indicated that inserting model tumor-associated antigens into 

viruses, which contain TLR agonists, can augment their immunogenicity and 

function as tumor vaccines [209-211]. Recently, Speiser and colleagues have 

made efforts to use TLR agonists in conjunction with vaccination in patients 

with melanoma [212;213]. They found that combining TLR9 agonist CpG ODN 

7909 (a 24-mer oligodeoxynucleotide containing 3 CpG motifs) with a Melan 

A/MART1 26-35 peptide and incomplete Freund's adjuvant increased the number 

of MART1-specific T cells by >10-fold compared with vaccination without CpG 

[213]. 

Our group has generated recombinant vaccinia virus expressing antigenic 

epitopes derived from melanoma TAA. This r.VV is characterized by peculiar 

features. First, it encodes HLA-A0201 restricted multiple epitopes from three 

different melanoma differentiation antigens, Melan-A/Mart-127-35, GP100280-288 

and tyrosinase1-9. Second, the antigenic epitopes are encompassed within a 

polypeptide including an adenovirus 19K derived leader sequence 

(MRYMILGLLALAAVCSA) driving the resulting recombinant products 

directly into the ER, thereby bypassing antigen processing steps. Third, genes 

encoding CD80 and CD86 co-stimulatory molecules (required for T cell 

activation) have been added to this vector. Following the in vitro demonstration 

of the vector (Penta-Mel-r.VV) efficacy [177;214], it was successfully tested in 
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phase I/II immunotherapy clinical trial for stage III and IV melanoma patients. 

Administration of this viral vector was based on intradermal (ID) injection 

followed by boosts with solution of the corresponding specific peptides [3].   

The results of this first clinical study showed that despite a good 

immunogenicity of the viral vector, peptide ID injection were unable to properly 

boost the virally induced response. Therefore, we sought solutions to increase 

the potency of this protocol.  

Studies with synthetic tumor antigenic peptides have demonstrated that 

induction of single amino acid substitution may dramatically increase their 

immunogenicity. Therefore, we also constructed a r.VV expressing tumor 

antigenic peptide analogues with appropriate nucleotide substitution which 

leads to improved antigen recognition and enhanced immunogenicity [215]. 

We have also developed a r.VV expressing CD40L and demonstrated its 

capacity to enhance APC immunogenicity for specific CD4+ and CD8+ T cell 

responses [193].  

Finally, since lymph nodes are the primary site of immune reactions, it 

was suggested that intranodal administration might be more immunogenic than 

ID route for the induction of TAA specific immune responses [216]  especially 

for soluble peptides which are rapidly degraded once injected in peptidases 

containing environment. 

We therefore performed a second clinical trial based on the intranodal 

(IN) administration of our Penta-Mel-r.VV boosted by 3 IN injections of soluble 

peptides. Remarkably, CTL responses against at least one of the antigenic 

epitopes were detectable in the majority of patients and humoral responsiveness 

to VV vector was confirmed [217].  
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Moreover, some patients received “supplementary rec.VV immunization” 

on compassionate basis. These additional viral vector injections demonstrated an 

improved immune responsivness thus underlining the potential of prolonged 

immunization protocols with a viral vector. However, these multi-virus 

injections immediately raised the issue of immune-impairement due to anti-

vector responses. 

In the present study, we are addressing the issue of the possible limitations 

of using VV as a viral vector, due to prior systemic immunity and to 

immunodominance of VV antigens, resulting in reduced induction of immune 

response against weaker tumor antigens. We developed a r.VV expressing HSV-

US12, which down-regulates MHC class-I antigen presentation by blocking 

TAP transport. The relevance of this viral vector, especially in the perspective of 

multiple-boost vaccine protocol for cancer immunotherapy, was hereby 

investigated. 
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II.5. INFECTED CELL PROTEIN 47 (ICP47) AS 

IMMUNOMODULATOR  

 HSV-I is a highly abundant human pathogen that achieves lifelong 

persistence in the ganglia of the nervous system. Upon exogenous stimuli, it can 

be repeatedly reactivated and infect related mucosal tissues leading to clinical 

symptoms. To escape immune surveillance, herpes simplex virus compromises 

the host's cytotoxic T lymphocyte response via different mechanisms. Among 

these mechanisms is ICP47 blockade of TAP function [218]. ICP47 represents 

the first natural inhibitor of an ABC transporter described so far [219].  

II.5.1. US12 Gene 

 HSV has a number of genes devoted to immune evasion. US12 (also 

called alpha47) gene (fig. 14) encodes the small immediate-early regulatory 

protein ICP47, which inhibits antigen presentation in infected cells by 

specifically binding to and blocking TAP  [220]. 

 

(US12)(US12)

 

Figure (14): US12 gene 

 

This presentation inhibition of viral and cellular antigens associated with 

MHC class-I proteins to CD8+ T-cells effectively decreases immune recognition 

and thus increases infective persistence [221]. 

II.5.2 Structure of ICP47 

 ICP47 is an 88 amino acid immediate early gene product (IE12) [218]. It 

is a membrane associated protein adopting an α-helical conformation. 

Functional studies with N- and C-terminally truncated variants of ICP47 
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demonstrated that the N-terminal domain of ICP47 is sufficient for TAP 

inhibition (fig.15: residues 1-53 in blue [219], 2-35 in yellow [222] and 3-34 in 

pink [223]). Moreover, by alanine scanning mutagenesis, three regions (residues 

8-12, 17-24 and 28-31) were identified within the active domain of ICP47, 

which are critical for TAP inhibition [222]. 
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 Figure (15): Active domain of ICP47 protein  

      

Multidimensional solution NMR spectroscopy (fig. 16) indicates that the 

active domain of ICP47 adopts a helix-loop-helix conformation in the presence 

of detergent micelles. 

 

 
 
Figure (16): Ribbon drawing of a single structure of ICP47. AA (2−34) bound to SDS 
micelles [224]. 
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 The active domain of ICP47 appears to be mainly unstructured in aqueous 

solution [219]. In the presence of lipid like environment, an α-helical structure is 

induced, which is composed of two helical regions extending from residues 4-15 

and 22-32 connected by a flexible loop. On the basis of these results, therapeutic 

drugs could be designed that are potent immune suppressors or that are 

applicable in novel vaccination strategies against HSV, restoring the ability of 

the immune system to recognize the infected cells [224].  

II.5.3 Function of ICP47 

TAP molecules possess a single peptide binding site shared between the 

two subunits TAP1 and TAP2 [225]. It has been demonstrated that ICP47 

prevents peptide translocation into the ER lumen by specifically interacting with 

human TAP. Therefore, assembly and trafficking of MHC class-I molecules is 

impaired [226]. The active domain of ICP47 (residues 3-34) displays an 

identical ability to inhibit TAP function when compared to the full-length 

protein, illustrating preservation of the functional properties [223]. By binding 

with nanomolar affinity to the heterodimeric TAP complex, ICP47 blocks 

peptide but not ATP binding to the ABC transporter [218]. The active domain 

interacts with TAP at the subunit/membrane interface within the lipid head 

group region and blocks peptide translocation into the Endoplasmic Reticulum 

(ER) lumen (figure 17) [227]. In the membrane-bound state, ICP47 escapes 

proteasomal degradation, which otherwise occurs rapidly in the membrane-free 

state. 

In the absence of a functional TAP transporter (within 3 h of infection), 

empty MHC I molecules are retained in the ER and ultimately directed to 

proteasomal degradation [21]. 

It was demonstrated that ICP47 binds with high affinity at least in part to 

the peptide binding site of TAP, thereby blocking the first and essential step in 

the translocation pathway [21]. Recently, a similar downregulation of peptide 
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transport activity was observed in bovine epithelial cells infected with bovine 

herpesvirus-1 [228]. The ICP47-TAP interaction is highly species specific, since 

the viral protein shows a more than 100-fold higher affinity for human than for 

murine TAP [218]. It has been further suggested that binding of ICP47 results in 

a conformational change of peptide transporter, which might also block TAP 

function.  

Proteasomal degradation
products

ER lumen

Cytosol

ERp57 Calreticulin

MHC class-I
Tapasin

TAP2TAP1

ER membrane

ICP47

Proteasomal degradation
products

ER lumen

Cytosol

ERp57 Calreticulin

MHC class-I
Tapasin

TAP2TAP1

ER membrane

ICP47

 
Figure (17):  Model of the active domain of ICP47 in phospholipid bilayers.  
After binding to the cytosolic face of the endoplasmic reticular (ER) membrane, ICP47 
adopts a helix-loop-helix conformation. Subsequent association with the peptide-loading 
complex at the lipid-TAP interface blocks the peptide supply to MHC class-I molecules. The 
peptide-loading complex consists of the ATP-binding cassette halftransporter subunits TAP1 
and TAP2, the adaptor protein tapasin, the MHC class-I heavy chain (hc), the noncovalently 
associated β-2-microglobulin (β2m), and several auxiliary factors (e.g. calnexin and the thiol-
oxidoreductase ERp57) (Modified from Aisenbrey et al., 2006) [227]. 
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II.6. RECOMBINANT VACCINIA VIRUS EXPRESSING 
ICP47 PROTEIN  

Anti-vector immune responses are of major concern in clinical gene 

therapies. In recombinant virus mediated vaccination, this issue is even more 

critical since immunization procedure often require multiple injection of the 

vaccine. Reports from studies performed by using r.VV, suggest that previous 

immunization against the vector may result in impaired responsiveness against 

transgenic antigens, as compared to naïve recipient [158;229]. 

Competition between immunodominant epitopes [230] and relative 

responsiveness to vector and recombinant antigens [151] may play a role in this 

balance. Pre-existing cellular and humoral anti-vector immunity , which may be 

long lived for poxvirus [154], might relatively inhibit immunization although 

transgene CTL responses may still be possible [231], and have consistently been 

found in numerous vaccination protocols taking advantage of recombinant 

vaccinia vectors in pre-vaccinated patients [3;232].  

Overcoming host CTL response and prolonging vector survival is now 

recognized as a major goal for many gene therapy models. Therefore, inserting 

the herpesvirus US12 gene into recombinant vaccinia virus vector which 

encodes TAA minigene may simultaneously decrease epitope competition and 

cellular anti-viral responses. In an APC infected with US12-recombinant 

vaccinia virus, the generation of most, if not all, epitopes drived from viral entire 

proteins following the classical MHC class-I processing, transport and 

presentation pathway, should be blocked. On the other hand, recombinant ER 

targeted vaccine epitopes should not be affected by ICP47 mediated blockade 

and may profit from reduced competition and more efficiently induce CTL 

response.          
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III.MATERIALS AND METHODS 

III.1. MATERIALS 

III.1.1. Cells 
• CV-1 cells: are monkey African green kidney fibroblasts, ATCC CCL70, 

ECACC Ref N°: 87032605 grow rapidly and form monolayers of 

fibroblast like cells, cultured in DMEM 10% fetal culf serum (FCS). 

• HeLa cells: are human epithelial cancer cells. They were a gift from Dr. 

Jantscheff (Department of Clinical Oncology, University of Basel) and 

are cultured in DMEM 10% FCS. 

• EBV-BL: are human B lymphocyte transformed by Epstein-Barr virus, 

cultured in RPMI supplemented with 10% FCS. 

• Na-8, D10 and WM115 MEL: are human melanoma cell lines. They are 

HLA-A*0201 positive, and are cultured in DMEM 10% FCS. 

• PBMCs: are peripheral blood mononuclear cells from healthy donors, 

who are all HLA-A*0201 positive, cultured in RPMI 5% human serum. 

CD8+, CD4+ and CD14+ cells are positively selected by magnetic 

absorbent cell sorting (MACS) technique using appropriate antibody-

magnetic microbeads.  

III.1.2. Viruses 
 Vaccinia virus wild type and all derived recombinant constructs are based 

on the Copenhagen strain of Vaccinia virus (generously provided by Dr. R. 

Drillien, Strasbourg, France) All the recombinant vaccinia viruses used were 

produced according to Zajac et al., [233]. 

• r.VV-US12: recombinant vaccinia virus encoding the Herpes Simplex 

Virus US12 gene (codes for ICP47 protein) under early viral promoter 

control. US12 gene is inserted into the A56L locus of vaccinia virus 

genome by homologous recombination. 
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• r.VV-Mart: recombinant vaccinia virus encoding the minigene MART-

1/Melan-A27-35 under early viral promoter control. MART-1/Melan-A is 

inserted in the I4L locus of vaccinia virus genome by homologous 

recombination. 

• r.VV-Mart-US12: recombinant vaccinia virus encoding the minigene 

MART-1/Melan-A27-35 and HSV-US12 gene. 

III.1.3. Plasmids 

For the construction of recombinant virus, pKT 1323 plasmid (generous 

gift from Dr. K. Tsung, San Francisco, CA) was used. This plasmid (map 1) 

contains two homologous regions from A56R locus of the viral genome flanking 

the cloning site [234], in which the gene of interest is inserted under the control 

of a vaccinia specific early promoter and transcription termination signals. 
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Map (1): pKT for the construction of US12 encoding plasmid.  
gpt gene is used as a transient marker for selection of recombinant vaccinia virus, and amp 
gene as selection marker for further tranfected bacteria. Short arrows indicate the location of 
oligonucleotides used for PCR or sequencing reactions. 
amp = ampicillin resistance (β-Lactamase); gpt = guanine phosphoribosyl transferase, MPA 
resistance. 
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III.1.4. Media and Buffers 

� DMEM 10% FCS: DMEM1, 1% HEPES buffer2 1M, 1% Non Essential 

Amino Acids (MEM-NEAA)2 (100x), 1% GlutaMAXTM-I2 (100x), 

1%Sodium Pyruvate2 (100x), 1% Kanamycin2 (100x), 10% FCS. 

