The temporal and spatial distribution
of malaria in Africa,

with emphasis on southern Africa

INAUGURAL-DISSERTATION
Zur

Erlangung der Wirde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultat der

Universitat Basel

von
Marlies H. Craig
aus

Durban, Sudafrika

Basel, 2007



Genehmigt von der Philosophisch-Naturwissenscohé&h Fakultat auf Antrag von Prof. Dr.

M. Tanner, Prof. Dr. T. Smith, Dr. P. Vounatsou i S. Hay.

Basel, den 12. Dezember 2007

Prof. Dr. Hans-Peter Hauri

Dekan



To:

Andrew,
faithful husband, friend and brother;

Miriam, Philip and Simon,
who light up my life;

and Brian Sharp,
sorely missed,
leader, mentor and friend.






Table of Contents

Page

ACKNOWIEAgEMENTS . . ... i Vi
SUMMIANY .ottt e e e e e e viii
ZUSAMMENTASSUNG . ..ttt e e e e Xil
ABDreviations . .. ... . XVii
LISt Of FIQUIES . ..o e e e e XiX
List Of Tables . ... XXVii
Chapter 1: IntroducCtion ... ... . . e e e 1
Chapter 2: A climate-based distribution model ofaria transmission in sub-Saharan

AT, o o 19
Chapter 3: Developing a spatial-statistical modhel emap of historical malaria prevalence in

Botswana using a staged variable selection proeedur. . ................ 37
Chapter 4: Time-space analysis of malaria prevalélata in Botswana ............... 69

Chapter 5: Exploring thirty years of malaria caatadn KwaZulu-Natal, South Africa,
Part I: the impact of climatic factors .......... ... .. ... ... .. ...... 89

Chapter 6: Exploring thirty years of malaria caatadn KwaZulu-Natal, South Africa,

Part II: the impact of non-climatic factors .......................... 113
Chapter 7: Spatial and temporal variation in malarcidence in South Africa ........ 131
Chapter 8: Discussion and conclusion . .......... oo 159
RefereNCES . .. o 175

Curriculum Vitae . . ... e 203



vi Acknowledgements

Acknowledgements

First, I would like to thank my supervisor Prof.mid&smith for his support during the years
that this thesis was in progress, for his professiguidance, scientific insights and generous
help, particularly on my last working trip to th&ISI consider myself very fortunate to have
benefited from his expertise. Many thanks to hird kis wife Julie for hosting me so kindly
in Basel on more than one occasion. Likewise lesiely appreciate the kind efforts of Dr
Immo Kleinschmidt and Dr Penelope Vounatsou, whiteply taught me so much of what |
know about statistics. Most of the statistical wirkhis thesis would have been quite
impossible without their guidance. Sincere thakBt Musa Mabaso, helpful critic of
numerous manuscripts and co-worker in the MARAgxhjlt is always a pleasure working

with him. Thanks Musa, we have come a long wayttogge

| sincerely wish to acknowledge Dr Brian Sharpergly deceased. | am extremely grateful
for the privilege of having experienced his leatigrsHe was and remains a role model to
me, a mentor, a guide. With sound motives and idpgeb picture in mind, he was neither
petty nor negative, but always saw the potentigldaple and situations. He did all in his
power to support working mothers. | valued his agirenormously and miss him very much.
| would also like to acknowledge Dr David le Suealso deceased, who gave me valuable
guidance during the early days of my career. Hengebn a course of modelling malaria
distribution, by sending me for training in Idrisithe USA, guiding the development of the

malaria distribution model, and then employing &3S coordinator in the MARA project.

Sincere thanks go to the other MARA collaboratorgarticular Prof. Christian Lengeler and

Prof. Don de Savigny, for their availability, suppand commitment from the start of the



Acknowledgements Vil

project until today. They were a major source eicfical help, good advice and inspiration,
and remain valued friends and allies. Prof. Lengekes also the principal instigator who
urged me to consider registering for a PhD thraibhghSTI. Andrew’s chocolate factory didn’t

quite pan out, but the rest did. Thank you alsdhfisting me in Basel so kindly.

My gratitude also goes to Prof. Marcel Tanner fierdnthusiastic support, and for giving me
the opportunity of enrolling for doctoral studiésdugh the STI, and to the STI and the
Rudolf Geigy Stiftung zu Gunsten des SchweizeriscCh®peninstituts for supporting this
study financially. | also value the support of 8wmuth African Medical Research Council,
which grants its employees extended leave of alesemthat we may pursue further study

overseas.

| greatly appreciate the many other colleaguesfalimiv-students, both at the Medical
Research Council and the Swiss Tropical Institat@articular Laura and Dominic Gosoniu,
Amanda Ross, Nicholas Maire, Claudia Sauerbornins8anerjee, for, above all, your
friendship, for many stimulating discussions (netays about work) and for all the good

times. | never could have done this work in isoladti

Thank you Andrew for your loving support and eneg@&ment, especially when 1 felt like
giving up. Thank you for accompanying me to Switaed for 10 months, and for running the
show back home during various shorter trips to Bagenk you Miriam and Philip for

looking after dad when | was away. You are fantdstis.

Sincere thanks to my aunt Marianne Kassier wholkitrenslated the summary into German,
and to Michael Bretscher for editing the “Fachdelits| really appreciate your help. Finally,

many thanks to Dr Jon Cox for agreeing to be theraal examiner.



viii Summary

Summary

The three-way relationship between Blasmodiunparasite, thénophelesnosquito vector

and the human host determines the incidence ofrraaesease. The three life cycles, the
interactions respectively between human and patdsitman and mosquito, and mosquito and
parasite, and the ultimate transmission cycle, ratyne and space. Environmental, genetic
and behavioural factors influence the three lifeley and the interactions. These factors also
vary in time and space. At every level the variaitself, whether random or cyclical, is not
uniform but varies in frequency and magnitude. Bikphg, and particularly predicting,

malaria transmission rates in time and space thasrhes a difficult undertaking.

Knowing and understanding some of this variatiow &s causes, is important for well-timed
and well-targeted malaria interventions. In thede areas of malaria in Africa, which are
prone to epidemics, some forewarning of unusuagjit mcidence periods would be valuable

to malaria control and management services.

This thesis investigated the temporal and spaffietts on malaria transmission of various
environmental factors, particularly climate, anchoh-climatic factors, particularly those
relating to malaria control. Different data setd amethodological approaches were applied in
seven separate studies, and malaria distributitimie and space was investigated at different

scales.

At the continental scale, the distribution of maan Africa was modelled as a factor of

climate using raster GIS techniques.
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At the national scale, using prevalence data frmtsBana, spatial variation in prevalence
was modelled as a factor of environmental determsg)arior to comprehensive malaria
control. The spatial and inter-annual variatiopiavalence, in the presence of intense

control, was also modelled as a factor of climate.

At the sub-national level South Africa was usedm&xample. Inter-annual variation in
malaria incidence in the highest-risk province waglored for possible links with climatic
and non-climatic factors. Finally, inter-annual apétial variation in sub-provincial level
incidence data for South Africa, were analysed wepect to climatic and non-climatic

determinants, for which data were available.

The two study areas (Botswana and South Africd) betat the fringe of malaria distribution,
experience strongly seasonal transmission and mjgideand both benefit from intensive
malaria control. The two study areas representstightly different scenarios: in Botswana
the analysis period covered the steady introduaifaomprehensive control, while in South
Africa the study period covered a time when effextiontrol was being threatened by the
spread of insecticide- and drug resistance, andeheral health of the population was

increasingly affected by the HIV pandemic.

The main findings were the following:

. It was possible to estimate the distribution ofama in Africa fairly successfully from
long term mean climate data via simple GIS methdtds.model compared well with
contemporary malaria data and historical ‘expemiop’ maps, excepting small-scale
ecological anomalies. The model provided a numkbasis for further refinement

and prediction of the impact of climate changerangmission. Together with
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population, morbidity and mortality data, it hasyided a fundamental tool for
strategic control of malaria.

In Botswana the spatial variation in childhood ami prevalence, prior to intense
comprehensive control, was significantly associatgld underlying environmental
factors. It could be predicted and mapped using ttmee environmental predictors,
namely summer rainfall, mean annual temperatureaéiitdde. After starting with a
long list of candidate variables, this parsimoniousdel was achieved by applying a
systematic and repeatable staged variable exclpsaedure that included a spatial
analysis. All this was accomplished using genetappse statistical software.

In the presence of intense control, the spatidltamporal variability in childhood
malaria prevalence in Botswana could no longendpdagned by variation in climate.
The effects of malaria control and good acceseettinent seem to have replaced
climate as the main determinant of prevalence. @lsis suggests that prevalence, a
less direct measure of transmission rate, is mameepto non-climatic effects than
incidence rate.

Total population malaria incidence in KwaZulu-Nathe highest risk province of
South Africa, remained significantly influenced dymate over a 30 year period, even
in the presence of intense control. The inter-ahwaigation in case numbers were
significantly associated with several climate vialeg, mainly mean annual daily
temperatures and summer rainfall. However, clinfttors did not explain the longer
term total incidence rates.

The longer term trends in total malaria incideimcKwaZulu-Natal province, over the
same 30 years period, were significantly assocmitdthe spread of anti-malarial
drug resistance and HIV prevalence. Cross-bordefements of people, agricultural

activities and emergence of insecticide resistats® affected the level of malaria
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transmission at certain periods and to some delyteehis could not be formally
guantified.

When considering malaria incidence in three maleriprovinces of South Africa at a
sub-provincial level, the observed temporal andiap@ariation could largely be
explained by available weather and drug-resistdiata. However, much of the
region-specific temporal trends remained unexpthife@mporal forecasts, based on
18 years of data, predicted for six years for sgions, were not very accurate and
lacked precision. It seems that the interplay whatic and non-climatic factors in the
South African context is too complex to allow faasts that are suitable for
decision-making at the provincial level.

The findings of this thesis emphasize that in &didito shorter-term variation, which
seems to be driven by climate in many cases, naai@mnsmission is largely
determined by non-climatic factors in southern édriThis appears to be particularly
true where the natural malaria endemicity has Ineedified by control interventions.
As the drive to control malaria in Africa continuasd intensifies, the need for
long-term surveillance of not merely malaria trarssion, but also of the coverage

and effectiveness of control interventions, wilbgr
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Zusammenfassung

Die Verbreitung der Malaria wird von den Beziehumg&ischen derPlasmodiunParasit,
derAnopheledMiicke, und dem menschlichen Wirt bestimmt. Die lrdzgklen der drei
Spezies, und folglich ihre Interaktionen, sind gesraumlichen und zeitlichen
Veréanderungen unterworfen. Auch Risikofaktoren andere Determinanten, die sich auf
diese Beziehungen auswirken, andern sich je nachr@rZeit. Daher ist die mathematische
Beschreibung und die Voraussage lokaler Infektiatesr ein schwieriges Unterfangen. Fur
eine zeitlich abgestimmte und gezielte Bekampfugrghdialaria ist jedoch ein gutes
Verstandnis dieser Variabilitat und ihrer UrsacBeaflerst wichtig. In den Randzonen der
Malariagebiete Afrikas, welche hauptsachlich wikedarenden Epidemien ausgesetzt sind,
ware es fur die verantwortlichen Instanzen von ggos Nutzen, wenn Zeiten erhdhter

Infektionsgefahr vorausgesagt werden kdnnten.

Diese Dissertation befasst sich mit den zeitlictied raumlichen Auswirkungen diverser
Umgebungsfaktoren auf die Malariatibertragung. Eslélh sich um klimatische und
aul3erklimatische Faktoren, wobei es sich bei letnten erster Linie um
Malariabekampfungsmassnamen handelt. In sechsygétreStudien werden mehrere
Datensatze mit Hilfe verschiedener methodischeifagsausgewertet, um die raumlichen

und zeitlichen Aspekte der Malariaverbreitung aerfisehiedenen Ebenen zu untersuchen.

Auf kontinentaler Ebene wird die MalariaverbreitungAfrika als Funktion von

Klimafaktoren im Raster-GIS-Verfahren modelliert.
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Auf nationaler Ebene werden altere Daten aus Batawarwendet, um raumliche
Veranderungen der Malariapréavalenz in Abwesenle#reimfassenden Malariakontrolle als
Funktion umgebungsbedingter Determinanten zu miedei. Zum Vergleich werden
raumliche Veranderungen der Malariapravalenz Uiner Zeitspanne von 24 Jahren bei

intensiver Malariakontrolle in &hnlicher Weise letrtet.

Auf sub-nationaler Ebene wird Stidafrika als Beispggwendet. Die jahrlichen
Schwankungen der Malariainzidenzrate in der Promiitzler hochsten Infektionsgefahr
werden in Bezug auf eine moégliche Beziehung zu&ischen und aul3erklimatischen
Faktoren untersucht. Zuletzt werden vorhandenerDatevendet um die raumlichen
Veréanderungen der Inzidenzrate auf sub-provinziabeme Uber eine Zeitspanne von
mehreren Jahren zu analysieren - wiederum in Bamatiglimatische und auRerklimatische

Determinanten.

Beide Studiengebiete (Botswana und Sidafrika) iegelen Randzonen der afrikanischen
Malariagebiete und sind jahreszeitlichen Schwankuardgr Infektionsgefahr sowie
zeitweiligen Epidemien ausgesetzt. Beide Landaxhran sich durch intensive
Anstrengungen hinsichtlich der Bekampfung der Malaus. Allerdings unterscheiden sich
die beiden Datensatze in einem wesentlichen Pumkeweils betrachteten Zeitraum wurden
in Botswana zunehmend umfassendere BekampfungsimaBnaeingefuhrt, wahrend in
Sudafrika die Effektivitat der bestehenden Mal3nahatahm. Dies geschah vor allem
aufgrund zunehmender Resistenzen gegen Insektindi®lalariamedikamente sowie einer

erhohten Anfalligkeit der Bevolkerung infolge deiM-Pandemie.
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Folgende Ergebnisse wurden erzielt:

. Die Malariaverbreitung in Afrika konnte anhand vionGIS-Verfahren analysierten
Klimadaten erfolgreich vorausgesagt werden. Das@ddidilt, abgesehen von einigen
kleinen 6kologischen Anomalien, einem Vergleich #herigen Daten und
gebrauchlichen, nach fundierten Vermutungen zusargestellten Karten gut stand.
Es bietet eine quantitative Grundlage fur weiteegbésserungen und ermdglicht eine
Voraussage der Wirkung veranderter klimatischer tdnde auf die
Malariatbertragung. Zusammen mit den vorhanden&dlBerungs-, Morbiditats-
und Sterberate-bezogenen Daten kann es deshafbarumg einer strategischen
Malariabekampfung benutzt werden.

. In Botswana stand vor der Einfuhrung intensivetalabekampfungsmafZnahmen die
Veréanderung der Malariapravalenz bei Kindern ireettirekten Beziehung zu den
herrschenden Umgebungsfaktoren. Sie konnte anf@ndrei Umgebungsvariablen,
namlich dem Sommerniederschlag, der jahrlichen Bsaienittstemperatur und der
Hohe Gber dem Meeresspiegel ermittelt und kartagtafierden. Aus einer langen
Liste von moglichen Variablenkombinationen konntesds Uberschaubare Modell
mittels eines systematischen und wiederholt angdeten "staged variable
selection"-Verfahrens, das zuletzt eine rAumlichelpse beinhaltete, unter
Verwendung normaler Statistik-Software gefundendeer

. Nach der Einfliihrung intensiver Malariabekdmpfungssmamen kann die zeitliche
und raumliche Veranderung der MalariapravalenZlsiern in Botswana jedoch
nicht mehr anhand von Klimafaktoren erklart werdeie Auswirkungen der
Malariabekampfung und besserer medizinischer Bdhagdaben nun das Klima als
wichtigste Pravalenzdeterminante ersetzt. Diesedewich darauf hin, dass die
Préavalenz, ein indirektes Mal} fur die Infektionsratarker von aul3erklimatischen

Faktoren beeinflusst wird als die Inzidenzrate.
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Die Malariainzidenzrate der Bevolkerung KwaZulut&la, der siidafrikanischen
Provinz mit der héchsten Infektionsgefahr, stantkztmtensiver Malariabekampfung
Uber eine Zeitspanne von 30 Jahren stets stark dere Einfluss klimatischer
Faktoren. Die jahrliche Schwankungen der Zahl danKheitsfalle stand stets in
direktem Bezug zu mehreren klimabedingten Varigbtaouptsachlich den jahrlichen
Tagesdurchschnittstemperaturen und dem Sommersddag. Diese klimabedingten
Faktoren konnten jedoch nicht die langfristigenareferungen der Inzidenzraten
erklaren.

Die langfristige Tendenz der Malariainzidenzrat&ivaZulu-Natal im Laufe der
erwahnten 30 Jahre steht in starker Beziehung zermuender Resistenz gegen
Malariamedikamente und der steigenden HIV-PravalAozh haufige Grenzubertritte
aus und nach Mosambik und Swasiland, landwirtslotiaeé Aktivitaten und
Resistenz gegen Insektizide beeinflussen die lide&tate zu gewissen Zeiten und
verschieden stark. Letzteren Einflisse konntemdifigs nicht quantifiziert werden.
Betrachtet man die Malariainzidenz auf sub-prowlez Ebene in sechs
verschiedenen Gebieten innerhalb drei sudafrikheisBrovinzen, und tber eine
Zeitspanne von 24 Jahren, kann man die gemesseitkchen und raumlichen
Veréanderungen zum grof3en Teil anhand des WettersemResistenz gegen
Malariamedikamente erklaren. Viele lokale zeitlidrendenzen bleiben allerdings
unerklart. Die Daten der ersten 18 Jahre wurdeGaisdlage fur eine zeitliche
Malariainzidenzvoraussage von sechs Jahren beiéde Voraussagen erwiesen
sich jedoch als ungenau. Im Fall von Stdafrikaywiegesagt intensive
Malariabekampfung stattfindet, scheint das Zusansmiehder klimatischen und
aul3erklimatischen Faktoren so komplex zu sein, geiigche Voraussagen nicht mit

einer fur wirkungsvolle Planung notwendigen Genkeiiggemacht werden kdnnen.
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Zusammenfassung

Diese Dissertation kommt somit zum Schluss, dasgesehen von klimatisch
bedingten kurzfristigen Variationen, die Malaridweitung im sudlichen Afrika
grossenteils von aul3erklimatischen Faktoren bedtiwird. Das scheint in besonderer
Weise dort zuzutreffen, wo die natirliche Malarieiitagung durch
BekampfungsmalRnahmen unterbrochen wird. Je stdaseBedirfnis nach
Malariabekampfung in Afrika wird, desto starkeravauch die Notwendigkeit einer
langfristigen Uberwachung nicht nur der Malariatiagungsrate, sondern auch der

Flachendeckung und Effektivitat verschiedener Bgi@amgsmethoden.
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Chapter 1

Introduction

Background

Human malaria is caused by a protozoan parastteeajenus’lasmodiumand is transmitted
by mosquitoes of the genAsiophelesOf the four mairPlasmodiunspecies infecting
humans, most of the disease and death, especialiyica, is caused bk. falciparum
(Molineaux 1988). Effective prophylactic and cuvatdrugs and drug combinations against
the parasite are available, and transmission camtéeupted through indoor spraying of
residual insecticides (IRS) and use of insectitidated nets (ITN). Despite this malaria

continues to be one of the dominant diseases affestankind (Murray & Lopez 1997).

Estimates of the annual number of deaths and alieigisodes that occur globally diverge;
but Africa is known to carry by far the bulk of tharden: in 1995 Africa saw an estimated
one million deaths and around 450 million cliniepisodes. Malaria can cause lasting
side-effects, which affect individual developmanginly through anaemia, neurological and
physiological sequelae, as well as risk of infattiath the human immune-deficiency virus
(HIV) following blood transfusion (Snowt al1999a). Malaria also retards economical and
social development through effects such as redwoeking hours due to sickness or
attending to the sick, income spent on financingithecare (Mills 1994), which in turn lead to
impacts at national level because of massive heat budgets, reduced productivity of the
work force, and so on. Malaria is estimated to haost endemic countries in Africa 3% of

their economic growth every year (Sachs & Malane§2).
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The malaria life cycle

In the human host the parasite multiplies in tvagss: first in the liver (the hepatic cycle),
then in the blood (the erythrocytic cycle, Figurg)1Parasite sporozoites are injected into a
human from the salivary gland of an infectious muitey They first travel to the liver where
they invade liver cells and undergo a tremendotiiglimsexual hepatic multiplication phase.
One parasite can multiply 10 000-foldRn vivaxto 30 000-fold irP. falciparum(Garnham
1988). When the liver cells rupture, free-floatmgrozoites are released into the blood
stream, where they invade red blood cells. Nowedaitophozoites, the parasites feed on the
red blood cells as they grow. The trophozoitesragdaiide asexually, becoming schizonts.
EachP. falciparumschizont produces 12 - 32 new merozoites, sligalg in other species.
When the red blood cell ruptures, the merozoitegeleased into the blood stream and invade
further red blood cells. This erythrocytic reprotioie phase can quickly lead to high levels of
parasitaemia. Parasite densities of over 50% hegp kecorded iR. falciparuminfections

(2 500 000 parasites per micro litre). Densitiethmother three species rarely exceed 2% in

P. vivaxandP. ovaleand 1% inP. malariae(Harinasuta & Bunnag 1988).

Soon after infection of the human host, some traphes, instead of dividing, start
transforming into gametocytes. These male and fesetual cells may then be ingested by a
feeding female mosquito. In the stomach of the midsdhe male gametocyte forms several
sperm cells, which fertilize the female gametocytee fertilized egg becomes a mobile
ookinete, which invades the body cavity of the nuiteq via the stomach wall, on which it
settles, turning into an oocyst. The oocyst sw@iktgling, forming 80 000 to 10 000
sporozoites. The sporozoites then travel througtbtidy fluids to the mosquito's salivary

gland. From here they are injected into anotherdrumhen the mosquito next feeds.
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These complex cycles can be summarised into twgoaents determining the malaria
transmission rate: the passage of parasite forons frumans to mosquitoes (step A in
Figure 1.2), and then from mosquitoes to furthenauos (step B). The reproductive rate)(R

of the infection is the product of the rates opsté and B (in this example 3x2 = 6).

Determinants of malaria transmission

As a vector-borne disease malaria requires theepoesof the human host, the anopheline
mosquito vector and the plasmodial parasite. Tiaadular relationship is illustrated in
Figure 1.3, which suggests that there are elentlatselate to each organism individually,
while other elements relate to each of three leritrelationships, and others to the joint

interaction of all three.

This picture is expanded in Figure 1.4 to reflecirrge of measurements or indicators that are
encountered in epidemiological literature on malamd as they relate to the three-way
relationship. Many of these form part of mathenatexpressions of the transmission process

(Ross 1911; Dietz 1988; Anderson & May 1991; Smitlal 2006).

Some important intrinsic and extrinsic determindhtg affect the human, the mosquito
vector and the parasite, as well as their variotesaction, and ultimately the transmission of
malaria, are shown in Figure 1.5 (Molineaux 198&uehetet al1998). Many of these have

been the target of specific investigations.

Ultimately this neat three-way relationship, withies determinants, gives rise to a complex
web of cause-and-effects (Figure 1.6): new malafections (arguably the main point of
interest) are the product of transmission whichetiels on parasite and vector development

and interaction. Both being exotherms, their dgwelent rate depends on ambient
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temperature. Mosquitoes also need breeding siteshvaine created by rain but also by other
surface water from irrigation or perennial swampusexample. The nature of the breeding
sites is further related to vegetation, soil qyakind hydrology. Rainfall and temperature
determine humidity which affects vector survivalaismission and incidence are furthermore
affected by malaria control, through measures ssdiRS, ITN and anti-malarial drugs, but
the impact of these is modified in turn by insediécand drug resistance. Housing, migration
and other human behaviour patterns also strontggtaialaria transmission. Another
important component in malaria transmission is imityl which is affected by HIV,
pregnancy, age, gender, other diseases, nutrétrmhso on. In this way socio-economic

factors also come into play.

Figure 1.6 is not an attempt to illustrate the éxature of this web, but simply to highlight
its minimal complexity and some of the more impottdeterminants. Any attempts to
investigate the determinants of malaria transmmseeed to be cognisant of the complexity

involved, to avoid over-simplification and incort@onclusions.

Apart from the causal links, the relationshipssthated in Figures 1.3 to 1.6 also point
towards the temporal element of malaria transmissibe human life cycle is a matter of
years, the mosquito life cycle a matter of dayswaadks, while the interaction between
humans and mosquitoes waxes and wanes over wegksarihs. The parasite life cycle
plays out over hours and days in the human, ansl ieweeks in the mosquito, while the

interaction with the human host develops over m®eatid years.

At no point are the interactions between humarggte and vector, nor indeed the
transmission and expression of malaria and themetants themselves, entirely homogenous

(Trape & Rogier 1996; Mouchet al 1998; Hayet al2000c; Mbogcet al2003). Variability is
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observed at every level, and itself varies in disi@m, magnitude and scale. In the temporal
dimension, greater or smaller changes in malaaiasinission, infection and morbidity can be
observed over hours and centuries and everythibgiween; in the spatial dimension

variability exists from the global down to the iadiual, even the cellular level.

Temporal variation

Malaria transmission varies greatly over time. Wgilihe early 28 century, indigenous
malaria occurred across southern and central EptbpéViddle-East and Asia, as far North
as Scandinavia and Siberia, over large areas ithNoid South America, most of Africa and
in northern Australia (Lysenko & Semashko 1968hc8ithen malaria has contracted
dramatically (Hayet al2004), largely due to active control, industriatinn, urbanization and
modern medicine. Conversely, malaria resurgencet@sred, the likely result of
interruption of control activities, threats to effi@e control, such as drug and insecticide
resistance, operational problems, deforestatiogetacale migration and displacement of
communities, breakdown of public health, politieaald industrial factors, and various other

factors (Sharma 1996; Sleigt al 1998; Garget al1999; Kamat 2000; Guered al2006).