� RPMI 5% HS: (complete medium): RPMI 1640 Medium3, 1% HEPES 

buffer2 1M, 1% MEM-NEAA2 (100x), 1% GlutaMAXTM-I2 (100x), 

1%Sodium Pyruvate2 (100x), 1% Kanamycin2 (100x), 5% filtered human 

serum4. 

� CTL medium: RPMI 5% HS and IL-2 200unit/ml final. 

� GM-CSF medium: RPMI 1640 Medium3, 1% HEPES buffer2 1M, 1% 

MEM-NEAA2 (100x), 1% GlutaMAXTM-I2 (100x), 1%Sodium Pyruvate2 

(100x), 1% Kanamycin2 (100x), 10% FCS2 and GM-CSF 50ng/ml5. 

� MACS buffer: PBS (BD nº349202), 0.5% FCS and EDTA pH 8, 0.5mM1 
 

1Fluka, BuchsSG, Switzerland; 2GIBCO, Paisley, UK; 3Invitrogen, Carlsbad, CA; 4Blood 
bank, University Hospital Basel, CH; 5Novartis, Basel, CH.    

 

III.1.5. Antibodies and MHC-multimers 

� Mouse IgG antibodies to human HLA-ABC, HLA-A 0201 molecule, 

CD14, CD4, CD8, CD80, CD44 and HLA-DR molecule. Control IgG, 

R-PE, APC or FITC conjugated (BD PharMingen, Franklin Lakes, 

NJ). 

� Soluble MHC-peptide pentamer Streptavidin R-PE conjugate, MHC 

allele: HLA-A 0201 (ProImmune, Oxford, UK): MART-1/Melan-A26-

35. 

� Soluble MHC-peptide multimer Streptavidin R-PE conjugate, MHC 

allele: HLA-A 0201 (ProImmune, Oxford, UK): Vaccinia Virus 

H3L184-192, B22R29-37 and C7L74-82. 
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III.1.6. Primers and Probes 

β-actin  

Pre-developed assay: (Applied Biosystem, Foster City, CA) 

VV I3L [193]  

Fwd  CGGCTAGTCCTATGTTGTATCAAC TTC 
Rev  TGC AAATTTGGAATGCG 
Probe FAM-AGAAGCCGTCTATGGAAACAT TAAGCACAAGG-TAMRA 
 
GAPDH [235] 

Fwd ATG GGG AAG GTG AAG GTC G 
Rev TAA AAG CAG CCC TGG TGA CC 
Probe FAM-CGC CCA ATA CGA CCA AAT CCG TTG AC-TAMRA 
 
IFN-γ [236] 

Fwd AGC TCT GCA TCG TTT TGG GTT 
Rev GTT CCA TTA TCC GCT ACA TCT GAA 
Probe FAM-TCT TGG CTG TTA CTG CCA GGA CCC A-TAMRA 
 
IL-2 [237]   

Fwd AAC TCA CCA GGA TGC TVA CAT TTA 
Rev TCC CTG GGT CTT AAG TGA AAG TTT 
Probe FAM-TTT TAC ATG CCC AAG AAG GCC ACA GAA CT-TAMRA  
 
ICP47 (Inner) 

Fwd AAA GGA TCC GCA TGT CGT GGG 
Rev AAA GAA TTC TCA ACG GGT TAC CGG ATT ACG  
Probe FAM-TCG GTC ACG GTC CCG CCG -TAMRA  
ICP47 (Nest) 

Fwd AGG TGC GTG AAC ACC TCT G 
Rev GTG GAC CGC TTG CTG CTC  

III.1.7. Chemicals 

� Psoralen: (CN Biosiences, Nottingham, UK): 4 aminomethy- trioxsalen 

(trioxsalen: 4, 5, 8- trimethylpsoralen): C15H15NO3. 

� Paraformaldehyde 1%: (Polyoxymethylene, (CH2O)n, 30.03 D, Fluka 

Chemi AG, Buchs, Switzerland). 
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III.2. METHODS 

III.2.1. Virological Methods 

III.2.1.1. Cloning procedure for recombinant vaccinia virus preparation  

DNA samples of cerebrospinal fluid from HSV positive patients were 

kindly provided by Prof. M.E. Lafon, (Laboratoire de Virologie, University of 

Bordeaux, Bordeaux – France). US12 gene was amplified and isolated by nested 

PCR technique to reduce contamination in the PCR product. 

Technical Procedure: the first round polymerase chain reaction (PCR) 

performed with 5µl DNA sample from HSV genome. After 15 cycles performed 

with the “nested” primers, 5µl of the PCR product are used to start the second 

run of 20 cycles using the set of “inner” primers. After amplification, the nested 

PCR product is run on 1% agarose gel. The size of the second round product is 

expected to be 267bp.   

US12 gene is inserted into pKT1323 after plasmid digestion by BamHI 

and EcoRI restriction enzymes (map 2) (Promega, Madison, WI). Competent E. 

coli (Top 10; Invitrogen, Paisley, UK) are transformed by electroporation (25µF 

and 2.5kV; Gene Pulser apparatus; Bio-Rad Laboratories, Hercules, CA) 

following manufacturer’s protocols and plated on LB agar (GIBCO, Paisley, 

UK) containing 100µg/ml carbenicillin (Fluka Chemie, Buchs, CH). After 

colony selection and amplification of bacteria in LB medium (GIBCO), plasmid 

DNA is isolated using the NucleoSpin® Plasmid Kit (Macherey-Nagel, 

Oensingen, CH). The insert presence is verified on 0.8% - 1% agarose gel 

(GIBCO) after restriction with HindIII and BglII restriction enzymes. Selected 

clones are also analysed by gene sequencing to verify the presence of US12 

gene insert into pKT1323.  
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III.2.1.2. Transfection into viral vector 

Recombinant vaccinia virus is generated by homologous recombination 

with co-transfectant (VV plasmid). This plasmid (map 2) contains multiple 

expression/ insertion cassettes containing early promoters [238] and a multiple 

cloning site with the VV early transcriptional termination sequence (TTTTTNT) 

located downstream. The expression/ insertion cassettes are flanked by 

sequences being identical to different viral loci and allow homologous 

recombination and production of rVV. The gene encoding the Escherichia coli 

guanine phosphoribosyl transferase (gpt) is used as a transient marker for 

selection of r.VV [239].  
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Map (2): US12 encoding plasmid  
The plasmid contains two regions, homologous of a viral genome locus A56R; illustrated by 
blue boxes, flanking the cloning site.  US12 gene was inserted into pKT1323 by BamHI and 
EcoRI ligation. 
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Subconfluent adherent CV1 cells are infected at m.o.i 0.1 for one hour at 37°C 

with one of the following viruses after sonication:   

• Copenhagen wild type strain (WT) of vaccinia virus (generous gift from 

Dr. R. Drillen, Strasbourg, France) to generate r.VV-US12 (figure 18.A). 

• Recombinant vaccinia virus encoding MART-1/Melan-A27-35, produced 

according to Zajac et al [2] to generate r.VV-Mart-US12 (figure 18.B). 

MART-1/Melan-A27-35 is a TAP independent tumor antigenic epitope.  

Lipofectamine™ Reagent (160µg/ml; Invitrogen, Carlsbad, CA) and the shuttle 

plasmid DNA (2-5µg) are premixed for 20 minutes at room temperature and 

added to the infection in presence of serum free DMEM medium. After four 

hours of incubation at 37°C DMEM-10% FCS is added to the reaction.  
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Figure (18): (A) Recombinant VV with US12 gene. (B) Recombinant VV with Mart-
1/Melan-A27-35 and US12 genes. 
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Vaccinia undergoes homologous recombination (fig. 19) during 

replication in infected cells. This innate ability to recombine is used to introduce 

foreign DNA coupled to a vaccinia promoter, such as A56R locus into the viral 

genome. This recombination leads to insertion of the gene of interest (i.e. the 

foreign DNA) into the viral progeny. The usual target of insertion is a 

nonessential region, so that virus retains its ability to replicate independently and 

the system can be maintained. The estimated incidence of successful insertion is 

approximately 0.1% [142]. 

III.2.1.3. Recombinant VV selection with Mycophenolic acid inhibition/gpt 
expression  

Recombinant viral clones are selected according to their transient 

expression of the E. coli gpt marker under the selective pressure of MPA, 

Xanthine and Hypoxanthine as described by Earl P.L. and Moss B. [240]. The 

mycophenolic acid (MPA) is an inhibitor of purine metabolism. It inhibits the 

enzyme inosine monophosphate dehydrogenase and thereby prevents the 

formation of xanthine monophosphate. This results in intracellular depletion of 

purine nucleotides and inhibition of cell growth [241]. This MPA was 

demonstrated to reversibly block formation of vaccinia virus plaque [142].  

The inhibition of the de novo synthesis of purines by MPA can be 

overcome in cells that express the Escherichia coli gpt gene, which codes for the 

enzyme xanthine-guanine phosphoribosyltransferase (XGPRT), in the presence 

of xanthine and hypoxanthine in the growth medium [241]. 

The block of purine synthesis by MPA can also be overcome by a 

recombinant virus expressing the bacterial XGPRT (encoded by Escherichia coli 

gpt gene). Indeed, synthesis of XGPRT enables only the recombinant viruses to 

form large plaques in a selective medium containing MPA, xanthine and 

hypoxanthine [242]. 
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 All plaques picked at the first selection step contain recombinants. Any 

contaminating wild-type virus or an accidentally picked microplaque is removed 

by further rounds of plaque purification in selective medium and no background 

of spontaneously occurring gpt+ virus would be expected or has been observed. 

In addition, the gpt gene is incorporated into a plasmid vector that has a VV 

promoter and unique restriction endonucleases sites for insertion of the foreign 

gene. Because of VV derived flanking sequences, the entire selection-expression 

cassette is inserted as a unit into the VV genome by a single homologous 

recombination. Thus, all of the gpt+ recombinants analyzed also contained the 

foreign gene that had been inserted into the plasmid vector. 

Technical Procedure: after complete infection of the cells (about two 

days), as monitored by cytopathic effect (CPE), viruses are harvested, sonicated 

and used for infection: 100µl of 10-3 and 10-4 of virus suspension are added to 

fresh subconfluent CV1 (non transfected WT virus served as control). For viral 

selection, a combination of the drugs, 25µg/ml MPA, 250µg/ml Xanthine and 

25µg/ml Hypoxanthine (Sigma, St.Louis, MO), is added to the reaction and 

incubated at 37°C. Only recombinant virus expressing the enzyme ‘gpt’ can 

replicate in selective medium. Plaques are picked and resuspended in PBS. The 

selection of recombinant virus requires two to four rounds with selective 

pressure and two or three more rounds of plaques selection without pressure 

which enables either excision of the entire plasmid (obtained from WT virus) or 

excision of the plasmidic part resulting in the obtention of the recombinant 

virus. 
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Figure (19): Principle of homologous recombination.  

The cloning cassette is flanked by sequences identical to viral regions (VV1 and VV2) 
allowing homologous recombinations by genetic crossing-over leading to insertion of the 
gene of interest into the wild type genome of VV. During viral replication, a single 
homologous recombination event, e.g. with the region1 (rec1) generates a recombinant virus 
containing the entire plasmid whose presence in the viral genome is needed for selection 
under pressure by MPA. However, this intermediate recombinant form contains duplicate 
sequences and is therefore genetically unstable. Removal of selective pressure will allow the 
isolation of stable viruses derived from this intermediate form following recombination events 
either with the two VV sequences reverting to the initial form (WT) or following 
recombination with the second site (rec2) generating the stable recombinant virus (rec.VV-
US12). The probability of each event is similar, thus the chances to have WT or recombinant 
virus are in theory 1:1.  
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To verify genomic insertion, viral DNA is purified from infected cells and 

PCR is performed with specific primers targeting the locus of the viral genome 

where the transgene is located. Primers A56cpB2 and A56pcr3` are used to PCR 

amplify the A56 R locus of the virus which is expected to have the US12 gene. 

 

 A56R-5’: ACTCCACAGAGTTGATTGTA  

A56R-3’: GTATGTGACGGTGTCTGTAT  

 

III.2.1.4. Amplification and cushion-concentration of vaccinia virus 

Twelve 175 cm2 confluent flasks of CV-1 cells are infected with 

sonicated replicative virus at 0.01 multiplicity of infection (m.o.i.) until 

complete CPE occurs. After 4 days culture, 8ml TRIS 10mM are added on each 

decanted flask. Infected cells are detached by 1 cycle of freeze-thaw, collected 

and centrifuged (2.500 x g, 4min). Supernatant A is stored, while the pellet is 

resuspended in 5ml TRIS 10mM and sonicated to liberate the virus. After 4 

minutes centrifugation at 2.500 x g, supernatant B is added to the viral solution 

A, while the pellet is resuspended in 3ml of TRIS 10mM, sonicated, and 

centrifuged (2.500 x g, 4 min). Supernatant containing the replicative viruses is 

added to the previous viral solution, distributed in the ultra-centrifuge tubes, 25 

ml per tube. 10 ml sucrose 36% underlayer cushions are added in each tube. 