Much has also been written on the potential effetteng-term climate change and global
warming on malaria (McMichael & Martens 1995; Madet al 1995a; Patz & Kovats 2002;
Tanseret al2003). It has been argued strongly that warmepézatures should render
previously cooler latitudes and altitudes, wheréam@was uncommon or absent, suitable for
more frequent transmission, or that warmer andewetinditions could increase the duration
of the transmission season. However, the exaattefeclimate change, or the degree to
which changes in malaria can be explained by cknochtinge, are disputed (Crabb 2002; Hay
et al2002a; Hayet al2002b). Reiter (2000) provides a provocative disaan of malaria in

Europe in the middle ages. Despite a “little ice’ag the late 16th and the 17th century,
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malaria appears to have continued unabated aintiee Conversely, the greatest advances
towards eradication of malaria over large partEwfasia and the Americas were achieved

during the warmest century since medieval times.

Attempts have been made to link temporal changesalaria observed over several years and
decades, to large-scale climatological variatiocthsas the El Nio Southern Oscillation
(ENSO) phenomenon (Kovats 2000; Kovatsal 2003). ENSO refers to a periodic though
irregular inversion in the difference between East West Pacific sea surface temperatures,
which appears to be associated with climatic edfactoss the globe. Specific extreme ENSO
events (El Nio / La Ni a) have coincided with - and been blamed for - siorel floods and
droughts that led to malaria epidemics in Eastoaf(Lindbladest al 1999; Kilianet al 1999)
and southern Africa (Thomsat al2005; Mabaset al2006a) and in Madagascar (Bouma

2003) for example.

An important aspect of inter-annual variation aigmission is the periodic occurrence of
epidemics (Gill 1938). Epidemics can be wide-spreadhe epidemics in 1996 (Anon. 1996)
across southern Africa, and in 1997 in easterncAf(Myerset al2000). These were marked
by severe illness and many deaths. The cause addt@ability of epidemics is of major
interest for health service management (Onori &Gré80; Najerat al 1998). Unfortunately
progress in this area has been limited (Anon. 2)Q&tly because of a dearth of resources,
capacity and long-term data, but probably also beeanalaria transmission is such a multi-

factorial problem that largely defies prediction.

On the intra-annual scale, seasonal periodicitgimfall and temperature leads to seasonal
fluctuation in vector populations, parasite devetept rates and malaria transmission. For

example, major differences in man biting rates weoerded in Garki, Nigeria, between the
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wet and dry seasons, which were associated witbrdift age prevalence curves of malaria
infection (Molineaux & Gramiccia 1980). Tanser aufleagues developed a seasonality
model that distinguished between the extreme sadigoalong the fringe of distribution and
the more perennial conditions around the equatangéret al2003). Mabaso and colleagues
recently investigated in more detail the degregeaisonality of incidence (Mabasbal

2006b) and the entomological inoculation rates jENRabasoet al2007) in different parts of

the African continent, with respect to climate seedity.

Availability of breeding sites, particularly temamy ones resulting from punctuated rainfall
events, can vary on a monthly and weekly scaleic@fjural practice, such as the flooding
and draining of rice paddies (Dodb al 1997), also play an important seasonal role irtorec

breeding.

On a daily and hourly scale, minimum and maximuniigmt temperatures can place
powerful limitations on parasite (Detinova 19623l arector survival (Jepscet al1947).
Mosquito vectors show a diurnal cycle in biting itslwith the main African vectors biting
during the hours between midnight and dawn (Gillie88). The activity of parasite stages
inside the human host can also be observed onuytmasis. Peripheral parasitaemia
fluctuates in 3-4 day cycles (Harinasuta & Bunn@88), causing periods of fever occurring
every three or four days, which led to the namegi&n” and “quartern” malaria. The
fluctuations in circulating parasites within thentan host affects the chance of transmission
to feeding vectors on an hourly and daily basig, iarone of the parameters feeding into a

complex mathematical model of malaria transmisg&mith et al2006).
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Geographical distribution

At the same time, malaria transmission intensityegon different spatial scales. At the

global level malaria occurs predominantly in themwdumid equatorial regions, where
conditions allow for the timely development of bgérasite and vector. The global
distribution of the principal vectors of malaria@dz & Collins 1996) is an important factor

in malaria endemicity as well as the success afatgrol. Africa, which carries the greatest
burden of malaria, is also the continent whererobig most difficult, due to a range of

factors including several highly effective and aapophilic vector species, a predominance

of the most severe malaria speciesfalciparum enormous areas that are both highly
endemic and densely populated, weak and unstabf@etes and health structures, and so on

(Coluzzi 1999).

Southern Africa (roughly 10 to 30 degrees Soutmasked by strong seasonality in malaria
transmission, becoming more pronounced towardfritinge of distribution. Transmission in
winter is limited by a lack of rain, particularly the dry South-western areas, as well as by
temperature. The combination of high latitudes itatively high altitudes on the southern
African plateau mean that temperatures in wintertao cold to sustain vector populations
and / or parasite development. The region compnsasy areas of unstable transmission, as
well as areas of high endemicity, but most of #gion is vulnerable to malaria epidemics to

some extent.

Heterogeneity in the spatial distribution of maaransmission, at increasingly localized
scales, was illustrated in South Africa (Hetyal 2000b). At the national level climatic effects
are still important, as well as control activitigghin the country and in neighbouring
countries. Below this scale human migration, tree@ment of roads and villages, etc come

into play. The location of people and houses wepect to breeding sites as well as
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randomness, affect the distribution of individuases at the lowest scale. Local differences in
vector density (Smitlet al1995), prevalence (Thompsenhal 1997) and incidence (Tragt

al 1993) with respect to vector breeding sites haanbllustrated.

Malaria control

As much as the global distribution of malaria ifeefed by human anti-malarial interventions,
the control of malaria also needs to take into anttemporal and geographical patterns.
After abandoning the eradication campaigns of 80k and 60's the World Health
Organization (WHO) recommended particular focugany diagnosis and prompt treatment,
selective and sustainable preventive measuresstagfecontaining and preventing epidemics
and regular assessment of the in-country situagi@nen. 1993). In 1998 the WHO made a
renewed commitment to address malaria, launchiagRloll Back Malaria” programme and
assisting countries to plan and implement largéesmantrol, in line with previous guidelines,

but aiming for major reductions in disease burdéab@rro & Tayler 1998).

Large parts of southern Africa have benefited fxtensive malaria control measures such as
IRS, drug interventions and ITN. In Namibia, BoteaaZimbabwe, South Africa and
Swaziland, where malaria is already marginal, nileontrol has been ongoing for decades,
and malaria risk has been reduced to very low $e{Mbbascet al2004). Though
acknowledging the difficulty (or impossibility) @fchieving eradication of malaria in the
African context, several of these countries newess pursue almost eradication-like control
methods, aiming to detect and treat all carriethefdisease and to reduce transmission to a
minimum. Further North and East, Angola, ZambiaJdaia& and Mozambique, though
experiencing seasonal transmission, still see lleigtls of endemicity and bear the full brunt

of the disease. In these countries malaria is mate-spread and control interventions have

been more limited.
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Since neither people, nor disease risks, nor hegitems are evenly distributed, and since
resources are limited, control measures have getaffected populations and high-priority
areas first, to achieve maximum and equitable lieddfe timing of interventions also need
to coincide with high risk periods. Furthermordfeatient control tools are appropriate in
different transmission settings. All this requirekevant factual information (Brycst al

1994; Snowet al1996).

Surprisingly little information had been availalaled / or used to provide a rational basis for
decision-making in the control and management dérain the past. Despite decades of
malaria research in most African countries, hagdily of the results were being put to use.
The MARA/ARMA (Mapping Malaria Risk in Africa) pregct was launched to attend to this
need, by collating relevant information on malanml, through analysis and spatial
modelling, to translate it into an information taeful for control related decision-making

(Le Sueuret al1997), and appropriate for low-end computer users.

Information that supports decision-making

Since malaria is unevenly distributed in time apdcg, you need to know where and when
the risk of malaria is highest, in order to targed time interventions appropriately. The most
direct measure of the risk of being infected iregain time period is the EIR. Another is the
infant conversion rate (ICR), a fairly pure measugat of incidence, or the number of
infections acquired over a certain time period loefined population (Molineaust al 1988).
Unfortunately the EIR is difficult to standardizedameasuring ICR or incidence is

time-consuming and resource-intensive, so thegedtats are collected rather infrequently.

A commonly reported measure is the prevalence teinpénfections. If associated with

information on age, prevalence can give an indicatif the level of transmission intensity
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because acquired immunity results in different mg&alence curves under different infection
rates. Because prevalence is easy to measuregaadde methods are relatively standardized,
it is frequently measured. It is for these reagbasthe MARA project decided to focus its
efforts on capturing historical prevalence datay@sosed to other transmission indicators (Le
Sueuret al1997). However, as much data as there might blrimaisk can never be
measured everywhere at all times, and a certaiuatrad prediction and interpolation is

required, which justifies the second focus areth@fMARA project on spatial modelling.

The MARA project has collated data from around Q0 Prevalence surveys carried out
across sub-Saharan Africa, of which about 80% ha&es geo-referenced. Southern Africa
has provided a large proportion of these. Seveatia models have also been produced, both
theoretical (Craiget al1999; Tanseet al2003) and data-based. The data-based models were
initially country-specific (Snovet al 1998; Kleinschmidet al2000), but were soon followed

by a regional map for East Africa (Omumeéibal 2005) and West Africa (Kleinschmidt al
2001a), which later included central Africa (Gentipet al2006a). These models were
developed using successively more sophisticatédtatal methodologies. Southern African
data have been incorporated only fairly recently the MARA database and no regional or

country risk maps have yet been produced.

Aim
The overall aim of this thesis was to investigatejarious scales, the temporal and spatial

effects of various environmental factors and maladntrol on malaria transmission, using

different methodological approaches.

Malaria distribution is investigated at the conitited level, with focus on sub-Saharan Africa,

and the southern part of the continent in partici@ab-national incidence data from South
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Africa and prevalence data from Botswana are exathiBoth countries lie on the edge of
malaria distribution, and both experience substatgimporal and spatial variation in climate

and malaria.

The effect of malaria control is examined in twattasting settings. In Botswana the analysis
period covers the steady introduction of compreivensontrol, while in South Africa, the
thesis considers the threat to effective contrespnted by the spread of resistance to

insecticides and anti-malarial drugs.

Objectives

The specific objectives of this thesis are:

1. to review the spatial and temporal effects ofotes determinants on the malaria
transmission cycle, at different scales (Chapter 1)

2. at the continental scale, to model the distrdoutf malaria in sub-Saharan Africa as a
factor of climate using raster GIS techniques,roleoto describe the mean spatial
distribution of endemic malaria, based on the tetcal suitability of long-term mean
climate for malaria transmission, using fuzzy lo@hapter 2)

3. at the national scale, to analyse point-referéeb@dhood prevalence data from
Botswana to
a. model the spatial variation in prevalence ag#faf environmental

determinants, prior to comprehensive malaria cof@bapter 3);
b. model the spatial and inter-annual variationrevplence as a factor of
climate, in the presence of intense control (Chapke

4, at the sub-national scale, to analyse provindedastrict-level total-population malaria

incidence data, to
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a. explore the inter-annual variation in malariadeace in KwaZulu-Natal
province over a 30 year period as a factor of din{€hapter 5);

b. explore the inter-annual variation in malariadence in KwaZulu-Natal
province over a 30 year period considering non-aliofactors (Chapter 6);

C. model the spatial and inter-annual variatiomiidence in South Africa, at the
sub-provincial level, based on climatic and nomneliic determinants (Chapter
7); and

to discuss the overall findings of this thesigulssing on the various spatial and

temporal aspects of the various determinants oAnaalransmission, with respect to

different scales, methodologies and applicatioriga(er 8).



Figure 1.1

ThePlasmodium falciparurtife cycle (M. Craig, in Appletoret al 1995).

14

uonanpoauj - T Ja1deyd



Chapter 1 - Introduction

15

Figure 1.2  Malaria transmission from man to
mosquito (A) and from mosquito to man (B).

Figure 1.3  The three-way relationship betweRlasmodium
the anopheline mosquito vector and the human host.
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Figure 1.4  Epidemiological measurements with respect to theetlway relationship
betweerPlasmodiumthe mosquito vector and the human host.



Chapter 1 - Introduction

17

Figure 1.5 Various determinants and risk factors of malaaas$mission, with respect
to different interactions in the three-way relasbip betweerPlasmodiumthe mosquito
vector and the human host.
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Figure 1.6  Interactions and causal links between importargrda@hants of malaria
transmission.
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Abstract

Malaria remains the single largest threat to childsival in sub-Saharan Africa and warrants
long-term investment for control. Previous malaistribution maps have been vague and
arbitrary. Marlies Craig, Bob Snow and David le Gueere describe a simple numerical
approach to defining distribution of malaria tramssion, based upon biological constraints of
climate on parasite and vector development. Theainmmmpared well with contemporary
field data and historical ‘expert opinion” mapscegting small-scale ecological anomalies.
The model provides a numerical basis for furthéneenent and prediction of the impact of
climate change on transmission. Together with patpan, morbidity and mortality data, the

model provides a fundamental tool for strategictcmrof malaria.

Background

There have been several attempts to define thalgioldl national distributions of malaria
(Boyd 1949; Macdonald 1957; Lysenko & Semashko 1968mmon to all previous attempts
at mapping malaria risk is that they derive froepanbination of expert opinion, limited data
and the use of crude geographical and climateiies.| None has a clear and reproducible

numerical definition: consequently, their compamatvalue becomes limited.

Recently, the tools for the spatial representatioevents have improved with the availability
of affordable geographical information systems (&&tware and large global data sets
including climate, population, satellite imageryadopography. Consequently, the mapping of
environmentally determined diseases is receivirgpnawed interest (Gesler 1986; Sharal
1988; Smithet al1995; Kitronet al1996; Thomsomrt al1996; Maceéet al1997; Maloneet al
1997; Martens 1997; Hast al 1998). It is into this milieus that the MARA/ARM@Mapping

Malaria Risk in Africa / Atlas du Risque de la Madaen Afrique) (Le Sueust al1997)
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project was born. One of the first objectives in RYARMA was to find the limits of

distribution of stable malaria transmission.

Transmission and distribution of vector-borne déssaare greatly influenced by
environmental and climatic factors. An indicatomadlaria stability is the reproduction rate
(R,) of the disease: wheR is less than one, malaria is unstable, with arg@teto die out,
whereR, is greater than one, malaria is stable and liteelyontinue indefinitely. Vectorial
capacity (Macdonald 1957; Garrett-Jones & Grab 1964 main component R, , is

strongly determined by climate. In this paper,dbéhors propose a fuzzy logic model of the
distribution of stable malaria transmission in Sdfaran Africa. The model is based on the
effect of mean rainfall and temperature on thedgglof malaria transmission. Even though
the relationships between transmission potentidldasease outcome are ill defined (Snow &
Marsh 1998), Snow, Craig, Deichmann and le Sudemgt, in the adjoining paper (Sn@aw
al 1999b), to project burdens of malaria mortality$ab-Saharan Africa, using the model

described here, in conjunction with selected mibytdata.

Fuzzy logic

Defining the precise edges of distribution of mialas difficult due to small-scale ecological
variability and temporal changes in transmissisi.rin reality there is a gradual, ill-defined
transition from perennial to seasonal to epidemimalaria-free regions, as well as from high
to low transmission intensity. Malaria distributi@not definable either in space, since the
edge of distribution is indistinct, or in time, senboth intensity and distribution wax and
wane with the natural periodicity of events. Prédg, for each point in space, the probability
of transmission occurring or not occurring, is possible, because many contributing factors,
such as mosquito density, human activities, hunmainvactor genetics, etc. are not

measurable or available at the continental scdl¢h€®available data surfaces, we consider
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climate to be the most important in limiting transsion and distribution of malaria at a large
scale. Climate could be considered as either abl@able to sustain transmission. This would
be a boolean situation, where climate is suitatae) or unsuitable (zero). Defining boolean
thresholds, above which the temperature-rainfatilioation is considered suitable and
where malaria is expected to occur, or below wiietaria is expected not to occur, would be

ignoring natural gradients and inherent uncertainty

Fuzzy logic (Zadeh 1965) is an extension of boolegit that deals with the concept of

partial truth, or put differently, the extent to isim a statement is true (fractions between zero
and one): climate is completely suitable, compjetgisuitable, or in-between, semi-suitable.
While probability sets are fuzzy i.e. non-boolefarzzy sets are not probabilities, because they
do not necessarily add up to one, as do probasilithny 0-1 curve, considered appropriate

for the subject, may be applied. The type of cutvesen depends mostly on what and how

much is known about the suitability gradient.

Continental climate

Continental monthly temperature and rainfall suegafHutchinsoret al 1995), essentially
interpolated weather station data, were used taigedhe climate data. They represent long-
term mean monthly profiles, i.e. monthly meanshim average year. Conceptually, regions
can be defined as: (1) perennial - where conditasesalways suitable for transmission;

(2) seasonal - where conditions become suitabla &frort season every year; (3) epidemic -
where long-term variation in climate renders cands suitable for transmission on an
irregular basis (with a potential of epidemic megrand (4) malaria-free - where conditions
are always unsuitable. Since inter-annual variagamot reflected in long-term mean climate
data, epidemic zones are not detectable. Usingl#iiegs set to predict regions of annual

transmission would lead to an exclusion, at thegfi of rare epidemic zones, but inclusion of
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frequent epidemic zones. More finite data - in spaed time - is required to define the

epidemic zones and this is being addressed prgsentl

Temperature effects on transmission

The effects of temperature on the transmissioreaytthe malaria parasitelasmodium
falciparum,are manifold, but its specific effects on spordgaturation () and mosquito
survival () are the most important (Onori & Grab 1980; Moéing 1988). The mathematical

relationships are shown in Box 1.

The lower limit of temperature suitability is deténed by the number of mosquitoes
surviving the incubation perio@"): while parasite development only ceases atC16
transmission below 1& is unlikely because few adult mosquitoes surtine56 days
required for sporogony at that temperature, andume mosquito abundance is limited by
long larval duration. At 22C sporogony is completed in less than three weeétsr@squito
survival is sufficiently high (15%) for the transssion cycle to be completed. Thus
temperature below 1& was considered unsuitable, and aboveZ23uitable for stable

transmission.

The upper limit of temperature suitability is detémed by vector survival, since sporogony
takes less than a week. Temperatures of abov€ Bave been reported to cause high vector
population turnover, weak individuals and high rabty (Le Sueur 1991; Maharaj 1995).
Thermal death for mosquitoes occurs around 4@E4@addow 1943; Jepsat al1947) and

daily survival is zero at 4@ (Martens 1997).

In addition to average temperature, Leeson (1981nd that in Zimbabwé&n. gambiae s.I.

disappeared when absolute minimum air temperatunariter fell below 5C, and de Meillon
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(1934) found that in the old Transvaal provinceytBAfrica (now Mpumalanga, Gauteng,
North-West and Northern Province) vector distribntdiscontinued where areas experienced
frost. Stuckenberg (1969) plotted effective tempera(an indicator that emphasizes the
importance of summer temperature and length ingeribiological activity) against frost
incidence in 84 weather stations. The highest gffecemperature with at least one day of
frost per annum was 16.€. In southern Africa the 16.€ effective temperature iso-line
compared well with the 2 minimum temperature iso-line, the main differenoecurring in
parts of the Zimbabwean highlands and along a Watel across central Botswana. ThES
minimum temperature iso-line was used here, brackenh both sides by one degree, to

account for uncertainty, so that® and above was suitable,@and below unsuitable.

Rainfall effects on transmission

The relationship between mosquito abundance anthtais complex and best studied when
temperature is not limiting. Studies have demotestréhe association betweAnopheles
gambiaes.l. abundance and rainfall (Molineaux & GramicciaQ98e Sueur 1991;
Charlwoodet al1995) but a direct, predictable relationship doasexist. Anopheles gambiae
s.l.are observed to breed more prolifically in temppeard turbid water bodies such as ones
formed by rain (Gillies & de Meillon 1968; Le SuetiiSharp 1988) while in permanent
bodies predation becomes important (Christie 1988ypheles funestus contrast prefer
more permanent water bodies (Gillies & de Meill@&58). However, both temporary and
permanent water bodies are dependent on rain.iRalso related to humidity and saturation
deficit: factors that affect mosquito survival (M@aux & Gramiccia 1980). There is good
reason for using rainfall to indicate the probgiiesence of vectors, their survival and the
potential for malaria transmission. Although ikisown that flooding often causes destruction
of breeding sites (Jepsehal 1947) and a temporary reduction of vectors, ien@liminates

the vector, so that very high rainfall was stilhe@ered optimal for transmission. The amount
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of monthly rain required was examined by extractimgclimate patterns in regions where the

status of malaria was known.

Diagnostic climate patterns

To examine the pattern of mean climate, as iteslat different epidemiological settings,
monthly rainfall and temperature values were exécérom the climate data surfaces
(Hutchinsonet al 1995) for 20 different sites where malaria trarssion has traditionally

been regarded as perennial (annual, for more lRananths), seasonal (annual, for less than
six months), epidemic (transmission not recordegheyear), and malaria-free (malaria never

recorded). The most diagnostic examples are disglayBox 2.

The examples confirm that the approximate tempegatut-off between epidemic and no-
malaria zones is indeed around €8 and that 22C allows stable transmission, while the
difference between regions ‘c’ and ‘e’ (Box 2; Higsi | and Il, ¢ and e) indicates a rainfall

requirement for stable transmission of around 80 fomat least five months.

The duration of the rainfall season is also impdrthn regions where temperature is high but
rainfall limiting, such as at the fringes of thertmoAfrican deserts, mosquito populations
increase rapidly at the onset of rain, becauséat slevelopmental cycles. Consequently,
three months of rain may be sufficient to constitoime transmission season. However, where
temperature is limiting during the colder seasarisdahe case in large parts of southern Africa
and highland areas, mosquito populations incrdaséysat the onset of rain, with gradually
rising temperatures, due to long developmentalesydParasite and vector development is
slow, and favourable conditions need to last loniggrovide a window of transmission. This
is also illustrated by the extracted climate pagem Mali (Box 2; Figures | and Il, d), where

temperatures are always high, a three month wirmfdvigh rainfall is sufficient for



26 Chapter 2 - Malaria Distribution Model

transmission, whereas in southern and easterna®fiox 2; Figures | and Il, a—c), suitable

conditions need to persist for at least five months

Constructing a fuzzy distribution model

The GIS raster software IDRISI and its FUZZY fupnatwas used to convert the climate data
to climate suitability maps of fractions betweenozgondition unsuitable §) and one
(conditions suitable §). Initially a simple sigmoidal fuzzy membershipea was used,

defined in IDRISI as:

_ X-U, p
y = coS >

S- U
wherey is the fuzzy suitability of climate value In the decreasing curve, fuzzy membership
is equal toy, in the increasing curve it is (). As outlined in the previous sections, for
rainfall, U = 0,S= 80 mm per month; for average temperatuire 18,S= 22 C for the
increasing curve anfi= 32,U = 40 C for the decreasing curve. For winter minimum

temperature (mean daily minimum of coldest moktks 4,S=6 C.

Since favourable temperature and rainfall condgibave to coincide temporally for
transmission to occur, the 12 monthly fuzzy raid samperature images were overlaid month
by month. The minimum suitability rating was caktield at each point, according to
whichever - rain or temperature - was more limitiigrthermore, suitable conditions have to
occur for a certain time window, constituting ansmission season, long enough for vector
populations to increase and for the transmissiatedp be completed. In North Africa

(>8 North) the highest value spanning any three-,iartde rest of Africa any five
consecutive months, was calculated. To adjust teirfor the effect of frost (Leeson 1931,
de Meillon 1934), the fuzzy minimum winter temperatwas overlaid, again calculating the

minimum fuzzy value. The resulting model (Figur&)Zhows the distribution of conditions
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more or less suitable for stable malaria transimmisgasting for at least five consecutive

months, or three in North Africa, in the averagarye

Does the model agree with available data?

Comparing the model with historical maps and maladase data in southern Africa (Figure
2.2) and in Kenya and Tanzania (Figure 2.3) themdsance is striking. In southern Africa
the edge of malaria distribution is well represdniéhe malaria-free East African highland
regions (Figure 2.3) are also clearly reflectethenmodel. In Kenya the coastal and south-
western endemic zones agree, as do the malariavaéar regions, too dry to register as

suitable in the model. Minor discrepancies areuised in the figure captions.

It is remarkable how well a simple model such &s tiriven by an understanding of the
situation on the ground, approximates the edgeadéna distribution across the continent.
Because we are looking at thistribution of stablemalaria transmission, the edge of the
suitable zone must be regarded as the lowest ¢é\erldemic malaria (hypo-endemic and / or
strongly seasonal) where we expect to find suhsianot necessarily high - levels of
transmission occurring every year. The situatiothiwithe suitable zone (fuzzy value 1) may
vary from low to high transmission intensity, bhistis not reflected in a distribution model.
The situation outside the suitable zone (fuzzy esld.9 to zero) reflects the gradient from
stable to increasingly unstable transmission vather and lower transmission intensity, until,
at the outermost fringes, malaria becomes a spyradpredictable event, subject to the

chance influx of parasites in rare wet or warm gear

In Botswana 13 years of incidence data (Anon. 198Baw that districts in the same fuzzy
zone behave similarly from year to year in termaaifial numbers of cases recorded.

Reported cases clearly decline from the three ermdéistricts in the North, to extremely low
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numbers in the central district, where in four oliL3 years no cases were recorded at all. In a
further five districts, malaria cases are reponeextremely rare years (pers. comm., David
Rumisha, Ministry of Health, Botswana). The outlaskhis model for public health

applications is dealt with in the adjoining pap@ngwet al 1999b).

Around the equator, rainfall patterns are slighlgtrongly bimodal, some regions receiving
rain in two short, distinct seasons. The model idlesd above required fiveonsecutive

months with a rainfall above 80 mm. We ran the nhadain, with the same fuzzy

definitions, but instead of looking faponsecutivesuitable months, calculated the maximum
fuzzy values persisting for five monthstotal. The difference between the two models was
zero or negligible in most of Africa, except forrseof central, south-eastern and northern
Kenya and with very small differences in Ethiof@amalia, southern Cameroun and along the
northern Angolan coast. In all other areas a birhcadafall pattern did not affect the outcome
of the model, and even the affected areas in Kanyanostly dry and unstable, indicating that

two short distinct rainy seasons are after allsusticient for endemic malaria.