After 1 h 30 min ultra-centrifugation at 30 000 rpm, pellets are resuspended in 

TRIS 1mM, sonicated, aliquoted and stored at -20ºC. 

III.2.1.5. Virus titration 

CV-1 cells are cultured in a 6 wells plate and are grown to sub-

confluency. Replicative viral stock solutions are thaw, sonicated for 1 min and 

diluted in PBS from 10-1 to 10-8. After medium removal, 100µl of the 10-6to 

10-8 dilutions are used to infect the wells in duplicates. The cells are incubated 
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at 37°C for one hour for viral adsorption with shaking the plate every 10 min. 

2ml of medium is added in each well and the cells are incubated for 24 to 48 

hours. As replicative vaccinia virus life cycle ends by lysis of the cells, one 

initial virus particle will induce after replication the formation of a visible hole 

in the cell monolayer. After medium is aspirated, cells are stained for 1min by 

500µl of 0.1% violet crystal (Hexamethylpararosaniline chloride, C25H30CIN3, 

407.98D (Fluka Chemie AG, Buchs, Switzerland) diluted in ethanol and the 

plaques are counted under light microscope. The viral stock solution 

concentration is calculated following the formula:  

Viral concentration (pfu/ml) = number of plaques x 10 x dilution factor.   

For estimation of the concentration of r.VV-US12 and r.VV-Mart-US12 

viral stocks, the mean number of plaques in 2 identical wells is calculated and 

according to the dilution factor, 

Concentration of r.VV-US12 was 1.9 x 109 pfu/ml (picture not shown) and of 

r.VV-Mart-US12 (picture 2) was 2.5 x 109 pfu/ml. 

 

                                    
Picture (2): Titration of r.VV-Mart-US12. 

Confluent CV-1 cells cultured in 6 well plates, were infected with 100µl replicative virus 10-6 

,10-7  or 10-8 diluted, and cells were stained after 24 hours infection, to visualize plaque 
forming units (pfu) induced by replication of the virus. As replicative vaccinia virus life cycle 
ends by lysis of infected cells, one initial virus will induce, after replication, the formation of 
a visible hole in the cell monolayer. For staining, medium was removed and cells were stained 
with 0.1 % violet crystal.    
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III.2.1.6. Vaccinia virus inactivation by psoralen and long-wave UV light 

Although poxviruses are of low pathogenicity to humans, complete safety 

of vaccinia virus vector has to be ensured, especially in the view of potential 

vaccination of tumor bearing patients. Both recombinant viruses were treated 

with psoralen and long wave UV exposure. This treatment leads to cross-linking 

of the viral genomic DNA, preventing any possible replication of the virus. 

However, inactivated viruses are still able to infect cells and perform early genes 

transcription, which is independent of viral replication. This step required a 

precise monitoring of the inactivated viruses through characterization of the 

limited CPE of infected cells and a sufficient expression of viral early genes 

(evaluated by reverse transcribed real time PCR). 

Vaccinia virus is diluted to a concentration of 5 x 108 PFU/ml in a Hanks´ 

Balanced Salts Solution (HBSS) (Invitrogen, Carlsbad, CA) containing 1 µg/ml 

Psoralen (CN Biosciences, Nottingham, UK). After 10 min incubation at room 

temperature, 1ml of the solution is irradiated in an uncovered 35-mm dish with 

365 nm UV light for 10 min, applied energy 1.6 J (Stratalinker, Stratagene, La 

Jolla, CA) and aliquoted in 250µl vials. 

In order to rapidly evaluate the extent of inactivation, CV-1 cells are 

infected with PLUV virus at different m.o.i. (from 0 to 20). CPE is evaluated 

under microscope after 24 hours of infection. The shape of non infected cells 

monolayer refers to 0% CPE. The global changes in the morphology of the 

culture determinate the percentage of CPE.  
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III.2.2. Cell Biology Methods 

III.2.2.1. Cell isolation 

III.2.2.1.1. Peripheral Blood Mononuclear Cells (PBMC) isolation  

Anti-coagulated venous blood is diluted 1:2 in PBS and layered onto 

Ficoll. Lymphocytes and other mononuclear cells are isolated at the plasma-

ficoll interface.  

III.2.2.1.2. Cell sorting using MACS Magnetic MicroBeads 

For CD14+, CD8+ or CD4+ cells separation, (following the manufacturer 

protocol) PBMC are magnetically labelled with MicroBeads specific for  CD14, 

CD8 or CD4 (Miltenyi Biotec, Bergisch Gladbach, Germany), supplied as 

suspension and passed through a separation column placed in the magnetic field. 

The magnetically labelled cells are retained in the column while the unlabelled 

cells run through. After removal of the column from the magnetic field, the 

selected cells can be eluted as positively selected fraction, washed and 

resuspended in the appropriate medium. 

III.2.2.2. Gene expression analysis  

III.2.2.2.1. Total RNA isolation and DNA digestion 

Cells (1 x 107 maximum) are lysed, Ethanol is added to provide 

appropriate binding conditions, and the sample is applied to RNeasy® mini 

column (Qiagen, Basel, Switzerland). RNA molecules > 200 nucleotides bind to 

the silica membrane, providing enrichment for mRNA since most RNAs are less 

than 200 nucleotides. The RNA extracted is treated with DNase I (Invitrogen, 

Carlsbad, CA) following the manufacturer’s protocol. DNase I is then 

inactivated by heating for 10 min at 65°C. 



 

 ���� 73 ���� 

III.2.2.2.2. RNA Reverse Transcription 

Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT, 

Invitrogen, Carlsbad, CA) uses single-stranded RNA in the presence of a primer 

to synthesize a complementary DNA strand up to 7 Kb. Following the 

manufacturer’s protocol, reverse transcription is performed and then M-MLV 

RT enzyme is inactivated by heating for 5 min at 95°C. 

III.2.2.2.3. Gene Expression by quantitative Real-Time PCR (qRT-PCR) 

qRT-PCR is performed using the TaqMan® Universal PCR Master Mix, 

No AmpErase® UNG (Applied Biosystems, Forster City, CA) and the 

appropriate primers and probes. The ABI prismTM 7300 sequence detection 

system (Applied Biosystems, Forster City, CA) is used. Data are collected and 

normalization of the samples is performed using β-actin or GAPDH as reference 

genes. 

III.2.2.3. Flow Cytometry analysis  
III.2.2.3.1. Characterization of surface molecules 

MHC class-I (HLA-ABC and HLA-A2) surface presentation is 

characterized using monoclonal FITC-conjugate antibodies.  

Technically, infected cells are stained with specific or control IgG antibodies, 

incubated for 45min at 4˚C in the dark, washed twice in cold PBS, fixed 1min in 

Paraformaldehyde 1%, resuspended in 200 µl PBS and analysed on a FACS 

Calibur® cytometer (Becton Dickinson, Franklin Lakes, NJ). Staining with 

antibodies for CD80, HLA-DR, CD44, CD14, CD8, CD4 (PE, FITC or APC 

conjugate antibodies) is also performed following the same protocol. 
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III.2.2.3.2. MHC-Multimer Staining For Visualization of CD8+ Cells 

T-cell receptors have an intrinsic low affinity for their cognate MHC-

peptide ligand. To identify specific TCR on the surface of CD8+ cells, one can 

use soluble multimeric MHC-peptide complexes  

Principle: biotin is added to recombinant MHC peptide complexes which are 

assembled to form pentamers with avidin linked to a fluorochrome (PE). Only 

the T cells that have TCR capable of binding to the particular MHC-peptide   

combination of the pentamer are able to bind to the pentamer. Vaccinia virus 

H3L184-192, B22R29-37 and C7L74-82 or MART-1/Melan-A26-35 peptide-MHC 

multimers (Proimmune, Oxford, UK) are used. The concomitant use of a 

monoclonal antibody that is specific for a T cell marker (anti-CD8) allows the 

detection of (CD8+) T cells specific for the peptide of interest (figure 20).  

 

   

 

 

 

 

 

 

 

 

Figure (20): Principle of multimer staining for visualization of CD8+ cells  
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III.2.2.3.3. Cytokine Intracellular Staining  

Principle: Intracellular cytokine staining relies upon the stimulation of T cells in 

the presence of an inhibitor (Brefeldin) of protein transport retaining the 

produced cytokines inside the cell. To analyze the effector function of antigen-

specific T cells, the cells are first stimulated with antigen, followed by staining 

with antibodies specific for extracellular markers (such as CD8), then by 

membrane permeabilization and intracellular cytokine staining. 

Technically, 106 cells are resuspended in 1ml CM with 5% HS and Brefeldin is 

added to a final concentration of 10µg/ml, then homogenized and incubated for 

5 hours at 37̊C. After incubation, the cells are washed twice in MACS buffer 

and monoclonal antidody for the surface marker should be added at this step 

then the pellet is resuspended in 2ml paraformaldehyde 1% and incubated for 5 

min at room temperature. After incubation, cells are washed once in MACS 

buffer then the pellet is resuspended in 500µl FACSTM permeabilizing solution 

(BD nº340973) diluted 1/10 in H2O. The cells are gently vortexed and incubated 

for 10 min at room temperature. 15µl of the antibody for intracellular cytokine is 

added and incubated for 30-45 min at 4˚C in the dark, washed twice in cold 

PBS, fixed 1 min in Paraformaldehyde 1%, resuspended in 200 µl PBS and 

analysed on a FACS Calibur® cytometer (Becton Dickinson, Franklin Lakes, 

NJ).  

III.2.2.3.4. PI/Annexin Staining For Detection of Cell Viability 

 Annexin V-FITC Apoptosis Detection kit I (BD PharmingenTM, Franklin 

Lakes, NJ) was used for detection of cell viability. 

Principle: In apoptotic cell, phosphatidylserine (PS) is translocated from inner 

to outer leaflet of the plasma membrane, and is thereby exposed to the external 

cellular environment. Annexin V is a Ca2+ dependent phospholipid-binding 



 

 ���� 76 ���� 

protein that has a high affinity for PS [243]. Since externalization of PS occurs 

in the earlier stages of apoptosis, Annexin V staining can identify apoptosis at an 

early stage. Annexin V is typically used with Propidium Iodide (PI), which is a 

vital dye excluded in viable cells with intact membrane (figure 21).  

Technically, the cells are washed twice in cold PBS then resuspended into 1X 

binding buffer at a concentration of 1 x 106 cells/ml. 100µl of this solution is 

transferred into 5ml tube and 5µl of Annexin V and 5µl of PI are added. Cells 

are gently vortexed and incubated for 15 min at room temperature in the dark. 

400µl of 1X binding buffer are added and cells are analysed by flow cytometry 

within 1 hour.  
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Dead Cells 
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Cells 

Apoptotic 
Cells 

 

Figure (21): principle of PI/Annexin staining. 
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III.2.3. Immunological Methods 

III.2.3.1. Generation of antigen specific CD8+ T cells  

The capacity of r.VV-US12 to diminish the CTL response against 

vaccinia virus antigens by decreasing MHC class-I restricted presentation was 

tested in co-cultures of infected APCs with autologous CD8+ T cells. The 

capacity of r.VV-Mart-US12 to induce CTL response against MART-1/Melan-

A27-35 was also similarly tested. 

Technically, CD14+ cells from healthy donners (used as APC) resuspended in 

200 µl, are infected with r.VV-US12, rVV-Mart-US12 or r.VV-Mart as control. 

Noninfected cells are used as negative control. The cells are cultured in CM-

10% FCS with GM-CSF 50 ng/ml. After 36-48 hours, after taking part of 

infected cells for MHC class-I testing by FACS, the other part is co-cultured 

with autologous CD8+ and CD4+ T cells, separately. On day 8 and 15, CD8+ T 

cell cultures are stimulated with WT VV infected or MART-1/Melan-A26-35 

peptide pulsed (20µg/ml) autologous CD14+ cells resuspended in CTL medium 

but CD4+ T cell cultures were only stimulated with WT VV infected autologous 

APC. After stimulation, antigen specific (VV or Mart) T cells were 

characterized by MHC peptide multimer staining or cytokine expression.  

III.2.3.2. Measurement of cell proliferation using 3H-Thymidine 
incorporation 

T lymphocytes proliferation is measured by incorporation of tritiated 

thymidine (3H-Thy) into the DNA of dividing cells, providing a measure of the 

rate of DNA synthesis by the entire cell population.  

T lymphocytes primed with recombinant VV infected CD14+ cells, are 

cultured in a 96 well plate with flat bottom, in a final volume of 200 µl per well 

for 6 days. 3H-Thy (20 µl of a 1/20 dilution) is then added to each well and 

incubated for 18 hours at 37°C. The cells are harvested and lysed in a 
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Micro96TM Cell Harvester (Skatron, Sunnyvale, CA). Nucleic acids are 

sticking on a prewetted glass fiber filter. After three washes, the filter is dried 

and liquid scintillation cocktail is added (OPTI-FLUOR®, PerkinElmer, Boston, 

MA) then scintillation emission is measured. 
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Figure (22): Working plan 
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IV.RESULTS 

IV.1. CONSTRUCTION OF r.VV-US12 and r.VV-MART-
US12 

 To construct recombinant vaccinia virus, a two-step procedure has been 

developed. In the first step, a plasmid containing the gene of interest, controlled 

by a vaccinia virus promoter and flanked by sequences derived from a non 

essential site on the viral genome, is generated. In the second step, the foreign 

genetic material is transfered into the viral genome by homologous 

recombination in vivo (as mentioned in Methods) [242].  