To refine the shape of the fuzzy curves, and tltatslity cut-offs SandU, it may be
necessary to distinguish between the north, wherdirhiting factor is rainfall only, from the
rest of Africa, where the effect is a combinatidmasnfall and temperature. Equatorial
regions, where diurnal and annual temperature ranigev, and where temperature is limited
by altitude, may also need to be differentiatedniftbe South, where temperature range is
great and minimum temperature plays an importarif pad where temperature is limited
largely by latitude. It is worth noting here that tnue gold standard is available. Historical

maps and limited long-term malaria records havauftéice for comparative purposes.
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Modelling at different spatial levels

We have demonstrated that a simple climate-basettihcan be used to define the crude
distribution of malaria transmission in Africa. $hinodel functions at the continental level, a
scale for which we believe the data sets and thteadelogical approach to be appropriate,
but which will not take into account small scal®aralies which may affect distribution, such
as rivers and flood-plains in areas of low rainfafiricultural practise, deforestation, etc. It
reflects a conservative estimate of distributione Thclusion of other smaller scale data sets
(hydrology, human activity, etc.) may allow mordadked predictions, but requires a different

approach.

Thus we view the modelling of malaria in Africaaour-tier approach: (1) the first level, at
the continental scale, defines the broad distriloutif disease based on climatic conditions in
an average year; (2) the second level, at a sutimeortal scale, refines the distribution at the
periphery using annual data sets for higher tenipesalution, and takes into account
differences between major malaria ecological zo(@she third level, at a regional or
national scale, would involve relating parasitéosato climate and other factors and to define
the transmission intensity within a given zonerahsmission ecology, such as perennial,
seasonal or bi-seasonal transmission; and (4 ptinghflevel, at a scale of 30 krand below,

is a process which operates below the second astnaitive unit and seeks to define variation
in transmission on a local scale. The lower onesgoecale, the more one is forced to
consider whether the input required justifies ttees at which one is working and the

meaning which one is drawing from the product.

The model presented here, at the first level, duoes a new approach to numeric definition
of continental malaria distribution. The main benkds in the fact that it can be repeated,

evaluated and refined over time and can be mathesigtmanipulated in combination with
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other data sets such as population (Deichmann 183¥pvide improved estimates of people
at risk which is essential for prioritising hea#tbrvices (Snovet al1999b). Such a model
provides a baseline against which climate changeas®s (eg. global warming) can be

evaluated in the long term. We are moving fromhieothetical to the quantifiable.
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Box 1. Relationships between Temperature and Sporogic Duration (n),
Mosquito Survival (p) and Larval Duration

The effect of temperature on duration of the sponogcycle ) in days is defined as
(Macdonald 1957; Detinova 1962) (Figure a, above):

DD

whereDD is the total degree days for parasite developricrit forP. falciparun), T is the
mean temperature irC andT,, IS the temperature at which parasite developmesdes
(16 C for P. falciparun). High temperature speeds up mosquito develop(depsoret al
1947) and decreases the interval between bloodsirieatling to more frequent host-vector
contact (Gillies & de Meillon 1968), but also redsanosquito survival (Le Sueur 1991;
Maharaj 1995). Daily mosquito survival)(is defined by Martens (1997) as:

-1/( 44 13F 003?)

P = B 2
assuming constant humidity (b). Thus the combirigtieof n andp (p") indicates the
percentage of a vector cohort that survives dfterfull period required for completion of
sporogony (c). Another effect of temperature, ngoel larval durationld) in days, can be
expressed as:

[d =1/ (0.0055F-0.06737) ..ottt 3) (

and is shown in (d). The formula is derived frontedaublished by le Sueur (1991).
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Box 2: Temperature and rainfall profiles of selectd regions
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Graphs (Figure 1) of long-term mean temperatupe(osquares), minimum temperature
(crosses) and rainfall (closed circles) profilestoynth.

The effect of mean temperature is illustrated gukes (lla), (lle) and (llg) where
rainfall is high all year round: a constant tempam@of 22 C in (lla) is sufficient for
perennial transmission, 18 all year in (lle) is too cold but epidemics ocaukwarmer years,
while in (Ilg), where mean temperature remains adol5 C, transmission never occurs.
Similarly, mean temperatures in (lic) and (llh),iethhave the same seasonal rainfall pattern
suggest that seven months above@2allows seasonal transmission, while 6 months abov
18 C does not.

In terms of rainfall, the difference between (ke)d (IIf), which have similar mean
temperature patterns, indicate that five monthy@@®mm rain is sufficient, but five months
above 60mm is not. In (IIf) there is the added fing effect of low minimum temperatures in
winter, but rare epidemics do occur in particulavist (Nelson 1959). It is further apparent
from areas (Ild) and (Ili) that where temperatuaes high, one month of rain above 80mm is
not sufficient for a transmission season, but thisge months above 80mm is.
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Figure 2.1  Fuzzy model for sub-Saharan Africa, showing théagility of temperature
and rainfall conditions for malaria transmission &ny three consecutive months in north
Africa and any five consecutive months in the oégifrica. A value of 1 means that
conditions in the average year are suitable, heneecould expect to find endemic malaria
transmission (seasonal or perennial); a valueroé@ns conditions are unsuitable in the
average year, hence transmission should be abseotuar in rare epidemic episodes.
Fractions from O to 1 indicate increasingly suigatlimate, hence increased risk of regular
transmission.



Figure 2.2  Comparison of the model with southern African disttion data. The climatic model: 0, unsuitablesditable (a). Malaria maps show
malaria risk in 1995 in Namibia (Richard Kamwi, Mitry of Health and Social Services, Namibia, peosnmun.), 1938 in South Africa (Shagpal
1988) and annual malaria case numbers per distrigbtswana (b). The Namibia risk map is an exppmion map, based on case data. The Botswan
map is based on microscope-confirmed case datactedl at district level from 1982 to 1994. Malarése incidence in South Africa (not shown here)
between 1987 and 1993 has been above 1% justarmiltbast of Swaziland, and 1% or less elsewhetddmause malaria control has considerably

reduced malaria in South Africa (Shaatal 1988; Le Sueuet al1993May) it is necessary to look at the histormoab. Although the units in the maps
of the three countries differ, agreement with thedel is evident.

1%
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Figure 2.3  Comparison of the model with Kenyan and Tanzaniatarra maps. The
climatic model: 0, unsuitable; 1, suitable (a). M& maps of Kenya (Nelson 1959) and
Tanzania (Wilson 1956) are shown in (b). Agreent@tiveen the model and the historical
maps is good. The area southeast of Mount KenydNairdbi was historically recorded
malarious for three to six months, whereas the inmaelicts low climatic suitability. On

closer inspection, this area is found to be flat-lying country, which may receive additional
run-off water from the adjoining highlands; a higbrmalized difference vegetation index
(NDVI, which is a measure of the amount of photdlsgsis taking place, and hence relates to
the moisture availability, saturation deficit, spibperties and humidity) indicates an
abundance of water. Nevertheless, empirical data fhis region (Omumbet al 1998)

suggest that malaria transmission is low and sparadd we have to question the accuracy of
the historical map. The discrepancies in the TamtBRangani (a and b above) river valleys, as
well as the Limpopo river (Figure 2.2), are a restithe model using only rainfall to predict
the presence of vectors so that, although rainfalf be low, breeding sites are available and
humidity is high along banks and flood plains ofjonaivers.
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Abstract

Background

Several malaria risk maps have been developedentgears, many from the prevalence of
infection data collated by the MARA (Mapping MakaRisk in Africa) project, and using
various environmental data sets as predictors aldliselection is a major obstacle due to
analytical problems caused by over-fitting, confditig and non-independence in the data.
Testing and comparing every combination of explanyatariables in a Bayesian spatial
framework remains unfeasible for most researcfidrs.aim of this study was to develop a
malaria risk map using a systematic and practicadlable selection process for spatial

analysis and mapping of historical malaria risBotswana.

Results

Of 50 potential explanatory variables from eightiemnmental data themes, 42 were
significantly associated with malaria prevalencemivariate logistic regression and were
ranked by the Akaike Information Criterion. Thoserelated with higher-ranking relatives of
the same environmental theme, were temporarilyuebed. The remaining 14 candidates were
ranked by selection frequency after running autechatep-wise selection procedures on 1000
bootstrap samples drawn from the data. A non-dpatittiple-variable model was developed
through step-wise inclusion in order of selectimytiency. Previously excluded variables
were then re-evaluated for inclusion, using furtstep-wise bootstrap procedures, resulting in
the exclusion of another variable. Finally a Bagagjeo-statistical model using Markov chain
Monte Carlo simulation was fitted to the data, lsg in a final model of three predictor
variables, namely summer rainfall, mean annual tgatpre and altitude. Each was
independently and significantly associated witharialprevalence after allowing for spatial
correlation. This model was used to predict malprevalence at unobserved locations,

producing a smooth risk map for the whole country.
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Conclusions

We have produced a highly plausible and parsimanioadel of historical malaria risk for
Botswana from point-referenced data from a 196pf@Ralence survey of malaria infection
in 1-14 year old children. After starting with atlof 50 potential variables we ended with
three highly plausible predictors, by applying ateynatic and repeatable staged variable
selection procedure that included a spatial amalydl this was accomplished using general-

purpose statistical software.

Background

Recent years have seen widespread applicationogrgehic information systems and spatial
statistical methods in modelling and mapping trstriiution of vector borne diseases,
including malaria. In sub-Saharan Africa the Magplhalaria Risk in Africa (MARA)

project has been working towards a malaria risksdibr rational and targeted control of the
disease (Snowt al1996). To this end historical and current survatadave been collated of

the prevalence of infection with humBlasmodiunparasites.

A number of malaria risk maps, at country and negidevel, have been produced by
analysing geo-referenced prevalence data agaimgbamental data to predict prevalence at
localities where it was not recorded (Sneinal 1998; Kleinschmidet al2000; Kleinschmidt

et al2001a; Omumbet al2005; Gemperlet al2006b). Different analytical approaches of
varying sophistication have been explored. Multy@eable logistic regression analysis,
commonly used to assess the odds of infection agpatential risk factors, has been
employed, and the spatial dependence in the resmtata has been modelled most
successfully using Bayesian spatial modelling. Guistanding issue, which can greatly affect
the predictions, remains the variable selectiorgadare, particularly when there are a large

number of potential risk factors.
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In regression analysis and predictive / prognagadstics, model validity is an important
aspect (Justicet al1999), both the internal validity, or accuracg, the model explains the
observed data well, and external validity, or gatizability, i.e. the model predicts new data
well. In this context we furthermore aim for parsimy (model contains a few strong
predictors that are easily interpretable) and plality, both of the co-variates (association
with the disease are etiologically explainable) ahthe predictions (believable in view of
what is generally known). Taking account of thetisphaorrelation structure in the data is
important for “geographic transportability”, i.ehen predicting malaria prevalence to

unobserved locations (Justieeal 1999).

Selecting a few predictors for spatial modellingnfiramong a large number of potential
candidates is a major challenge and can easilynbeewbitrary. Ideally every possible
combination of variables would be tested and coegpar a Bayesian spatial framework.
However, this would be extremely computing-inteesiwnd unfeasible, if not impossible, for
most users. The most practical route is to reduedist of potential explanatory variables

using non-spatial selection methods, before motoreyspatial context.

Neither manual nor automated stepwise selectioogoiures are advised, because of frequent
over-fitting, and because of the resulting “phantbegrees of freedom” (Babyak 2004, pg
416): testing and rejecting many variables incredise probability of finding a significant
predictor by chance, but since this sifting remaindeclared, standard errors in the final
model are underestimated. Babyak (2004), citingéflai2001) and others, recommend
shorter lists of candidate predictor variables,olhare not strongly correlated, as well as
bootstrapping, as a form of simulation. Austin dmd(2004), working on heart attack data,
developed their model by running repeated step-sesection procedures on bootstrap

samples of their data, to identify the most coesispredictors.
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The aim of this study was to develop a map of hisabmalaria risk for Botswana by
analysing malaria prevalence data against a nuoflervironmental variables from different
data themes, using a systematic and repeatabkdgtagcess of variable elimination,
including the stepwise bootstrap method descrilyefiustin and Tu (2004). The resulting
small subset of variables, each independently &gsdcwith the response, but possibly
spurious because the condition of spatial indepsrele/as not satisfied, was tested in a
Bayesian geo-statistical model. We used the spatialel derived from the observed
locations, to predict prevalence of malaria inf@ctin children 1-14 years old at unobserved

map locations across the whole country.

Methods

Study area

Botswana is semi-arid to arid with few permanentewbaodies. The country is flat, mostly
between 900 and 1200m altitude. The rainy seaswaris November to March. Vegetation
ranges from desert scrub-land in the South-West¢revannual rainfall is <300mm, through
grassland, to wooded savannah in the North, whachives >500mm rain annually. Mean
annual temperatures are between 18 an€2Botswana today has a total population of about
1 .6 million; population density over two thirdstbie country being <1 per square km
(Deichmann 1997). The population according to éllicensus was 630 379 with an
approximate 3.1% annual increase (Chayabetehl975) which if extrapolated back in time
translates to around 470 000 in 1961/62. In 1985 80the population lived in the eastern

part of the country,

Malaria risk is highest in the tropical North (Figi2.1). Indoor residual spraying was
introduced in 1946 on a limited scale. Coverage gvadually improved culminating in a

comprehensive vector control program in the 19@@abasoet al2004), but even by 1953
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ndoor residual spraying for mosquito control wéeegular feature” in risk areas, apparently
mainly in towns, along rivers and apparently exilgdural areas “remote from regular
medical supervision”, but with good results (Freadm 953). Larval control was also
implemented when mosquito breeding was detectethriarevalence decreased markedly
after 1944, again between 1961/62 and 1974, atldeiuthereafter (Mabasat al2004). By
1960 no prevalence above 70% was measured, suggestiso- to hypo-endemic conditions.
Further South, transmission is hypo-endemic andegpic, and over large areas entirely
absent. Incidence, like the climate, is strongssmal, peaking around March / April
(Thomsonet al2005). The gradient in malaria broadly follows #mevironmental gradients

described before.

Malaria data

Archived malaria prevalence data were collated iwithe MARA project, as described by
Omumboet al (1998). In Botswana geographical coordinates cbeldbtained for 613 out of
a total of 1063 age-specific prevalence surveygh@de, 20 did not report sample sizes and
were excluded. Here we used only the 1961/62 raltgurvey (Figure 3.1) to develop a
historical malaria risk map. For the 1-14 year ggrip, 122 prevalence results were
available, for 118 unique locations across the tguprogressively from August 1961 to
May 1962. Surveys in different regions were caroatiduring different months (Figure 3.2).
The total number examined was 17 149; the meanlsasige was 141 per survey

(range 2-831). The design effect was calculatestata (Anon. 2001b).

Environmental data
Forty-nine variables representing different sumesaend transformations of the eight
environmental data themes (see Table 3.1), weheded in the study: elevation (Anon.

1998b), surface water (Anon. 1995), land cover @m=adnet al1976), long-term monthly
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mean rainfall, temperature (Hutchinseinal 1995), vapour pressure (Mitcheli al2003), and
normalized difference vegetation index (NDVI) an8kAnon. 2001a) and 1km (Anon.

2007b) resolution.

Themes with monthly values (rainfall, temperatiNBVI and vapour pressure) were plotted
against logit-transformed malaria prevalence, (pyitBased on observed temporal patterns in
the scatter plots, months were aggregated for “sewrh(@ecember to March) and “winter”
(April to October). Different annual summary indsosere also calculated for each theme.

Calculations of some of the variables are showthenappendix (pg. 55).

Distance from water bodies was calculated by ptimjgenaps of perennial and non-perennial
water bodies onto a 200x200m grid and calculatimgeach grid cell the Euclidian distance to
the nearest water body. Values were transformextding a value of 100m to each pixel and

deriving the natural logarithm.

For land cover, the thirteen United States Geolddgiurvey land cover classes occurring in
Botswana were re-grouped into two categories, byaamresponding to drier and moister
land cover types. Most data points were found nasgland” and “savannah” with only
isolated surveys in the other land cover typesvdeace was generally higher in “savannah”
than in “grassland” areas. Other obviously dried bower risk land cover types (“barren or
sparsely vegetated”, “shrub land”, “urban or bujit? were therefore included with
“grassland” in a “low risk” category, while othdearly moister classes (“herbaceous
wetland”, “water bodies”, “evergreen broadleaf &ifewere included with the higher-risk

“savannah” category. Other minor land cover typesewncluded in the category alongside

which they mostly commonly occurred (“grasslandofpcland mosaic” was mainly found
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scattered among “grassland”; “dryland crop land pasture” and “mixed” among

“savannah”).

Values were extracted from the data grids for epdgraphical location where a malaria

survey result was available.

Variable selection and model development
We carried out a staged approach during model fation. A flow chart of the variable

selection procedure is shown in Figure 3.3.

Stage 1The malaria prevalence database was split randioniayderivation (n=81) and
validation (n=41) sub-sets. To identify the bestanate predictors, univariate logistic
regression analysis against the derivation datacaaged out on all 50 potential predictors.
We allowed for clustering by survey location usthg Hubert-White sandwich estimator in

Stata (Anon. 2001b).

Stage 2To reduce confounding arising from correlatedatales, and also to reduce the
variables to data ratio, we ranked the variablgsifcant in univariate analysis by the Akaike
Information Criterion (Akaike 1973) (AIC), and exded those that were strongly correlated
(Spearman’s r > 0.85) with a higher-ranking vamabélonging to the same environmental

theme. Scatter plots against logit(p) were prepafdéde remaining variables (Figure 3.4).

Stage 3Following the approach of Austin and Tu (2004),dvew 1000 bootstrap samples
from the derivation data, and ran automated badkwaclusion procedures on each sample.
Since it was not possible in Stata to allow forstdwing within the stepwise procedure, which

resulted in the explanatory power of variables gp@&wer-estimated, we used stringent entry
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and removal thresholds (p = 0.02 and 0.05 respagjiwVe recorded the co-efficients and the

number of times each candidate variable was seél@éctdhne 1000 models.

Stage 4A non-spatial multiple-variable model was derivieé manual step-wise fashion,
starting with the most frequently selected variahted adding further variables in order of
selection frequency, as long as all entered vasat#dmained significant at the 5% probability
level. If a previously entered variable became sigmificant with the addition of another, we

retained the one more frequently selected in S3agdavour of the other.

Stage 5Back in Stage 2, variables had been excluded b@aséukeir univariate predictive
power. To identify the best representative(s) tifeame in a multiple variable context,
correlated variables excluded in Stage 2 were &itbte compete against each other for entry
into the model in further stepwise-bootstrap praced. The variables in the Stage 4 model
constituted the basic candidate list. Working thdap¢heme, we re-introduced into the
candidate list also those variables that had brelnded in Stage 2 on account of their high
correlation with any variable of the same theme liaa survived to Stage 4. Each time we
ran a stepwise-bootstrap procedure as describagkaterording which of the competitors
was most frequently selected. This variable thetaced the original variable in the model.
Details, in the form of an example, are providedmnannotation to Table 3.2. Using the
modified model, prevalence was predicted for at dBservations. The accuracy of the
predictions for both derivation and validation dai@s assessed using the concordance

correlation coefficient (Lin 1989; Lin 2000).

Stage 6T0 account for spatial correlation in the survetagda generalized geo-statistical
spatial model using Markov chain Monte Carlo (MCM@yulation was fitted on all 122

observed prevalence data points (Digefl@l 1998; Christensen & Ribeiro 2002; Gemperli &
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Vounatsou 20032; Gempedt al2004). The co-variates of the Stage 5 model werleided

as potential explanatory variables. Spatial moaighvas carried out using the package
geoRgIm in the statistical software system R (Génisen & Ribeiro 2002). Detailed methods
are included in the appendix. For each model paiemtige median and 2.5 and 97.5
percentiles were calculated from the MCMC simuladiadPrevalence and its 95% CI was
predicted and mapped for a grid of 2300 locaticasell on the co-variates and the spatial

structure in the data.

Results

The design effect in the data was 52 before adig$tir co-variates. The clustered survey data
thus only had the same power as 330 (17149 / 8B)iduals randomly sampled over the

entire country.

Of the 50 potential explanatory variables, 42 vwagaificantly associated with malaria
prevalence in univariate logistic regression ing8ta (Table 3.1). Scatter plots of logit(p)
against the 14 variables that were selected fohd¢uanalysis in Stage 2, are shown in Figure

3.4.

The selection frequency of the 14 candidate vaembl the 1000 stepwise-bootstrap models
of Stage 3, are shown in Table 3.2. Figure 3.5 shitw frequency distribution of coefficients
for each variable. Some variables were unstablenbaositive coefficients in some models
and negative coefficients in others. Five variallese selected into the Stage 4 model,
namely annual maximum rainfall, winter mean tempega proportional SD temperature,

elevation and land cover (marked in Table 3.2).
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The results of the additional three stepwise-boapsprocedures of Stage 5 are shown in
Table 3.2. In the rainfall theme, annual maximuns watperformed and replaced by the
summer total. For temperature theme, annual megeidarmed winter mean. With annual
mean in the model, standard deviation became rgmifisiant. Since standard deviation
ranked lower in Stage 3 than the winter mean, & veanoved, reducing the number of

variables in the Stage 5 model to four. ResulthefStage 5 model are shown in Table 3.3.

Figure 3.6 shows the scatter plot of obsemnvepredicted logit(p), for the derivation and
validation data of the non-spatial Stage 5 modeé doncordance correlation coefficient)(
(Lin 1989; Lin 2000) for the derivation data, weiigth by sample size, was 0.851,

n (individuals examined) = 11182 in 66 non-zerovplence surveys, the 95% confidence
interval (CI) = 0.846 to 0.856. The unweighteg 0.834, n = 66, Cl = 0.760 to 0.908. For the
validation data weighted. = 0.835, n = 4467, Cl = 0.826 to 0.843; unweightged 0.776,

n =30, Cl =0.635 to 0.917. The difference betweleserved and predicted logit(p) did not

vary with prevalence.

After adjusting for spatial random effects, onlyeth co-variates remained significant. Land
cover (median = -0.515; 95% CI = -1.099 and 0.@8& removed. The predictions (median
and CI) from the spatial Stage 6 model are alsavahn Figure 3.6. It contained three co-
variates namely summer rainfall, annual mean teatpes and elevation, each independently
significantly associated with prevalence of infentafter allowing for spatial correlation in

the data (Table 3.4).

Discussion

This study was concerned with finding the best jgteds of malaria prevalence in terms of

plausibility, parsimony and reliability. One impant question was how to summarize the
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environmental data in a meaningful way. We deteeahito explore a range of alternative
summaries of the monthly climate data, believing appropriate summary indicator to be
better for prediction than individual months (Sneinal 1998), quarterly aggregates
(Kleinschmidtet al2001a), or principal components (Omundial 2005), the last of which

are difficult to interpret. However, as more andrengariables are tested against a certain data
set, the risk increases that some will explainddi@a merely by chance, but will fail to explain

new data.

In an initial attempt to derive a well-fitting apthusible model through automated step-wise
variable selection (results not shown), arbitractdrs such as entry and removal threshold
settings, how many variables were included in igteof candidates, and which data-subset
was used for model derivation, affected which \@ea got selected. The best-fitting models
did not produce the most plausible risk maps,\andhe majority of maps resulting from
these models strongly contradicted expert opirdfomore systematic selection procedure was

called for.

Identification of consistent predictors is compreed by correlation among predictors. A
strong, reliable predictor may ultimately be sedddess frequently than a weaker predictor, if
several strongly correlated alternatives compateridry into the model so that each has a low
selection frequency (Austin & Tu 2004). For thiagen it was important to include in the
candidate list only little-correlated variables.idtvas ensured in Stage 2, where the candidate

list was reduced from 42 to 14.

Reliable predictors would not only explain a parée data set, but would be associated
consistently with the response. The bootstrappfrigtage 3 helped identify such predictors,

because those that consistently explain differebtsets of the data, are more likely to
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explain new data. In the step-wise bootstrap praee] variables that explained the most
observations would be selected most frequentlyenthibse that explained only some of the
observations, would be selected only when thesereasons appeared in the bootstrap
sample. The effect of individual observations orialae selection, especially of outliers, was

thus reduced.

In the process of uni-variate ranking (Stage 128nde became guilty of “data peeking”
(Babyak 2004). Using our data to assemble a catadiida of predictors set up the analysis for
success. Such undeclared testing and discardivgriables may lead to illegitimately high
model fit. Another problem of Stage 2 was thatafales were excluded on the grounds of low
uni-variate correlation with the response, whileitipredictive power may be quite different
once other variables are accounted for. Stage Jawastempt to redress both these problems
at once, by giving each variable excluded in SBggehose relative had survived up to Stage
4, a fair chance to out-perform and supplant itepetitors in a multiple-variable context, at
the same time, through the bootstrap sub-samgbngduce the influence of the data set on

this process.

A further benefit of the Stage 3 bootstrap-stepwiseedures was the information provided
by the frequency distributions of coefficients e tL000 stepwise models (Figure 3.5). A
variable that has a widely varying coefficientooe that is sometimes positive and
sometimes negative, is clearly not reliable andukhbe considered with suspicion (Concato
et al1993). An example was summer vapour pressuresttbegest uni-variate predictor, but
selected least frequently in multiple-variable esgion (Figure 3.5J). Altitude on the other
hand, a weak uni-variate predictor, became an itapbpredictor in a multiple-variable
context, with a stable positive coefficient (Fig@&G). In fact, the most frequently selected

variables (Table 3.2) had stable coefficients (Fegk15), whereas the most unstable
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coefficients were found among the least frequesdlgcted variables, confirming the relative

importance of predictors.