 HSV-US12 gene was amplified by nested PCR from cerebrospinal fluid 

of HSV infected patients. A 267bp band corresponding to the US12 gene 

(picture 3) was purified and inserted into pKT1323 plasmid.  

  

267 bp

Ladder

267 bp

Ladder

 
 
 
Picture (3): PCR amplification of US12 gene. 
US12 gene was amplified from DNA extract from cerebrospinal fluid of HSV infected 
patients using nested PCR technique. The expected 267 bp bands corresponding to US12 gene 
were detected.  
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In order to obtain a recombinant vaccinia virus, the shuttle plasmid with 

the transgene US12 (pKT1323-US12) was transfected on an adherent cell 

monolayer (CV-1cells) infected with the parental virus WT VV or r.VV-Mart to 

generate r.VV-US12 or r.VV-Mart-US12 constructs, respectively. 

 To verify genomic insertion, viral DNA was purified from infected cells 

and the A56R locus of the virus genome was amplified. PCR ampliconś length 

was analysed on agarose gel in order to distinguish the recombinant from the 

wild type genome. The expected band of 1 k.bp or 1.5 k.bp was detected in wild 

type or recombinant genome, respectively. As shown in picture 4, analysis of 

viral clones indicates that we obtained 3out of 6 and 11out of 13 recombinant 

viral clones for r.VV-US12 (panel A) and r.VV-Mart-US12 (panel B) 

respectively. 

A.                                                             B.                 

 

  

1500 pb
Recombinant VV

1000 pb
WT VV

1500 pb
Recombinant VV

1000 pb
WT VV

      

1500 pb
Recombinant VV

1000 pb
WT VV

1500 pb
Recombinant VV

1000 pb
WT VV

                                         
 
Picture (4): PCR amplification of A56R locus 
To distinguish the recombinant from the wild type genome, viral DNA was purified from 
infected cells and PCR was performed with specific primers targeting the A56 locus of the 
viral genome. In wild type genome, the expected band is of 1 k.bp and for recombinant 
genome is 1.5 k.bp. (A) r.VV-US12. (B) r.VV-Mart-US12.                                             

The recombinant vaccinia virus DNA was sequenced. The 1246-1513 

sequence (expected US12 gene) was analysed and it was found to match the 

r.VV-US12 r.VV-Mart-US12 
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theoretical sequence of US12 gene of human Herpes Simplex virus type I (Strain 

17). However, 2 mutations were found at position 1396 and 1424. At position 

1396, a silent mutation thymine (T) to cytosine (C) was detected as CCT and 

CCC code for the same AA (proline) at position 50. At position 1424, a 

missense mutation adenine (A) to guanine (G) was detected leading to a lysine 

instead of a glutamic acid at position 60 (figure 23). 

As detailed earlier (chapter II.5.3), the active domain of ICP47 protein, 

located in the N-terminal region, is not affected by this missense mutation. 

Therefore, it was anticipated that these recombinant VV expressing ICP47 

should be functional. 

THEORITIC  TGGATCCGCATGTCGTGGGCCCTGGAAATGGCGGACACCTTCCTGGACAACATGCGGGTT 
           :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
V.V.-US12  TGGATCCGCATGTCGTGGGCCCTGGAAATGGCGGACACCTTCCTGGACAACATGCGGGTT 
                 190       200       210       220       230       240  
   
              1300      1310      1320      1330      1340      1350    
THEORITIC  GGGCCCAGGACGTACGCCGACGTACGCGATGAGATCAATAAAAGGGGGCGTGAGGACCGG 
           :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
V.V.-US12  GGGCCCAGGACGTACGCCGACGTACGCGATGAGATCAATAAAAGGGGGCGTGAGGACCGG 
                 250       260       270       280       290       300  
 
              1360      1370      1380      1390      1400      1410    
THEORITIC  GAGGCGGCCAGAACCGCCGTGCACGACCCGGAGCGTCCCCTGCTGCGCTCTCCCGGGCTG 
           :::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::: 
V.V.-US12  GAGGCGGCCAGAACCGCCGTGCACGACCCGGAGCGTCCTCTGCTGCGCTCTCCCGGGCTG 
                 310       320       330       340       350       360  
 
              1420      1430      1440      1450      1460      1470    
THEORITIC  CTGCCCGAAATCGCCCCCAACGCATCCTTGGGTGTGGCACATCGAAGAACCGGCGGGACC 
           :::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::: 
V.V.-US12  CTGCCCAAAATCGCCCCCAACGCATCCTTGGGTGTGGCACATCGAAGAACCGGCGGGACC 
                 370       380       390       400       410       420  
 
              1480      1490      1500      1510      1520      1530    
THEORITIC  GTGACCGACAGTCCCCGTAATCCGGTAACCCGTTGATAAGAATTCCCGGGCATATAGATA 
           :::::::::::::::::::::::::::::::::::: ::   :::::::::::::: ::: 
V.V.-US12  GTGACCGACAGTCCCCGTAATCCGGTAACCCGTTGANAA---TTCCCGGGCATATANATA 

                     430       440       450       460          470   

P

PE

K
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Figure (23): Matching theoretical sequence and r.VV-US12 genome for US12 gene.   
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Figure (24): Summary of the construction and characterization of r.VV-US12. 
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IV.2. GENE EXPRESSION IN US12 RECOMBINANT 
VV INFECTED CELLS 

The expression of US12 was first verified at the transcriptional level by 

infecting Hela cells with recombinant VV-US12. Infections were performed 

with replication-incompetent viruses treated with psoralen and long wave UV 

(PLUV). Adherent monolayers of Hela cells in 6 well plates (1x106 cells/well) 

were infected with WT-VV, r.VV-US12 and r.VV-Mart-US12 at different doses 

2.5, 10 and 25 m.o.i.. 24 hours after infection, US12 gene expression was 

evaluated by reverse transcription qRT-PCR. 

The results in figure 25 confirm that US12 gene is correctly inserted and 

expressed from VV genome of r.VV-US12 and r.VV-Mart-US12. This 

expression under vaccinia promoter is strong and dose dependent according to 

the concentration of the virus infecting the cells (m.o.i.). 
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Figure (25): US12 gene expression in infected Hela cells.  
1 x 106 HeLa cells were infected with PLUV r.VV-US12, r.VV-Mart-US12 or with wild type 
(WT) vaccinia virus at 2.5, 10, 25 m.o.i. and cultured overnight. Non infected cells were used 
as control. US12 gene expression was verified and data are expressed as ratio relative to a 
reference house keeping gene (β-actin).  
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Similarly, infected HeLa cells were used to compare the expression level 

of the transgene to that of vaccinia virus genes. These VV genes include 

Thymidine kinase enzyme (TK), I4L and I3L genes, which are three vaccinia 

virus early genes. I4L gene expression is not detectable in r.VV-Mart construct 

as the cassette containing the promoter and Mart insert was subcloned into the 

I4L locus of VV genome, thereby deleting I4L gene (figure26). 

The results shown in figures 25 and 26 indicate that US12 gene 

expression in r.VV-US12 and r.VV-Mart-US12 infected cells, is comparatively 

as strong as natural early VV genes. This expression appears to be also 

comparable to the expression from WT infected cells confirming that psoralen 

and long wave UV treatment of the virus does not abolish the ability of the virus 

either to infect cells or to express its early genes. 
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Figure (26): TK, I3L and I4L gene expression from infected HeLa cells. 
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IV.3. FUNCTIONAL ASSAYS OF r.VV-US12 AND 
R.VV-MART-US12 

IV.3.1. Effect of ICP47 on the Expression of Surfac e Molecules 

IV.3.1.1. Surface expression of total MHC class-I (HLA- ABC) 

ICP47 protein blocks the transport of peptides, which results from 

metabolic degradation of proteins, into the ER. This blockade prevents the 

loading of peptides into the empty MHC class-I molecules located into the ER, 

thereby blocking the migration of new MHC class-I complexes to the cell 

surface, while the natural turnover through endocytosis of surface molecules 

will continue. Thus we expect that upon infection of cells with a functional 

ICP47 expressing VV, one should observe a decreasing amount of MHC 

complexes on the cell surface. 

The effect of ICP47 on MHC class-I in r.VV-US12 or r.VV-Mart-US12 

infected HeLa cells and EBV-transformed B cells were investigated using 

noninfected and WT infected cells as controls. 24 hours after infection, the cells 

were stained with HLA-ABC specific monoclonal antibody and analysed by 

FACS. As shown in figure 27, there is a significantly decreased intensity of 

MHC class-I surface expression on r.VV-US12 or r.VV-Mart-US12 infected 

cells as compared to noninfected or control virus infected cells. Of note, the 

downregulation of MHC class-I molecules in cells infected with WT-VV is 

consistent with previous observations which demonstrated that vaccinia virus 

infection can lead to a modest decrease in MHC class-I molecule surface 

expression on infected cells [244;245]. In this experiment, it appears that MHC 

class-I expression on the surface of r.VV-Mart-US12 infected cells is less 

decreased as compared to r.VV-US12 infected cells. r.VV-US12 infected cells 

display mean fluorescence intensity (MFI) representing 68% or 44% whereas 

r.VV-Mart-US12 infected cells display MFI of 75% or 54% in infected HeLa 
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cells or EBV-BL respectively, as compared to noninfected cells. This difference 

of about 10% might be due to a high expression of Mart epitope in the ER which 

is not affected by the TAP blockade and therefore would help to stabilize the 

HLA-A0201 molecule on the cell surface.  

The formula used to calculate MFI ratio to noninfected cells is: 

MFI ratio = (sample MFI – isotype MFI) x 100/ (noninfected MFI – isotype 

MFI)  
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Figure (27): Flow cytometric analysis of MHC class-I in infected cells 
(A) HeLa cells (B) EBV transformed human B cells.  HeLa cells and EBV-BL cells were infected with 
r.VV-US12, r.VV-Mart-US12 or WT-VV control. Infections were performed with replication-
incompetent (PLUV) virus at 10 m.o.i.. Cell surface expression of MHC class-I was verified 24h after 
infection by staining with a FITC-labelled monoclonal antibody specific for all MHC class-I A, B and 
C subgroups (thick line) or with isotype control antibody (thin line). Data are represented as mean 
fluorescence intensity (MFI).  
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IV.3.1.2. Surface expression of HLA-A2 molecules 

MART-1/Melan-A27-35 is a short peptide encoded in r.VV-Mart-US12. It 

is an immunodominant non-mutated self differentiation epitope derived from a 

protein which is expressed by normal and malignant melanocyte. It is 

specifically binding to and presented by HLA-A0201 molecules on the cell 

surface.  

To evaluate the effect of ICP47 in cells expressing TAP independent 

epitope, we infected EBV-BL from HLA-A2 positive healthy donor and 

different HLA-A2 melanoma cell lines (Na-8 and WM-115 cells) with r.VV-

Mart-US12 and r.VV-US12.  

Analysis of FACS results (figure 28) confirms the previous data with total 

HLA-ABC antibody as HLA-A2 surface expression compared to noninfected 

cells shows MFI of 30%, 48% and 69% in r.VV-US12 infected EBV-BL, Na-8 

and WM115 cells, repectively. In presence of Mart epitope, HLA-A2 

downregulation is “compensated”. In this case the MFI value is about 18-35% 

higher than in r.VV-US12 infected conditions. This measurable compensation of 

downregulation may imply that the HLA-A2 molecules loaded with MART-

1/Melan-A27-35 peptide, in absence of TAP dependent peptides, represent a 

significant fraction of the total HLA-A2 molecules on the cell surface. 
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Figure (28): Flow cytometric analysis of HLA-A2 surface expression in infected cells 
 (A) EBV-BL (B) Na-8 cells (C) WM115 cells. These cells were infected with r.VV-US12, r.VV-
Mart-US12 or control WT viruses. Infections were performed with replication-incompetent (PLUV) 
virus at 10 m.o.i. then cell surface expression of HLA-A2 was verified 24h after infection by staining 
with a FITC-labelled monoclonal antibody specific for HLA-A2 (thick line) or with isotype control 
antibody (thin line). Data are represented as mean fluorescence intensity (MFI).  
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IV.3.1.3. Analysis of MHC class-I surface expression kinetics 

In the experiment shown in figure 29, we analysed the surface expression 

of HLA-A2 on Na-8 cells infected with r.VV-US12, r.VV-Mart-US12 or WT 

control VV at 10 m.o.i. (as compared to noninfected control) and at different 

time points (between 4h and 48h) after infection. The downregulation effect of 

ICP47 on MHC class-I surface expression (expressed as % compared to 

noninfected) starts to be measurable after 12 hours of infection and reaches a 

maximal effect (minimal level of surface MHC) after 36 to 48 hours of 

infection. In this experiment, the difference between r.VV-US12 and r.VV-

Mart-US12 is significant and it is attributable to the expression of TAP 

independent Mart epitope. 
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Figure (29): Kinetic analysis of HLA-A2 downregulation by ICP47 in infected Na-8 cells. 
3 x 106 Na-8 cells were infected with PLUV r.VV-US12, r.VV-Mart-US12 or WT vaccinia 
virus (control VV) at 10 m.o.i. then at time points 4h, 8h, 12h, 24h, 36h and 48h after 
infection, 5 x 105 were stained for HLA-A2 FITC-labelled mAb and analysed by FACs. 
Percent of downregulation was calculated considering that noninfected cells MFI=100% and 
isotype stained cells as 0%. 
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 Taking into account the results of this experiment and to confirm the 

significance of the difference of HLA-A2 surface expression between r.VV-

US12 and r.VV-Mart-US12 infected cells, we monitored the capacity of ICP47 

to downregulate MHC class-I and of the targeted MART-1/Melan-A27-35 peptide 

to compensate for this downregulation, 48 h after infection. Figure 30 shows the 

average from 6 different experiments performed on Na-8 cells and EBV-B cells 

from healthy donors. As compared to non infected cells, HLA-A2 surface 

staining in r.VV-US12 infected cells is decreased to 34% (+/- 2%) whereas it 

remains at the level of 75% (+/- 5%) in r.VV-Mart-US12 infected cells. The 

differences between r.VV-US12, r.VV-Mart-US12, r.VV-Mart and noninfected 

cells are highly significant (p value < 0.05). No significant difference is found 

here between r.VV-Mart infected and noninfected cells. 
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Figure (30): Downregulation of HLA-A2 surface expression in infected cells 
Na-8 and EBV-BL cells were infected with PLUV r.VV-US12, r.VV-Mart-US12 or control 
r.VV-Mart viruses at 10 m.o.i. then cell surface expression of HLA-A2 was verified 48h after 
infection by staining with a FITC-labelled mAb specific for HLA-A2. Symbol (*) indicates 
significant (p < 0.05) differences as compared to all other samples (n=6). 

*

*
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IV.3.1.4. Effect of ICP47 on MHC class-II surface expression 

Notwithstanding the critical role of CD8+ T cells, induction of tumor-

specific CD4+ T cells is important not only to help CD8+ T cell response, but 

also to mediate anti-tumor effector functions through activation of eosinophils 

and macrophages [36]. Antigens uptaken by APC are processed and presented 

by MHC class-I to CD8+ T cells, and MHC class-II to CD4+ T cells. 

Recognition of the antigen, along with co-stimulatory molecules (B7-CD28) 

results in activation of antigen-specific CD4+ T cells, which leads to 

lymphoproliferation and cytokine secretion.  

Therefore we verified that the downregulation of surface molecules 

following r.VV-US12 infection is limited to class-I molecules and does not 

affect other surface molecules. Figure 31 shows data from 3 independent 

experiments in which EBV-BL cells were infected with r.VV-US12 or r.VV-

Mart -US12. Effects of ICP47 on MHC class-II (HLA-DR) were evaluated in 

comparison to uninfected cells and r.VV-Mart infected cells as controls.  Flow 

cytometric analysis demonstrates stable expression of MHC class-II in r.VV-

US12 or r.VV-Mart-US12 infected cells as compared to uninfected cells. In 

parallel, the HLA-A2 surface expression confirmed the downregulation in r.VV-

US12 infected cells and the “compensated downregulation” in r.VV-Mart-US12 

infected cells. 
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Figure (31): Effect of ICP47 on MHC class-II (HLA-DR) in viral infected cells.  

1 x 106 EBV-transformed B lymphocytes were infected with PLUV r.VV-US12, r.VV-Mart-
US12 or r.VV-Mart (control VV) at 10 m.o.i.. 48 h after infection, the cells were stained by 
FITC-labelled mAb specific for HLA-DR (n=3) and analysed by FACs. In parallel HLA-A2 
surface expression was verified by specific APC-labelled mAb staining and FACS analysis. 
The results are expressed as percent of MFI considering noninfected cells as 100% 
expression.  
 
 

IV.3.1.5. Effect of ICP47 on surface expression of co-stimulatory molecules  
Co-stimulatory molecules play a decisive role during the generation of 

cellular immune response to antigenic challenges, steering it towards the 

induction of effector cells instead of tolerance [246]. The different stimulatory 

ability of APC not only depends on their cognitive signals, but also on the 

presence of costimulatory molecules [247].  

Thus, dendritic cells, macrophages, and activated B lymphocytes with 

optimal expression of CD80 are efficient APC [248]. CD44 is a multifunctional 

adhesion molecule that has been shown to be a costimulatory factor for T-cell 

activation in vitro and in vivo [249]. Therefore we verified that the downregulation 

of surface molecules following r.VV-US12 infection did not affect these surface 

molecules. As a model of cells expressing those different molecules, we chose 

EBV-BL cell lines. 
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The average of different experiments in which, CD80 (B7.1) (fig. 32.A) 

(n=3) and CD44 (fig. 32.B) (n=2) were comparatively evaluated in noninfected, 

r.VV-US12, r.VV-Mart-US12 or r.VV-Mart infected cells, are represented in 

figure 32.  Flow cytometry analysis demonstrated stable expression of CD80 and 

CD44 in r.VV-US12 or r.VV-Mart-US12 infected cells. In parallel, the HLA-A2 

surface expression has confirmed the downregulation in r.VV-US12 infected 

cells and the “compensated downregulation” in r.VV-Mart-US12 infected cells.  

Taken together, these data indicate that ICP47, expressed by PLUV rec. 

VV, is specifically downregulating MHC class-I and it is not affecting MHC 

class-II or other surface molecules 

 

 

A. CD80 and HLA-A2 

                

 

 
 
 
 
 
 
 
B. CD44 and HLA-A2 
 
 
 
 
 
 
 
 
 
Figure (32): Effect of ICP47 on surface molecules, CD80 and CD44 in r.VV-US12 or 
r.VV-Mart-US12 infected cells. 1 x 106 EBV-transformed B lymphocytes were infected with 
PLUV r.VV-US12, r.VV-Mart-US12 or r.VV-Mart (control VV) at 10 m.o.i.. 48 h after 
infection, the cells were stained by PE-labelled mAb specific for (A) CD80 (n=3) and (B) 
CD44 (n=2) and analysed by FACS. In both panels, HLA-A2 surface expression is displayed. 
The results are expressed as percent of MFI considering noninfected cells as also 100% 
expression.  
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IV.3.2. ICP47 Modulation of MHC class-I Antigen Pre sentation 

IV.3.2.1. Effect of r.VV with US12 on VV antigens specific T cell response 

Decreased MHC class-I expression in r.VV-US12 infected cells, might 

result in a downregulation of their ability to present viral antigens to CD8+ T 

cells. Specific experiments were designed to address this issue.  

CD14+ cells from healthy donors (n = 2) were infected with r.VV-US12, 

r.VV-Mart-US12 or WT-VV as control and co-cultured with autologous CD8+ 

and CD4+ T cells, separately. All cultures were re-stimulated on day 8 with 

WT-VV infected autologous CD14+ cells. On day 15 after the priming, specific 

multimer staining for a pool of common VV derived HLA-A2 restricted 

epitopes, including H3L184-192, B22R29-37 and C7L74-82 [250;251] was performed. 

As shown in figure 33, cultures primed with r.VV-US12 or r.VV-Mart-US12 

infected APCs induce 0.59% and 1.33% VV-multimer positive CD8+ T cells 

respectively, similar to 0.85% in noninfected culture, whereas WT-VV leads to 

the expansion of 4.25% antigen specific CD8+ T cells. 

 

0.85% 0.59% 1.33% 4.25%

r.VV-Mart-US12r.VV-US12NI WT-VVr.VV- -US12r.VV-US12NI

0.85% 0.59% 1.33% 4.25%0.85% 0.59% 1.33% 4.25%

r.VV-Mart-US12r.VV-US12NI WT-VVr.VV- -US12r.VV-US12NI

0.85% 0.59% 1.33% 4.25%

 
 

Figure (33): Inhibition of vaccinia virus specific CD8+ T cells response.  
1 x 106 CD14+ cells from healthy donor were infected with PLUV r.VV-US12, r.VV-Mart-
US12 or WT-VV (control VV) at 10 m.o.i. and 48h after infection, they were co-cultured with 
1 x 106 autologous CD8+ T cells. Noninfected CD14+ cells were also used as control. On day 
8, T cell cultures, were boosted with 5 x 105 autologous CD14+ cells, infected with WT-VV at 
10 m.o.i.. FACs analysis of CD8+ T cells was performed 7 days after boosting by staining 
with APC-labelled anti-CD8 mAb and PE-labelled specific H3L184-192, B22R29-37, C7L74-82 

HLA-A2 multimers.    
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Antigen specific production of IFN-γ from the same cultures was 

characterized by intracellular staining. Figure 34 shows that CD8+ T cell 

cultures stimulated with r.VV-US12 or r.VV-Mart-US12 display 0.72% and 

1.1% of CD8+ cells producing IFN-γ respectively as compared to 2.43% in 

cultures primed with WT VV or 0.63% in noninfected cultures. These results 

confirm that ICP47 ihibits the induction of MHC class-I VV antigen specific 

CD8+ T cell responses. 
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Figure (34): Cytokine evaluation of T cell response to VV antigens. 
  1 x 106 CD14+ cells from healthy donors were infected with PLUV r.VV-US12, r.VV-Mart-
US12 or WT VV at 10 m.o.i. and co-cultured with 1 x 106 autologous CD8+ T cells. 
Noninfected cells were also used as control. On day 8 and 15 after priming, CD8+ cultures 
were re-stimulated with WT VV infected autologous CD14+ cells. On day 15, the cells were 
stained with PE-labelled anti-IFN-γ mAb and APC labelled-anti-CD8 mAb. 
 

 

Similar experiments were performed with PBMCs from healthy donors to 

evaluate the effect of ICP47 not only on CD8+ T cells but also on CD4+ T cells. 

As read-out on day 15, a viral antigenic stimulation was performed (WT 

infected CD14+ cells) and cytokine (IFN-γ and IL-2) gene expression was 

analyzed by qRT-PCR, as ratio to the level measured in WT VV infected culture 

(100%).  
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In CD8+ T cell cultures, panel 35.A demonstrates that IFN-γ gene 

expression in cultures primed with r.VV-US12 or r.VV-Mart-US12 infected 

cells is 7% (+/-6.8%) and 24% (+/-12%), respectively, while cultures primed 

with noninfected APCs displayed only 1% of the control value.  

Panel 35.B shows IL-2 gene expression from the same CD8+ T cell 

cultures. Similarly to IFN-γ gene expression, CD8+ cell cultures primed with 

r.VV-US12 or r.VV-Mart-US12 infected APC give 27% (+/-2%) and 48% (+/-

12%) of IL-2 expression respectively as compared to Control VV whereas,  

noninfected cultures display only 10% (+/-7%) of the control value. 

Depending on a number of conditions (including strength of antigen 

signalling, co-stimulation and cytokines secreted by APC), CD4+ T cells 

differentiate into either TH1 or TH2 type cells. TH1 cells secrete predominantly 

IFN-γ, which plays a role in activation of cell mediated immune responses.  

CD4+ T cells were primed with autologous CD14+ cells infected with 

r.VV-US12, r.VV-Mart-US12 or WT-VV as control. CD4+ T cell cultures were 

stimulated on day 8 and 15 with WT-VV infected autologous APC.  

Panel 35.C, reports data from three independent experiments showing that 

although r.VV-US12 and r.VV-Mart-US12 infected APCs decrease activation of 

VV specific CD8+ T cells, these APCs triggered VV specific CD4+ T cells at 

least as efficiently as the WT control virus (143% +/-66% and 146% +/-42% of 

IFN-γ expression, respectively). 
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A. IFN-γ in CD8+ T cells                          B. IL-2 in CD8+ T cells 
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C. IFN-γ in CD4+ T cells 
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Figure (35): Inhibition of vaccinia virus CD8+ T cell antigens presentation as measured 
by cytokine gene expression.  1 x 106 CD8+ or CD4+ T cells from healthy donor were co-
cultured with autologous 1 x 106 CD14+ cells infected with r.VV-US12, r.VV-Mart-US12 or 
control WT VV at 10 m.o.i. Noninfected cells were used as control. On days 8 and 15, all 
cultures were restimulated by 5 x 105 autologous CD14+ cells infected with WT VV at 10 
m.o.i.. 24h after second stimulation, mRNA level were evaluated by qRT-PCR for (A) IFN-γ 
in CD8+ T cells, (B) IL-2 in CD8+ T cells and (C) IFN-γ in CD4+ T cells. 
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IV.3.2.2 Effect of ICP47 on TAP dependent recombinant full antigens 

To confirm the necessity of rendering recombinant gene encoded antigen 

independent from TAP pathway, we also evaluated the effect of ICP47 on 

recombinant antigen expressed as full protein and restricted by MHC class-I 

molecules, thus requiring the complete pathway of antigen processing, transport 

and presentation. 

In this experiment, APC (CD14+ cells) were co-infected with r.VV 

MART-1/Melan-A full gene (r.VV-MFG) together with either WT VV or r.VV-

US12 at 5 m.o.i. for each virus or infected with r.VV-US12 at 10 m.o.i.. 48h 

after infection, a fraction of infected CD14+ cells was tested for HLA-A2 

surface expression and the rest was co-cultured with autologous CD8+ T cells.  

Results shown in figure 36 panel A confirm that co-expression of ICP47, 

simultaneously with Mart entire protein, reduced the mean value of HLA-A2 

surface expression as compared to APC infected with r.VV-Mart alone. Of note, 

the apparent difference of HLA-A2 surface expression and Mart-MHC class-I 

pentamer staining between r.VV-US12 and r.VV-US12+r.VV-MFG, is probably 

due to the fact that in order to keep the same total viral infection dose for 

rVVUS12 alone, cells were infected with twice as much ICP47 expressing VV.   