The strong association found between malaria peecal and selected environmental data
(Figure 3.7) is biologically plausible since higlalaria infections have been shown to
coincide with conditions that favour vector andgsdtie development in a given location
(Kleinschmidtet al2001a). However, over small distances environnheotaditions vary

only slightly due to the relatively simple flat Batanan topography, while malaria prevalence
showed substantial local variation, for exampleteoiporal measures of 67% (n=48, Maun)
vs24% (n=557, Maun suburb), or 3% (n=218)17% (n=116) in Matangwane. Such local
variation is perhaps partly caused by the distitlubf small breeding sites. Yet in studies
where detailed breeding site information was at#lamuch of the variation in incidence
(Van Der Hoek Wet al2003), prevalence and entomologic inoculation fiightoweret al
1998) nevertheless remained unexplained. Locafaetdrs, such as individual, household
and village characteristics, as well as the efdésampling procedure and size, may further

contribute to the unexplained variability in prexate.

Summer rainfall and annual mean temperature, edamthe final multiple-variable model,
were highly plausible predictors. The same varmbleummer rain and mean temperature
over the preceding year - were also found to erplder-seasonal variation in malaria
incidence in KwaZulu-Natal (Craigt al2004b). Summer rainfall also explained much of the
variation in inter-annual variation in malaria idence in Botswana (Thomsenal 2005).

High rainfall during the hot summer months allowapid breeding and population expansion
of the mosquito vectors, while high mean tempeestunaximize the maturation rate of the
parasite in its exothermic arthropod host (Moline&@88). Warmer winters reduce the die-

back of mosquitoes and parasites, thereby incrgdlsereservoir for the following season.
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The strong positive association of elevation witllama prevalence (an increase in logit(p) of
1 every 160m, Table 3.4) was surprising, as prexal®n its own, as it usually tends to be,
was higher in low-lying areas (Figure 3.4G). Thisitive association was difficult to explain,
but may be connected with the malaria control Wed ongoing at the time. It appears from
early reports (Freedman 1953) that vector confperations were wide-spread and intensive

along rivers and the main populated areas.

The non-spatial model of Stage 5 predicted the faats well but the predictions achieved by
the spatial model of Stage 6 were more accuratri(€i3.6). The map corresponding to the
Stage 5 model (Figure 3.7A) had an implausibleatisouity, caused by the negative co-
efficient of land-cover. Land-cover was the mostyfrently selected variable in the bootstrap
procedures, but was not significant in the spatiatlel. This binary variable may simply have
approximated the spatial division between high lamdprevalence areas, which was

ultimately described more correctly through the-gpatial approach of Stage 6 (Figure 3.7B).

A good number of locations with observed zero piesvae had predicted prevalence of 5%,
i.e. logit(p) of -3, and above (Figure 3.6). Inghecases sampling error may have played an
important role, as large sample sizes are neederkésure very low prevalence rates
confidently. Conversely, non-zero observations weoge often lower than the predictions
based on environmental factors. By 1961/62 mafaeaalence in the North of Botswana was
already much below the level measured in 1944 (abtal 2004), probably due to the
limited use of indoor residual spraying which haety ongoing since the 1940's. This
highlights the fact that not only environmentalt blso anthropogenic factors, especially
malaria control need to be considered. This furtieee highlights the need to monitor control
coverage and effectiveness, as well as other pateofactors, in order to understand the

situation more accurately.
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Evidence from elsewhere in Africa suggests thatgdesce rates in the dry / low transmission
season may differ substantially from those in tle¢ Mhigh transmission season (Molineaux &
Gramiccia 1980; Lindsagt al1991). In this study month of survey was a sigatfit predictor

of prevalence in a univariate setting only, butwhbtle accounting for other variables.
Prevalence by month (Figure 3.4N) was confoundedtmire surveys were carried out when,
and thus did not reflect the seasonality of malasia The highest incidence months for
example (March to May) would not be the lowest pfesce months, as Figure 3.4N
suggests. Rather, surveys were carried out dunegetmonths in the low-risk South

(Figure 3.2). To measure intra-annual variatioprevalence we would have required data

from the same localities in different months.

The spatial risk map (Figure 3.7B) presents a sheabpicture of malaria risk in Botswana
prior to intensive malaria control, which was higplausible based on expert opinion and the
mean incidence at district level (Cragal 1999). The wide CI (Figure 3.7C) in predicted
prevalence highlights the uncertainty remainingradiccounting for all explained variation in
the data. The confidence level needs to be takerattount when using the map for planning

and evaluating control interventions, to avoid ewveerpretation of the map.

Conclusion

A continuous map of malaria risk is more usefuhtpaint-prevalence rates for several
reasons. First, the variability in individual obstions may hide underlying patterns that have
epidemiological importance. Further, it is not pbkesto deduce from a point-referenced map
what prevalence you may expect to see in areahdvat not been sampled, whereas a model
such as the one developed here gives a likely rahgeevalence for the entire region. A
continuous prevalence map can also be combinedunilerlying population data to estimate

the number of people at risk of - or infected withalaria. Finally, the spatial statistical
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methods employed here distinguish between thelatioe among observations that can be
ascribed to their spatial proximity (neighbourintiages affecting each other), and that which
can be explained by environmental factors (theeatmyding overestimating the explanatory

power of the co-variates).

Though malaria risk has been reduced substantialbyigh intense malaria control, a malaria
risk map nevertheless remains highly useful froendbntrol perspective in knowing historical
prevalence levels. We have furthermore demonstadtematic procedure for variable
selection and model formulation in developing a-gtatistical risk model from
point-referenced malaria prevalence data, whichrélasance to a broad range of
environmentally determined infectious diseases.fatere take account of spatial
correlations during the entire variable selectiomcpdure remained a major weakness. As
computing power increases and statistical softwackages are further developed, variable
selection within a spatial framework may end umbewithin the means of the average

researcher.

The staged process of variable elimination empldyze proved to be practical, though not
necessarily the optimal solution. Stepwise variaelection on multiple bootstrap samples
drawn from the data allowed us to identify the namstisistent and stable explanatory
variables. Selection frequency provided an objeatationale for choosing one variable above
another, and to choose between similar and strargghglated indicators. Spatial analysis was
the final stage in the variable elimination procester which we remained with a

parsimonious, highly plausible model that produaesinooth, plausible map of malaria risk.
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Appendix 1

Standard deviatio(SD) =

R

m=1

where y, = monthly value and = mean of all y.

Proportional SO0based on monthly proportions) =

12
\/ (0.0833- py, )’
m=1

where py, = Vi/Viot: Yot = Ym» @nd 0.0833 is the mean of all pfr1/12)

Effective temperaturéStuckenberg 1969) =

[8 * annual mean + 14 * annual range] / [8 + anmaabe]

Concentration of rainfall

Monthly rainfall is expressed as a vectqy, (,,), rainfall being the magnitude)(of the vector
and the month its angle)(expressed in units of arc:

=m2 /12
wheremis the month, so that January = 1 and December = 1

The twelve monthly vectors are added to calculeedtal vectorr(, ,):

g, =tan
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The concentration index C is calculated as:

C =10G, / annual total
Concentration is 100% if all the rain falls in amenth and 0% if all months have equal
amount of rain.

. Is the mean peak month around which rainfall iscemtrated.

Generalized spatial logistic regression analysis

Bayesian geostatistical model formulation has lEstribed by a number of authors (Diggle
et al1998; Christensen & Ribeiro 2002; Gemperli & Votsoa 20032; Gemperdt al2004).

Following these authors, the model is specifietblhsws:

Y; represents the binary response correspondingtimtéction status of chilgat sitei (the
survey site) taking value 1 if the child testedipos and O otherwise. The;\are
conditionally independent Bernoulli variables witifiection probability pat location .
The p are defined via a generalised linear mixed mddekke account of spatial
dependence:
logit(p)=X;, +S(;)
where represents the regression coefficients for afdat@vn co-variateX at all locations
; of the study area;
S=(S(,), ...., S(,))" denotes the values of the (unobserved) Gaussaiakprocess S(at
sample locations;

?=Var{S()}, and is a parameter of the correlation functiqd; , ), in our case exp(;d

), where ¢l is the distance between locatiopand ;.

For flat priors were specified respectively (defairtgieoRglm) and for? a Scaled-Inverse

chi-square distributionfs,) with five degrees of freedom and a mean of 0ds. Fa discrete
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exponential prior with mean of 0.04 and 1000 digsa¢ion points in the interval 0.0001 to 2

was specified.

Convergence was assessed by inspecting plotscekti simulations for individual
parameters. The first 50,000 iterations were ddsdrthereafter simulations were run for
250,000 iterations. Every 50th sample was retaiRedeach model parameter the median and

2.5 and 97.5 percentiles were calculated from {86(GMCMC simulations.

Models were compared by calculating the devianftanmation criterion (DIC) for each

model (Spiegelhaltezt al2002). Spatial prediction using Bayesian kriegiag carried out

for a grid of 2300 locations which correspond te émtire surface of Botswana. For each
prediction location a posterior sample of MCMC siations was generated taking account of
the estimates of regression coefficients and th&aeffects at each location, and of the
uncertainty of each parameter. This process isrithestin detail elsewhere (Diggéd al

1998; Gemperli & Vounatsou 20032; Gempetlial2004), and was carried out using geoR

(Christensen & Ribeiro 2002).
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Table 3.1 Odds ratios (AIC in parentheses) from univariaggdtic regression analysis in
Stage 1, of 50 environmental variables tested agamalaria prevalence. P-values were non-
significant (n.s.), <0.05 (*), <0.01 (**) or <0.08d***), n=122. The equation was
logit(prevalence) = coefficient x co-variate + ctamd.

Environmental data theme
Tempe- Vapour NDVI, 8km NDVI, 1km

Variable Rain-fall rature pressure resolution§ resolution § Other
(mm) (C) (hPa)
Annual mean (total for 1.0085 4.22 1.094 1.091 1.07
rainfall) (27.6)* (13.6)*** (12.8)** (28.9)* (31.3) n.s.
Annual maximum (highest  1.045 3.034 1.067 1.090 10.4
monthly value) (20.8)*** (23.3)*** (11.7)** (25.7)** (32.2) n.s.
Annual minimum (lowest 3.29 1.11 1.1048 1.06
monthly value) (13.9)** (17.1)*** (29.8)* (32.7) n.s.
Annual range (highest minus 0.52 1.12 1.14 1.03
lowest month) (27.1)* (15.8)*** (30.8)* (32.7) n.s.
Standard deviation 1.03 0.54 0.54 1.073 1.03
(Appendix) (21.9)* (25.0)=* (14.7)** (26.6)*** (32.8) n.s.
Proportional standard 61.8 -214 0.004 0.1 43.3

deviation (Appendix)* (13.0)*** (17.3)** (33.4) n.s. (26.8)*** (32.9) n.s.
Summer mean (total for 1.012 2.59 1.065 1.078
rainfall) Dec-Mar (22.9)** (27.1)*** (11.6)** (28.9)*
Winter mean (total for 0.88 3.22 1.11 1.097
rainfall) Apr-Oct (14.8)*** (12.0)*** (16.0)*** (28.6)**
Concentration 1.39
(see Appendix) (13.3)***
Number of months >80mm  1.81
(>60 & >40mm n.s.) (26.6)**
Number of months >16 2.72
(18.9)***
Number of months >165 1.13
(other cut-offs were n.s.) (31.5) n.s.
Total in months with more  1.0059
than 80mm (24.0)***
Total degree months above 1.050
16 C (15.7)**
Effective temperature 21.8
(Appendix) (12.6)***
Mean daily minimum of coldest 2.29
month (21.4)**
Elevation 0.997
(29.7)**
Log distance to perennial 0.56
water (m) (21.6)***
Log distance to perennial / 0.72
non-perennial water (m) (30.5)*
Land cover (binary; moist 4.76
vsdry areas) (25.5)***
Month of survey (binary; peak season 8.67
April / May vsrest of year) (29.4)***

NDVI = normalized difference vegetation index .

¥ The co-efficients, not the odds ratios, are shasrthe unit is a fraction, and the Odds Ratio
near zero (=exp(co-efficient)).

§ Radiance units for NDVI (fractions from O to g dranslated to a byte-compatible scale
from 1 to 256.
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Table 3.2 Results of bootstrap step-wise procedures; vasahtduded in the candidate
lists of Stage 3 and Stage 5, and their selecteguency (fq), in four separate automated
stepwise backward variable exclusion procedured) Bme against 1000 bootstrap samples
of the malaria prevalence data.

Theme Stage 3 Stage 5
Candidate Candidate Candidate Candidate
variable list fg _ variable list 1+ fqg variable list 2 fg _ variable list 3 fg
Rainfall

annual maximum®*

904 annual maximum 560 annual maximum 3 B®nual maximum 914

summer total T 821
months >80mm 760

SD 726
total in months 716
>80mm
annual total 612
winter total 749
proportional SD 642
Temperature
winter mean * 885 winter mean 993 winter mean 878 wintean 665
annual mean t 914
summer mean 885
months >16C 681
mean in months
>16 C 670
annual maximum 665
winter minimum 627
effective 615
annual minimum 558
proportional SD* 754 proportional SD 897 proportion&l S 544 proportional SD 624
SD 786
annual range 537
annual maximum 660
Vapour pressure
SD 495
summer mean 441
NDVI annual maximum 567
SD 469
Elevation *t 874 elevation 988 elevation 819 elevation 994
Log distance to perennial 616
water
Land cover *t 988 land cover 996 land cover 997 land cover 996
Month of survey 527

NDVI - normalized difference vegetation index; SBtandard deviation
* Variables selected into Stage 4 model
T Variables selected into Stage 5 model
T Example: Five alternative rainfall indicatorstdéid in candidate list 1 under Stage 5, were
strongly correlated with - and had been excludddwour of - the annual maximum in Stage
2. In Stage 5, all six competing rainfall indicaaevere included in the candidate list, along
with the other variables of the Stage 4 model.Hefdix competitors the most frequently
selected was summer total. In Stage 5 summerttaedfore replaced annual maximum

rainfall.
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Table 3.3 Results of the Stage 5 non-spatial model: oddssat-scores, and confidence
interval estimated from non-spatial regressionraggdour variables, fitted on derivation data
only (n = 81, AIC = 8.06).