In panel B, the decreased expansion of MART-1/Melan-A26-35 specific 

CD8+ T cells from the condition co-expressing ICP47 with the antigen (2.7% vs 

4.6%), confirms that this gene product decreases the presentation of MART-

1/Melan-A27-35 epitope from the full protein. 
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A. HLA-A2 surface expression 
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B. HLA-A2 MART-1/Melan-A26-35 multimer staining 
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Figure (36): ICP47 diminishing MHC class-I presentation from MART entire protein. 
1 x 106 initial CD14+ cells were infected with r.VV-US12 at 10 moi or co-infected with rVV-
MFG (Mart full gene) together with either r.VV-US12 or WT VV at 5 m.o.i. for each. 
Noninfected cells were used as control. (A) cell surface expression of HLA-A2 was verified 
48h after infection by staining with a FITC-labelled monoclonal antibody specific for HLA-
A2 (thick line) or with isotype control antibody (thin line). (B) 8 days after priming, cultures 
were stimulated with 5 x 105 autologous CD14+ cells pulsed with MART-1/Melan-A26-35 
peptide (20µg/ ml). FACs analysis of CD8+ T cells was performed on day 9 by staining with 
APC-labelled anti-CD8 mAbs and PE-labelled specific MART-1/Melan-A26-35-HLA-A2 
pentamers. 
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IV.3.2.3. CTL response to recombinant ER-targeted antigens  

Following the results of VV antigen specific response, which confirmed 

that r.VV-US12 is able to reduce the CTL immune response to VV vector or to 

transgenic proteins, we assessed the immune response specific for ER-MART-

1/Melan-A27-35 recombinant antigen. CTL response induced by the r.VV-Mart-

US12 was monitored in stimulated peripheral blood CD8+ cells.  

IV.3.2.3.1. Effect of ICP47 on ER- targeted recombinant epitope 

In r.VV-Mart-US12 and r.VV-Mart constructs, Mart epitope is formulated 

in a TAP independent ER-targeted form (E3/19K-MART-1/Melan-A27-35). This 

formulation for specific HLA restriction enables bypassing of a number of 

antigen processing steps, promoting the surface presentation of antigenic 

peptides within HLA-molecules [165] even in presence of ICP47. 

 To address the effect of r.VV-Mart-US12 on Mart specific CD8+ T cell 

stimulation, four independent “CTL priming” experiments were performed with 

PBMC from healthy donors. CD8+ T cell cultures were stimulated with 

autologous CD14+ cells either infected with r.VV-Mart (positive control), r.VV-

Mart-US12, r.VV-US12 (negative control), or pulsed with MART-1/Melan-A26-

35 peptide. Eight days after priming, CD8+ T cell cultures were re-stimulated 

with MART-1/Melan-A26-35 pulsed autologous CD14+ cells (see figure 22). 

MART-1/Melan-A27-35 specific CD8+ T cells were characterized using 

MHC-pentamer. As shown in figure 37 panel A, cultures primed with r.VV-

Mart-US12 infected APCs resulted in a significant expansion of MART-

1/Melan-A27-35 specific CTL, similar to rVV-Mart alone (respectively 3.59% vs 

3.6%) and expectably far more efficient than in control noninfected cells and 

r.VV-US12 primed cultures ( 0.59% and 1% , respectively). 
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Similarly, in panel 37.B showing another experiment, cultures primed 

with r.VV-Mart-US12 infected APCs induced a significant expansion of 

MART-1/Melan-A27-35 specific CTL 3.6% as compared to 5.27% in r.VV-Mart 

primed cultures and more efficiently than in cultures primed with Mart peptide 

pulsed APCs (1.48%).  
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Figure (37): Induction of MART-1/Melan-A27-35 specific CD8+ Tcells.  
(A) 1 x 106 CD14+ cells from healthy donor were infected with PLUV r.VV-US12, r.VV-
Mart-US12 or r.VV-Mart at 10 m.o.i., co-cultured with 1 x 106 autologous CD8+ T cells. Non 
modified CD14+ cells were also used as control. On day 9 after priming, FACs analysis of 
CD8+ T cells was performed by staining with APC-labelled anti-CD8 mAbs and PE-labelled 
specific MART-1/Melan-A26-35-HLA-A2 pentamers. (B) CD8+ T cell cultures were primed as 
indicated but in this experiment, the r.VV-US12 condition was replaced with CD14+ cells 
stimulated with MART-1/Melan-A26-35 peptide (20µg/ ml). 
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To further characterize the functional capacity of the expanded specific T 

cells, IFN-γ intracellular staining, following an antigenic stimulation, was 

performed. As shown in figure 38, cultures primed with r.VV-Mart-US12 

infected APC display 2.55% IFN-γ positive cells as compared to 0.35%, 2.84% 

and 0.22% in cultures where APC were control noninfected condition, infected 

with rVV-Mart or r.VV-US12 respectively 
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Figure (38): Cytokine evaluation of T cell response to MART-1/Melan-A27-35 antigen.  

1 x 106 CD14+ cells from healthy donors were infected with PLUV r.VV-US12, r.VV-Mart-
US12 or r.VV-Mart (control VV) at 10 m.o.i. and co-cultured with 1 x 106 autologous CD8+ 
T cells. Noninfected cells were also used as control. On day 9 and 15 after priming, 5 x 105 

autologous CD14+ cells were stimulated with MART-1/Melan-A26-35 peptide (20µg per ml) 
and then all cultures were stimulated with these CD14+ cells. On day 15, the cells were 
stained with PE-labelled anti-IFN-γ mAb and APC-anti-CD8 mAb. 

 

As an alternative test for the final readout after prime-boost strategy, we 

measured IFN-γ gene expression in CD8+ T cell cultures stimulated with 

different viral infected CD14+ cells (r.VV-Mart-US12 and r.VV-Mart) or with 

MART-1/Melan-A26-35 peptide. Lymphocytes were re-stimulated on day 9 and 

15 using autologous Mart peptide pulsed CD14+ cells. Following the second 

stimulation, IFN-γ gene expression was monitored by qRT-PCR and expressed 

as ratio to the level measured in r.VV-Mart infected cultures (100%).  
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Figure 39 panel A, shows that cultures primed with r.VV-Mart-US12 

display 87% (+/-14%) of expression as compared to r.VV-Mart. Only 9% (+/-

4%) and 7% (+/-3.8%) IFN-γ expression could be detected in Mart peptide 

primed cultures and noninfected cultures respectively.  

Similarly, IL-2 gene expression (panel B) from CD8+ T cell cultures 

stimulated with r.VV-Mart-US12 infected APC displayed 84% (+/-7%) as 

compared to r.VV-Mart stimulated cultures (100%). 

    

 

A. IFN-γ expression 

 
 
 
 
 
 
 
 
 
 
B. IL-2 expression 
 
 
 
 
 
 
 
 
 
 
Figure (39): Induction of MART-1/Melan-A27-35 specific CD8+ T cells as measured by 
cytokine production. 1 x 106 CD8+ T cells from healthy donors were co-cultured with 
autologous 1 x 106 CD14+ cells infected with r.VV-Mart-US12 or r.VV-Mart at 10 m.o.i. or 
stimulated with MART-1/Melan-A26-35 peptide (20µg per ml). Noninfected cells were used as 
control. On day 9 and 15, all cultures were re-stimulated by 5 x 105 autologous CD14+ cells 
stimulated with Mart peptide. (A) IFN-γ and (B) IL-2 gene expression was verified by qRT-
PCR and expressed as ratio relative to r.VV-Mart stimulated cultures. 

 



 

 ���� 105 ���� 

Taken together, these data suggest that r.VV-Mart-US12 is able to induce 

MART-1/Melan-A27-35 antigen specific CTL immune responses as confirmed by 

specific MHC-pentamers staining and cytokines characterization. The 

expression of ICP47 together with Mart epitope in r.VV-Mart-US12 infected 

APC did not significantly diminish the presentation of ER-targeted Mart 

epitope. On the other hand, despite a low viral-epitopes immunocompetition and 

a visible fraction of HLA molecules loaded with Mart epitope, r.VV-Mart-US12 

infected APCs did not display an enhanced stimulation of MART-1/Melan-A27-

35 specific T-cells, as compared to APCs infected with the control vector 

expressing Mart epitope.  

IV.3.3. Effect of ICP47 on MHC class-I Antigen Pres entation in VV 

Presensitized PBMCs 

The above experiments confirmed that rVV-MUS12 is able to prime-

stimulate Mart specific CTL with a similar immunogenicity as compared to the 

control rVV-Mart.  

In order to highlight in vitro the effect of ICP47 promoting the induction 

of rec.ER-epitope specific responses despite strong anti-vector immune 

responses, experiments of Mart specific CTL generation was performed with 

VV presensitzed PBMCs. This “in vitro” strategy should reflect more closely the 

in vivo conditions of pre-vaccinated patients or even multi-boosting protocols 

with a recombinant virus.  

We selected two VV-vaccinated (57 and 44 years old) healthy donors. 

PBMCs were freshly isolated (figure 40) and CD14+ cells (APC) were infected 

with WT-VV before mixing with either autologous CD8+ or CD4+ sorted T 

cells. After 8 days, the cultures were primed, for MART epitope, with either 

rVV-Mart, rVV.Mart-US12 infected CD14+ cells. Here, the critical differential 

event for Mart specific CTL activation was related to the intensity of the APC-
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clearing effect of the pre-existing VV CTL. Noninfected CD14+ and rVV-US12 

infections were also performed as controls. 

All cultures were then splitted in 2 (one for Mart-1/Melan-A27-35 and one 

for VV epitopes) and boosted twice on day 15 and 21 using either MART-

1/Melan-A26-35 peptide pulsed or WT-VV infected autologous CD14+ cells. For 

the final readout, e.g. measuring of IFN-γ and IL-2 gene expression in CD8+ T 

cell cultures, effector cells were stimulated with rVV-Mart infected autologous 

APC, presenting all VV and Mart-1/Melan-A 27-35 epitopes. 
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Figure (40): Presensitized PBMCs experiment. 



 

 ���� 108 ���� 

IV.3.3.1. MART-1/Melan-A27-35 specific CD8+ T-cell response in VV 
presensitized PBMCs 

Results in figure 41 show IFN-γ and IL-2 gene expression in “Mart 

boosted CD8+ T cell cultures” from both donors 1 and 2 (panels A and B 

respectively). Interestingly, gene expression in CD8+ T cell cultures primed 

with r.VV-Mart-US12 shows a significant increase for IFN-γ (700%) and IL-2 

(350%) as compared to r.VV-Mart infected CD14+ cells, for donor B, who was 

revaccinated with the live virus only 15 years before. On the other hand, the 

“>50 years vaccinated” donor A displays a profile similar to the one observed 

previously in experiments performed without vv-presensitized with marginal 

differences with the rVV-Mart condition. 

Thus, it appears that the decreased generation of antigenic peptides from 

VV proteins, due to ICP47, did play an “enhancing” role for Mart-1/Melan-A 27-

35 immunogenicity in the presence of pre-activated VV specific CD8+ T cell 

response. 
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Figure (41): Cytokine gene expression in MART-1/Melan-A27-35 specific CD8+ T cell 
cultures from presensitized PBMC. 
5 x 105 CD14+ cells were infected with PLUV WT-VV at 10 m.o.i. and mixed with 
autologous T cells. After 8 days, monocytes infected for 48h with r.VV-US12, r.VV-Mart-
US12 or r.VV-Mart or noninfected (as negative control) were used to prime Mart specific 
CTL. On days 15 and 21 cultures were boosted with 5 x 105 autologous CD14+ cells pulsed 
with MART-1/Melan-A26-35 peptide (20 µg per ml). On day 27, IFN-γ and IL-2 gene 
expression, following rVVMart infected cells stimulation, was verified by qRT-PCR. Data are 
expressed as ratio to r.VV-Mart primed cultures.     
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IV.3.3.2. Inhibition of vaccinia virus specific CD8+ T cell response in VV 
presensitized PBMCs 

The results shown in figure 42, from the “Vaccinia boosted T cell 

cultures” demonstrate that IFN-γ and IL-2 gene expression, in cultures 

restimulated on day8, with an ICP47 expressing virus (r.VV-US12 or r.VV-

Mart-US12), is decreased (about 30% IFN and 60% IL2) as compared to that of 

the control r.VV-Mart. These data are confirming that ICP47 is able to diminish 

vaccinia viral antigens presentation leading to diminished VV antigens specific 

CD8+ T cell responses which is rapidly clearing the infected APC.  
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B. Donor: 2 

Figure (42): Cytokines gene expression in VV specific CD8+ T cells stimulated with VV 
from presensitized PBMC. 
CD14+ cells were infected with WT-VV at 10 m.o.i and mixed with autologous CD8+ T 
cells. After 8days, cells restimulated with r.VV-US12, r.VV-Mart-US12 or r.VV-Mart at 10 
m.o.i.. Noninfected monocytes were used as control. On day 15 and 21 all cultures were 
boosted for vaccinia antigens with autologous CD14+ cells infected with WT-VV. On day 27, 
following WT-VV infected cells stimulation; IFN-γ and IL-2 gene expression was verified by 
qRT-PCR and expressed as ratio to r.VV-Mart stimulated cultures.     
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IV.3.3.3. Induction of vaccinia virus specific CD4+ T cell response in VV 
presensitized PBMCs 

We have previously shown that MHC class-II vaccinia virus specific 

CD4+ T cells from vaccinia immunized donors respond to VV by active 

proliferation [252]. In this study, we have also shown that expression of ICP47 

does not affect the surface expression of MHC class-II molecule. 

In this experiment with similarly VV-presensitized CD4+ T cells (only 

from donor 1), we analysed the effect of ICP47 encoding viruses stimulation 

(during the second stimulation) on CD4+ T cell cytokines and proliferative 

responses to viral antigen.  

Figure 43 displays IFN-γ and IL2 gene expression following an antigenic 

stimulation of the different CD4+ Tcell cultures. Although, in the 2 conditions 

stimulated with US12 encoding virus, IL2 gene expression is detected slightly 

above 2 fold more as compared to the control virus condition, IFN-γ expression 

remains below this qRT-PCR threshold of 2 folds.  
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Figure (43): Cytokines gene expression in VV specific CD4+ T cells stimulated with VV 
from presensitized PBMC. 
CD14+ cells were infected with WT-VV at 10 m.o.i and mixed with autologous CD4+ T 
cells. After 8days, cells restimulated with r.VV-US12, r.VV-Mart-US12 or r.VV-Mart at 10 
m.o.i.. Noninfected monocytes were used as control. On day 15 and 23 all cultures were 
boosted for vaccinia antigens with autologous CD14+ cells infected with WT-VV. On day 24, 
following WT-VV infected cells stimulation, IFN-γ and IL-2 gene expression was verified by 
qRT-PCR and expressed as ratio to r.VV-Mart stimulated cultures.     
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As an alternative test, CD4+ T cells proliferation measuring the 

incorporation of tritiated thymidine into the dividing cells. Results shown in 

figure 44, demonstrate that CD4+ T cell proliferation following r.VV-US12 or 

r.VV-Mart-US12 stimulation is similar to that detectable in the control VV 

infected cultures.  
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Figure (44): CD4+ T cell proliferation in response to VV antigens.  
WT VV presensitzed CD4 cells were restimulated with PLUV r.VV-US12, r.VV-Mart-US12 
or r.VV-Mart control virus at 10 m.o.i.. Cultures were boosted only once (on day 16) with 
autologous WT infected CD14+ infected cells. Proliferation of CD4+ T cells in the presence 
of autologous infected CD14+ cells was evaluated by thymidine 3H incorporation. Thymidine 
3H was added and cultures were re-incubated for 18h, then harvested, lyzed and washed. 
Liquid scintillation cocktail was added and scintillation emission was measured.    
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V. DISCUSSION 

Despite the relative effectiveness of conventional chemotherapy and 

targeted agents, most patients with cancer experience tumor progression and 

ultimately die of their disease. Therefore, there is an urgent need for better 

treatments, not only for the advanced disease but also to prevent relapse. One 

promising approach seems to be the stimulation of tumor directed immune 

responses. For this aim, efficient presentation of immunogens to T cells, leading 

to generation of large numbers of TAA specific CTL, represents a critical issue 

for cancer immunotherapy.  

The potential of immunotherapy was first documented by William Coley 

in 1890. Then it was generally ignored until the last part of the 20th century, 

when studies of chemically induced tumors of inbred mice demonstrated 

spontaneous regression of melanoma fueled speculation that immune responses 

contributed to tumor regression [253]. In 1980, lymphocytes activated with 

lectins or IL-2 were demonstrated to target tumor cell in vitro  [254;255].  

In 1995, interferon α-2b became the first immunotherapy approved for 

adjuvant treatment of stage IIB/III melanoma by the United States Food and 

Drug Adminstration (USFDA) [256]. IL-2 was the second exogenous cytokine 

to demonstrate antitumor activity against melanoma and it was approved by the 

USFDA in 1998 for treatment of adults with advanced metastatic melanoma 

[160]. The discovery and cloning of a number of shared melanoma associated 

antigens or cancer germline antigens expressed specifically by solid tumors 

including melanoma, has spurred interest in peptide and protein vaccines [257]. 

(figure 45) 
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Figure (45): Key events in the history of cancer immunotherapy. 

 

Despite the fact that melanoma may be a poor choice as a tumor model, 

due to its proclivity to rapidly grow and metastasize in a totally unpredictable 

manner, it has remained the “training ground” for a number of different 

experimental approaches, involving a wide range of technologies [258]. The 

limitations of immunotherapy for melanoma stem from tumor induced 

mechanisms of immune evasion that render the host tolerant of tumor antigens. 

Nevertheless, vaccines are being developed that may ultimately target melanoma 

either alone or in combination with immunomodulatory therapies. 

Reproducible success for generating CD8+ T cell mediated vaccines has 

emerged from the use of recombinant viral vectors containing transgenes 

encoding antigens to which a CTL response is desired. Therefore, recombinant 

viruses rank among the most effective immunogens and appear to be of 
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particular interest in the development of TAA specific immunization procedures. 

In this approach, delivery of antigenic transgenes’ products closely mimics the 

physiological endogenous production of MHC class-I ligands [259;260]. 

Furthermore and perhaps most importantly, such vectors may per se provide a 

typical danger signal, possibly activating APC and inducing high avidity CTL 

more effective at clearing tumors [261].  

Immunization with recombinant viral vectors induces a strong and long 

lived CD8+ T cell response that is rarely matched in efficacy by other modes of 

immunization. Many recombinant poxviral vaccines, based on attenuated and 

nonattenuated strains of vaccinia, have demonstrated their safety and 

immunogenicity in many clinical trials [157;158;262]. This strong response to 

viral vectors may be a fortuitous by-product of the evolution of the innate 

immune system to combat viral infection and thus to recognize viral vectors as 

‘dangerous’ [263]. Nonetheless, significant challenges remain prior to the 

successful use of recombinant viral vectors to induce therapeutic and protective 

CD8+ T cell response in human cancers. 

Smallpox disease, caused by variola virus was eradicated in the 1970s by 

a worldwide vaccination with cross-protective vaccinia virus [264]. It was 

demonstrated that one round of vaccination with a live VV was sufficient to 

induce a long-lived (50 years) cellular immune response to several identical 

vaccinia epitopes. It was even claimed by Demkowicz et al., that human subjects 

with prior exposure to VV, years earlier, provide an excellent model for the 

study of human T cell memory [153]. It was also estimated by Hsieh et al that 

the significant T cell memory response to VV from successful vaccination may 

persist for about 20-30 years in the presumed absence of antigen [265] 

In a previous randomized phase I trial reported by Cooney et al., when 

they immunized 35 healthy HIV-1 seronegative young adults with r.VV 

expressing gp160 envelope gene of HIV-1, it was found that individuals who 
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had been immunized as young children with VV had poor immune response to 

the HIV-1 gp160 antigen as compared with those who had no previous exposure 

to VV. The results from this trial suggested that long lasting immunity to VV 

had limited the replication of the recombinant vaccinia virus used for 

immunization [158]. 

Therefore, this strong immunogenicity, which was always taken as a 

positive feature, is paradoxically now considered as one major limitation.  The 

potential use of recombinant viruses to produce protective immune response, 

especially for multiple boosting vaccine strategies, could be limited due to 

phenomenons, such as "immunodominance" and "viral vector clearance". The 

latter caveat is affecting the APC as effector CD8+ T cells, that recognize VV 

derived peptide/MHC complexes, may destroy the APC and this problem is 

more obvious upon increased numbers of subsequent boosts. Immunodominance 

of viral vectors, on the other hand, is manifested by a strong alternative CD8+ T 

cell response targeted to determinants expressed naturally by the vector that 

reduces or even prevents a CD8+ T cell response to the subdominant 

recombinant antigens.  

Several recombinant vaccinia viruses showed that the CD8+ T cell 

response to foreign epitopes is coordinately regulated with the response to the 

VV vector but that the response directed against VV is much greater in 

magnitude than the response against the inserted recombinant epitope [151;157]. 

It is possible in experimental system to remove by mutation or deletion some 

immunodominant determinants in order to enhance the response to subdominant 

antigens [266;267]. However, this approach is not practical in a therapeutic 

setting, as there are no means to predict the immunodominance of antigens in an 

outbreed population [268]. 

Moreover, pre-existing memory against the virus backbone may limit its 

use as a viral vector for other vaccination purposes. Therefore using vaccine 
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constructs that possess limited replication within the host, such as modified VV 

Ankara, may be more efficient for vaccination purposes, because they are 

endowed with a reduced viral immunogenicity but can still prime protective 

immunity against the gene of interest  [269-271].  

Despite this caveat, numerous immunotherapy studies based on viral 

vectors have reported a successful transgene immunization. Nevertheless, the 

observed in vivo responses with “short” vaccination protocols are usually mild 

and transient. It became apparent that effective human cancer vaccines require 

prolonged boosting protocols. In order to avoid counter-productive response 

against single vector, different vaccine platforms expressing the target TAA 

were used in so called ″heterologous prime-boost” vaccine strategies and were 

shown to induce an enhanced immune response. In particular, we have 

previously reported the relative immune efficacy of a prime and boost vaccine 

regimen based on a non-replicating recombinant vaccinia virus encoding 

melanoma associated epitopes (GP100, Melan-A/Mart-1 and Tyrosinase) and 

both immunomodulatory molecules CD80 and CD86 which has been 

successfully used in a phase I/II clinical trial [3;214;272] and resulted in a 

substantial immunogenic response.  

The application of non replicating vaccine was boosted with three 

injections of peptides (pept). Nevertheless, from both clinical trials based on this 

protocol (intradermal and intranodal administration), we could observe that 

peptide boost was far from the efficacy of the recombinant viral vaccine, as 

characterized by specific CTL responses. Following only two cycles of 

vaccinations (rec.VV-pept- pept- pept), the final level of CTL generated was not 

much different from the initial level. However, further injections (3, 4 or 5) of 

viral vaccine, were able to generate significant levels of specific CTL responses.  

All these observations led us to conclude that the vaccination protocol 

should apply multiple boosting injections (more than 2) of the recombinant viral 
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vaccine. However, even if the recombinant antigen specific response was 

decreasing after only 2 vaccination cycles, the anti-VV-response (measured by 

antibodies) was increased after each r.VV boost. 

Therefore, further investigations on recombinant vectors providing 

innovative pathways susceptible to enhance vaccine driven TAA specific CD8+ 

T cell response in cancer patients, without increasing the anti-VV vector 

response, might represent a crucial issue for cancer immunotherapy. 

In this study, we hypothesized that, given the known role of TAP in 

antigen processing and presentation to be recognized by specific TCR, co-

expression of a TAP blocker by recombinant VV vector would result in reduced 

presentation of VV derived peptides on the surface of the transduced cells. This 

immunomodulation should reduce the immunocompetition and render infected 

cells less vulnerable to cytolytic response of VV specific CD8+ T cells. 

Therefore, we constructed and functionally characterized a r.VV 

expressing HSV-US12 gene (r.VV-US12), coding for ICP47, which specifically 

binds to the ABC transporter TAP and blocks binding of peptides generated by 

proteasomal degradation. This blockade subsequently inhibits their translocation 

into the ER and the loading onto empty MHC class-I molecules [273]. 

Based on this construct, we also engineered a novel reagent (r.VV-Mart-

US12) simultaneously encoding both ER-targeted Mart-1/Melan-A
27-35 

antigen 

as minigene, and the HSV-US12 gene. Because of its ER targeting design, this 

model of HLA-A0201 TAA epitope is independent of processing and mostly of 

TAP translocation, thus expression and presentation to CD8+ T cells should be 

maintained despite TAP inhibition.  

In this context, our strategy aims at reducing the immunodominance 

features of vaccinia virus for cancer immunotherapy, while maintaining high 
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levels of peptide-MHC complexes derived from recombinant foreign minigenes. 

The resulting viral vector should be more efficient at inducing CTL responses to 

recombinant targeted-antigens while possibly avoiding the need of complex 

protocol with heterologous prime-boost strategy.  

 Moreover, inactivation of viral replication by psoralen and long wave UV 

treatment, on one hand improves the safety and strongly diminishes cytopathic 

effect of our r.VV construct [234] and on the other hand, due to the inhibition of 

viral late transcription, considerably decrease the numbers of viral antigens 

expressed. Some studies showed that vaccinia virus specific CTL epitopes are 

mostly driven by early promoters [274;275] while humoral responses are mainly 

directed to viral proteins that are driven by late promoters [276]. Thus, in 

individuals pre-immunized against VV, our “classical” non replicating vectors, 

used in the two melanoma clinical trials [3;217], might have been recognized by 

pre-existing memory CTL but much less by pre-existing neutralizing Ab as 

compared to a replicating VV vector. Of note, confirming this hypothesis, the 

increased humoral responses following the 2 (or more) injections of non-

replicating virus were detectable and significant but not very intense [252].  

UV cross-linking affects genes proportionally to the gene length. Thus 

expression of minigenes, (about 100 bp), remains relatively spared by UV. It 

was also shown that PLUV treated VV elicits less inflammation but induces 

more foreign epitope specific CD8+ T cell response than untreated virus [268]. 

In the hereby presented study, US12 gene (267bp) expression was first 

characterized in cells infected with PLUV r.VV-US12 and was shown to be 

strong and viral dose dependent. 

Replication incompetent r.VV-US12 is capable of decreasing cell surface 

expression of MHC class-I on infected human cells and decreases recognition by 

specific CTL.  
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These data are in agreement with published reports [277;278] showing 

that ICP47 binds to TAP and blocks peptide transport from the cytosol to ER 

which prevents MHC molecule loading and translocation to the cell surface 

[227;279]. Kinetics studies confirm that the maximum dowregulating effect, 

related to ICP47 expression and MHC turn-over was detected after 36h of 

infection as evaluated by flow cytometry on the cell surface. The intensity of 

MHC “downregulation” could reach 80% (compared to noninfected cells). 

Most importantly, in all experiments evaluating the presence of MHC 

class-I on the cell surface following infection with the different viruses, the 

downregulation of MHC class-I is partially “compensated” in cells infected with 

r.VV-Mart-US12. This compensation is most probably due to the 

overexpression of Mart-1/Melan-A27-35 restricted epitope, stabilizing the 

HLA0201-peptide complex onto the cell surface and confirming the efficiency 

of the ER-targeting strategy which is independent of processing and TAP 

transport. 

Generation of TAA specific CTL represents the main issue in cancer 

immunotherapy. To achieve this objective, different signals need to be provided 

by the antigen presenting cells. The first signal is represented by MHC class-I 

restricted antigenic peptides recognized by the T cell receptor. To avoid anergy 

and to promote T cell activation, this signal must be complemented by triggering 

co-stimulatory molecules, such as CD80 and CD86 as a second signal. This 

effect is eventually reinforced by third signals mediated by soluble factors such 

as T helper 1 cytokines (IL-2, IFN-γ, IL-12 and IL-15). In addition to 

professional costimulatory receptors, such as members of the B7 family, other 

molecules, such as CD44, [249] that have an adhesive function during DC-T-

cell interactions have been found to modulate T-cell responses. Moreover, 

binding of CD4+ TCR by MHC class-II antigen peptide complex induces 
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activation and clonal expansion of antigen specific CD4+ T cells which are 

needed to induce efficient cellular and humoral immune responses.  

The characterization of these molecules on r.VV-US12 infected APC 

(here CD14+cells) confirmed that, the downregulating effect of ICP47 on 

surface expression is specific to MHC class-I and it does not affect the 

expression of any other surface molecules tested so far which could play a role 

for activation of antigen specific CTL response. Similarly, we have shown that 

ICP47 does not downregulate the surface expression of MHC class-II molecules, 

which even appeared slightly upregulated. This maintenance of MHC class-II-

peptide complexes inducing activation and proliferation of antigen specific 

CD4+ T cells is especially relevant as it represents the main pathway for the 

immunogenic adjuvant effect of the viral vector. Indeed, although VV specific 

CTL clearing effect is undesirable, the helper stimulation of VV specific CD4+ 

remains a key feature of the vaccine efficiency. 

In order to formally demonstrate that the observed phenotype reflects the 

corresponding immunogenicity, we tested the capacity of our novel reagents to 

differentially induce antigen specific CD8+ T cells.  

The results of CD8+ T cells stimulated with PLUV r.VV-US12 and r.VV-

Mart-US12 infected monocytes, displayed a decreased antigenic responses 

towards vaccinia virus proteins, as verified by the characterization with 3 HLA-

A2-multimers containing immunodominant viral epitopes H3L184-192, B22R29-37 

and C7L74-82 peptides. These data restricted to a single HLA and 3 epitopes, 

were also confirmed by the decreased levels IFN-γ and IL-2 cytokines gene 

expression in response to all possible epitopes presented by WT vaccinia 

infected monocytes.  

 ICP47 driven MHC class-I peptide decreased antigenicity from native 

proteins [280;281] was also demonstrated for a recombinant antigen using co-
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infection of APC with r.VV-US12 together with r.VV-MFG (Melan-A/Mart-1 

full gene). In these APC, similarly to viral antigens, Mart derived peptides 

follow the classical processing and MHC class-I pathway of antigen 

presentation. In presence of ICP47, we could observe a strongly decreased 

induction of Mart-1/Melan-A27-35 specific CTL response.  

We then demonstrated that, using Mart-1/Melan-A27-35 as a model epitope 

of transgenic TAP-independent MHC class-I presentation, co-expression of 

ICP47 did not affect the generation of Mart-1/Melan-A27-35 specific CTL 

response as demonstrated by specific multimer staining and cytokine expression. 

These data confirmed that in TAP-blocked conditions, ER-targeted epitopes 

remain highly immunogenic and are able to induce specific CTL response.  

Interestingly, as previously demonstrated for rVV-Mart, generation of 

Mart-1/Melan-A27-35 specific CTL is more efficient by using APCs infected with 

the novel r.VV-Mart-US12 than by using APC pulsed with the corresponding 

soluble peptide. Whereas large numbers of peptide-MHC complexes can also be 

obtained with the soluble peptide, these results clearly indicate that r.VV-Mart-

US12 provides efficient adjuvance during the induction of CTL even in the 

limited cell conditions tested here (only CD8+ and CD14+).   

The immunogenic advantage, related to co-expression of ICP47 with the 

recombinant epitope for CD8+ activation, is resulting from two different 

mechanisms acting in co-operation. First, the strong inhibition of antigenic 

MHC-peptides from VV proteins should decrease the induction of VV specific 

CD8+ T cell response. The removal of immunoprevalent and immunodominant 

competing determinants should lead to an increased frequency of CD8+ T cells 

specific for subdominant determinants [267;282;283]. Second, the decreased VV 

specific class-I presentation should also diminish the VV related cytolytic 

response and thereby will enhance the survival of infected APC needed for the 

recombinant antigen stimulation.  
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However, despite a successful demonstration of CD8+ T cell response to a 

minigene encoded epitope, we did not measure any increased immunogenicity, 

as compared to a control virus (without ICP47 block), in simple prime-boost-

readout experiments. Enhanced priming could have been expected in view of the 

“hyper” saturation of a large number of HLA-A2 molecules with the over-

expressed TAP independent epitope. Yet, the CTL response generated in this 

condition was not significantly different from the control ER-Mart rVV. We can 

speculate that for the limited amount of epitope-specific CD8+ T-cells to be 

expanded in our in vitro setting, the saturating amount of HLA-peptide on APC 

surface is already reached with the control rec.-virus despite the presence of 

TAP dependant competitive epitopes. Indeed, we previously published [165] 

that in APC infected with rVV-Mart, we reach stimulation plateau for specific 

CTL clones at very low multiplicity of infection (e.g: MOI 1 to 5). 

Therefore, in order to be able to highlight in vitro the advantage provided 

by ICP47 block of vector epitopes, we investigated the differential priming for 

Mart epitope in conditions where VV-specific CTL driven APC clearance could 

become a limiting factor. In these conditions, we could indeed observe that, in 

presence of a pre-existing VV-CTL response, stimulation by a recombinant 

virus co-expressing ICP47 resulted in an improved response to the ER 

transgenic epitope as compared to the conventional viral vector. 

Tumor specific CD4+ T cells have a critical role in helping cytotoxic 

CD8+ T cells to kill tumor cells [284]. It was also proposed that CD4+ T cells 

eliminate tumors through activation and recruitment of other effector cells, 

including macrophages and eosinophils [36]. In addition, defective immune 

response has often been attributed to lack of CD4+ T cell triggering, which 

would prevent the expansion of class I restricted CD8+ CTL [285;286].  

Several studies suggest that cytokines, such as IFN-γ, secreted by type I 

(Th1) CD4+ T cells, might be involved in antitumor and antiangiogenic 
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activities leading to inhibition of tumor growth [287;288]. Moreover, IFN-γ was 

shown to be crucial for macrophage activation pathway that results also in 

inhibition of tumor cell growth [289]. 

In this study, we have demonstrated that the ability of VV antigen specific 

CD4+ T cells to proliferate and produce IFN-γ in response to VV stimulation, is 

preserved or even enhanced in cultures stimulated with r.VV-US12 or r.VV-

Mart-US12 infected APC as compared to cultures stimulated with control virus. 

Our data clearly indicate that r.VV-US12 and r.VV-Mart-US12 provide efficient 

activation of VV antigen specific CD4+ T cells thereby enhancing their capacity 

to promote CD8+ T cells activation and expansion.  

In addition to T cells, NK cells play a critical role in the control of viral 

infection [290]. NK cells autoreactivity is controlled by expression of inhibitory 

receptors interacting with MHC class-I molecules [291]. Studies in the human 

system indicate that KIR2D subfamily and CD94/NKG2a killer inhibitory 

receptors constitute the main receptors controlling NK cell autoreactivity [292]. 

KIR2D recognizes HLA-C molecules [293] and CD94/NK recognizes HLA-E 

molecules [294]. Because NK inhibitory receptors are engaged by membrane 

MHC class-I molecules, NK cells attack virally infected cells expressing 

abnormally low level of MHC class-I molecules on their surface [295]. Different 

studies of the response of isolated human NK cell clones to cells infected by 

HSV or HCMV were performed. Both viruses were found to induce NK cell 

cytotoxicity by downregulating HLA-C molecules engaged in triggering of 

killer inhibitory receptors. This conclusion was further substantiated by the 

finding that expression of viral genes, known to interfere with MHC class-I 

surface expression (US12 of HSV or US11 and US3 of HCMV), was sufficient 

to trigger the cytotoxicity of NK cell clones [296]. 

NK are also especially efficient in the rejection of tumors lacking MHC 

class-I molecules, including those with defects in the TAP protein [297]. It has 
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been shown that, in vivo, these tumors induce NK cell infiltration, cytotoxic 

activation and induction of transcription of IFN-γ in NK cells [298]. 

Capitalizing on these findings, we speculate that the significant MHC 

dowregulation following infection with ICP47 expressing rec.VV could be 

sufficient to mediate NK cell activation. Preliminary results indeed suggest an 

increased IFN-γ gene expression in co-cultures of NK cells and r.VV-US12 

infected APC. This possible limitation of our novel vaccine platform should be 

further investigated to establish whether, if confirmed, NK activation by infected 

APC would lead to a decreased immunogenicity for the recombinant antigens. 

Nevertheless, as described above, NK cells are modulated by multiples signals 

and we can forsee that the co-expression of an NK-inhibitor ligand could protect 

ICP47-based viral vaccine. 

Altogether, the results obtained with r.VV-Mart-US12 indicate that such 

viral vector is able to diminish viral immunodominant MHC class-I restricted 

antigens presentation and also to reduce rapid clearance of APCs during 

secondary boost due to strong antiviral response. Recombinant vaccinia virus 

co-expressing US12 and ER-Mart epitope confirms stable and increased 

immunogenicity of the recombinant epitope. 

In clinical applications, this type of engineered vaccine may, at the same 

time, simplify the prime-boost protocols, as it would no longer require complex 

heterologous vaccine formulation and also allow increasing the possible number 

of boosts. Such vaccine strategy should elicit strong and long lasting tumor 

specific immune responses required to eliminate tumor burden as well as 

preventing delayed recurrence. 
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VI. CONCLUSION  

Recombinant poxviruses expressing tumor associated antigens (TAAs) are 

currently being evaluated in clinical trials as an approach to treat several 

cancers. Possible resistance to recombinant viral vector is due to either prior 

systemic immunity to poxviruses or immunodominance of viral antigens which 

may reduce the induction of immune response against weaker tumor antigens. 

To address this issue, we developed a recombinant vaccinia virus expressing 

HSV type I protein ICP47. This protein downregulates MHC class-I antigen 

presentation by blocking the MHC encoded transporter associated with antigen 

processing (TAP), which translocates peptides, generated by proteasomal 

protein degradation, into the endoplasmic reticulum for loading onto MHC class 

I molecule. 

Herpes simplex virus (HSV) US12 gene, coding for infected cell protein 

47 (ICP47) was introduced into vaccinia virus and also into a recombinant 

vaccinia virus expressing MART-1/Melan-A27-35 as HLA-A201 ER-targeted 

epitope. Following infection with non-replicating recombinant virus, effect of 

ICP47 expression on cell surface MHC-class-I, MHC class-II and co-stimulatory 

molecules was characterized by antibody staining and FACS analysis. Human 

T-lymphocytes were stimulated in vitro with autologous CD14+ cells infected 

with r.VV-US12, r.VV-Mart-US12 or control virus. Proliferation of specific 

CD8+ and CD4+ for viral proteins and recombinant epitopes were monitored by 

MHC-multimer staining and interferon gamma (IFNg) expression analysis. 

Recombinant vaccinia virus expressing the HSV-US12 gene confirmed a 

diminished class-I presentation and CD8+ recognition of native proteins while 

CD4+ helper-class-II stimulation is remained unaffected. Presence of ER- Mart-

1/Melan-A26-35 minigene in r.VV-Mart-US12 construct appears to partially 

compensate for the surface MHC class-I molecule downregulation (due to 



 

 ���� 127 ���� 

US12) and preserve a strong capacity to induce CTL response against the TAA 

epitope.  

This type of ICP47 expressing viral vaccine could thereby profit from a 

diminished vector specific class-I recognition while conserving a strong 

immunogenic potential towards recombinant ER-targeted epitope. Such reagent 

could become of high relevance especially in multiple-boost vaccine protocol 

required in cancer immunotherapy. 

Combined with the demonstrated potency of recombinant poxviruses 

expressing multiple antigens and co-stimulatory factors, we can foresee that the 

TAP-blocking strategy opens the way for a new generation of viral vector 

platform.  
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