Variable Odds 95% confidence interval
Ratio z p(2) lower upper
rainfall summer total (per 200mm) 2.33 6.94 <0.0005 41.8 2.99
temperature annual mean (p€) 8.85 9.05 <0.0005 5.53 14.15
elevation (per 100m) 1.68 3.8 <0.0005 1.28 2.2
high risk land cover 0.188 -5 <0.0005 0.098 0.361

Table 3.4 Results of the Stage 6 spatial model: odds ratidscanfidence interval
estimated from Stage 6 spatial model, fitted ompadivalence data (n = 122).

Variable Odds 95% confidence interval
Ratio lower upper
rainfall summer total (per 200mm) 2.01 1.49 2.7
temperature annual mean (p€) 5.75 4.14 8.08
elevation (per 100m) 1.82 1.49 2.22

=0.003, 95% CI =0, 0.0174% = 0.77, 95% credible interval (0.53, 1.14)
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Figure 3.1  Malaria prevalence of infection in 1 to 14 year okdldren, in
Botswana, during the 1961/62 national survey.
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Figure 3.2  Month of survey during the 1961/62 Botswana nationa
malaria survey.
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Figure 3.3

Flow diagram of staged variable selection procedure
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Figure 3.4  Scatter and box plots of candidate environmentplagatory variables used in
the step-wise procedures. Malaria prevalence ;m14tyear old children, Botswana, 1961/62,
is shown on the Y axis on a logit scale. (A) anmaakimum rainfall (mm); (B) winter (April

- October) total rainfall (mm); (C) rainfall condeation (%); (D) winter (April - October)
mean temperature (°C); (E) annual maximum tempesdfC); (F) temperature proportional
standard deviation (°C); (G) elevation (m); (H) aahmaximum NDVI; (I) NDVI standard
deviation; (J) summer (December-March) mean vapoessure (hPa); (K) vapour pressure
standard deviation (hPa); (L) log distance to peramawater (m); (M) land cover: dry / low
risk, moist / high risk areas; (N) start month ofvey (January, 1 to November, 11).
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Figure 3.5  Frequency histograms of coefficients obtained io@uated backward stepwise
exclusion regression analysis against 1000 bogptstenples of the malaria prevalence data in
Stage 3. In each case the vertical black line atdi coefficient = 0. (A) annual maximum
rainfall (mm); (B) winter (April - October) totabinfall (mm); (C) rainfall concentration (%);
(D) winter (April - October) mean temperature (°(B) annual maximum temperature (°C);
(F) temperature proportional standard deviation);(f{G) elevation (m); (H) annual maximum
NDVI; (I) NDVI standard deviation; (J) summer (Deaeer-March) mean vapour pressure
(hPa); (K) vapour pressure standard deviation (hfRa)og distance to permanent water (m);
(M) land cover: dry / low risk, moaist / high riskeas; (N) start month of survey: main season
(April-May).
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Figure 3.6  Predicted/sobserved prevalence on a logit scale, for thevdgan (crosses)
and validation (squares) data of the Stage 5 natigdpnodel, and for the median (closed
circles) and upper / lower confidence interval Kspj of the Stage 6 spatial model.
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Abstract

Introduction

Malaria transmission and its temporal and spatsdtidution are affected by environmental
factors, particularly climate. Malaria prevalenasich reflects the balance of the acquisition
and loss of infections, is more prone to non-climatfects than incidence, and this study
aimed to examine whether spatial and temporal atie malaria prevalence in Botswana

could be largely explained by climate alone, asb®en shown to be the case with incidence.

Methods

Retrospective prevalence survey data from Botswasiated by the MARA project, were
extracted. For the 5/6 to 9/10 age group 327 peexal rates, for 1974 to 1997 and from 87
unique locations, were analysed via logistic regjmsagainst annual mean temperature,
summer rainfall and elevation, while allowing f@asial and inter-annual correlation and a
possible linear time trend. The model was fitted lBayesian framework, using a Markov
chain Monte Carlo algorithm. Fifty random obseroati were set aside for validation. Two
models were fitted using different rainfall dataise The one that better predicted the

validation data was fitted on all data.

Results

Inter-annual variation in the prevalence data cowitlbe explained by inter-annual variation
in the environmental data with a meaningful leviet@nfidence. In both models less than a
third of the validation points were correct, evetha 95% credibility level. Temporal
variation in prevalence, when aggregated for thenty, could also not be explained by the

variation in climate.
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Conclusion

The results suggest that available monthly cliniate series are not useful in predicting
inter-annual changes in prevalence. While incideates appear to remain prone to variations
in climate, even in the presence of intensive nalewntrol operations, this study suggests
that the effects of vector control and good actesseatment over-ride the effects of climate

on malaria prevalence.

Introduction

Malaria is an environmental disease insofar asatssmission rate is largely determined by
the impact of environmental factors on ®lasmodiunparasite andnopheles/ector
populations. This link affects the temporal andtispdistribution of the disease (Molineaux
1988). On the fringes of malaria distribution tnasmssion is not only less intense, but more
prone to temporal variation, both intra- and iraarually, particularly following climatic
patterns. Inter-annual variations particularly ref® the prediction, detection and

management of epidemics (Najera 1974).

Incidence is a more immediate indicator of transiois intensity, in that it reflects the rate at
which new infections are being acquired in a pojporta Point prevalence of infection, the
proportion of people infected at a particular tipoént, represents the net balance between the
acquisition of new infections and the loss of itif@ts due to recovery. Recovery rate, in
areas with reasonable access to treatment, igedféy treatment policies, drug efficacy and
health-seeking behaviour. Prevalence is therefane prone than incidence to non-climatic
effects, which tend to be monitored less regulaifile temporal changes in incidence have
been clearly linked to temporal changes in climatesmporal link between climate and

prevalence has not been demonstrated.
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The aim of this study was to analyse the effecsneironmental factors on malaria
prevalence in children over a 24 year period insB@ina, in order to examine whether
temporal climatic variation is important againgteeckground of fairly intensive and effective

control.

Methods

Study area

Botswana lies at the fringe of malaria distributiorsouthern Africa. The North of the country
is fairly moist and humid, even tropical around @lavango delta and the bounding rivers in
the North, but increasingly cool and dry towards 8outh. Malaria is concentrated in the
North, tapering off towards the South and Westsiana is sparsely populated, its inhabitant
mainly concentrated in the South-East of the cquiifigure 4.1). A more detailed description

of the study area was given in Chapter 3.

History of malaria control

Indoor residual spraying was introduced in 1946 l{i%oet al2004) and by 1974 most
villages in the North of the country were coverathvindoor spraying of residual insecticides
(Chayabejarat al 1975). Coverage was fairly complete, as the reperttions that at the
time 60 000 people lived in Chobe and Ngamiland, thiat around 20 000 houses were
sprayed in 1973, though apparently logistic andpgant problems were experienced. By
1980 a comprehensive malaria control programmefwhsoperational. The period covered
by this study (1974-1997) thus represents a peariodore or less uniform intervention, but
which was probably failing gradually due to theesat of chloroquine resistance until it was

replaced with sulphadoxine-pyremethamine in 199%(isonet al2005).
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Surveillance and malaria data

A national survey of malaria prevalence was caroetin 1961/62. After this, prevalence
data are available for 1974, and from 1979 to 1®®almost every year, but for the northern,
malaria-affected half of the country only. The 1%rtdvey presented data in standard age
groups: 0, 1, 2-4, 5-9, 10-14, 15+, but from 19h%ards, with a few exceptions, only the 5/6
to 9/10 age group was sampled. The original suraeysimple unpublished ministry reports,

and nothing further is known about the samplingesobs for these surveys.

For this study we extracted 376 prevalence rates 1974 to 1997, for the 5/6 to 9/10 age
group, representing 37 481 individuals, and cogeti@ years over a 24 year period with two
gaps. Of these surveys, 327 could be geo-refereaoeldrepresented 87 unique locations.
Mean sample size was 115 (range 3 - 516). Surme#laf clinical cases - unconfirmed and
confirmed - was going on at the same time (Thonetai 2005) but these data are not

included in the present study.

Environmental co-variates

Only a limited number of sources of climate datangdack to the 1970's are available with
sufficient temporal and spatial resolution to allaviull spatial-temporal analysis. Monthly
temperature and rainfall surfaces were sourced thenClimate Research Unit at the East
Anglia University (Mitchellet al2003), at half-degree spatial resolution (CRU-T @2y

from a similar data series from the same authoesv(® Hulme 1997), commissioned by the
MARA project (CRU-MARA), which essentially represenhigher resolution of an older
version of the CRU data. Two further rainfall dataies were sourced from CMAP (Anon.
2007a) and GPCP (Adlet al2003). Both of these combine station and satelbi@ to

derive their estimates. Table 4.1 shows the fonfak data sources along with other relevant

information.
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In an analysis of the Botswana 1961/62 nationabneprevalence survey (Chapter 3),
summer rainfall, mean annual temperature and etevatere found to be significant spatial
predictors of malaria. For the current analysiscaleulated the mean monthly rainfall during
the summer months (December to March) corresporditizge beginning of each year for
which we had malaria data, and the mean annualestype. The coldest and driest months
in Botswana are June and July, while the peak madlaridence is observed in March and
April (Thomsonet al2005). We thus aggregated the climate data yeardiag to the

climatic season (July of yetad to June of yed, rather than by calendar year, linking this to
the malaria prevalence of ydaiWe extracted climate and altitude (Anon. 199&iiador

each survey location, and for each season for whilaria prevalence had been measured.

Statistical analysis

Binomial regression was used to analyse risk fadtmrmalaria prevalence. To allow for
temporal correlation, first order auto-regressesents were included in the model. The year
was also included as a risk factor, to controlaf@ossible long-term linear trend. To allow for
spatial correlation a generalized geo-statistipatial model (Digglest al 1998) fitted with a
Bayesian framework, using Markov chain Monte C&McCMC) simulation in Winbugs

version 1.4 (Anon. 2004b).

To determine which of the four potential rainfaditd sources best explained inter-annual
variation in malaria prevalence, malaria prevalesnte rainfall data were extracted for the
time period covered by all four rainfall data serj@979 to 1995, 281 observations) and
regressed against the malaria prevalence datachnaase the time trend was included as co-

variate.
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Fifty random observations were set aside for vélida The remaining 277 data points were
then analysed against summer mean monthly rainfign annual temperature and elevation,
in a multiple variable binomial regression analy3iwo models were developed. In the first
(model A) the CRU-TS2 data series was used, is¢cend (model B) the GPCP rainfall data

was used.

Models A and B were compared using the devianagnmédtion criterion (DIC) statistic and
by comparing the proportion of validation pointattkvere predicted within the correct
confidence quantile. The better-fitting model (lthea the fraction of validation data

correctly predicted) was then run again, this tfitieag on all data (model C).

Results

The median sample size was 100; in 67 surveys sasig#s were below 50 and in only five

below 10, while seven large surveys had sampled 8@ children.

The prevalence data from 1974 onwards have beematiged in Figure 4.2. Data were
available for 18 separate years, over a 24 yeawgeFhe number of surveys carried out per
year varied from five in 1979 and 1988 to 44 in 2.9Bhe highest prevalence was observed in
1974, 1996, and 1997. Figure 4.3 shows the locati@tl 327 data points in northern
Botswana. Figure 4.4 illustrates inter-annual \taorg by displaying prevalence in 17

locations where 8 or more surveys were carriecbwat the study period.

In Figure 4.5 the four rainfall data sources amtptl against each other, using summer
rainfall for the analysis period and for the prevale survey locations as indicator. There was

a fairly marked discrepancy between summer raiefgiimates obtained from the different
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sources, even between the related CRU-MARA and @BDB-Mean annual temperature was

more consistent than rainfall between CRU-MARA &RU-TS2 (Figure 4.6).

The results from the bi-variate regression of the fainfall data sources against prevalence
are shown in Table 4.2. Only the GPCP rainfall ceda significantly associated with
prevalence after accounting for temporal and spetiaelation and for a possible linear time

trend.

Inter-annual variation in the prevalence data cowitlbe explained by inter-annual variation
in the environmental data with a meaningful leviet@nfidence (Table 4.3). The DIC statistic
of model B was slightly lower than that of modelMso both year and elevation were
significant in model B rather than only elevatiommnodel A. Nevertheless model A predicted
the validation data slightly better: in 6, 13, X&ld5 of the 50 validation points the observed
prevalence fell within the 50, 80, 90 and 95% drkdintervals respectively, whereas in

model B the corresponding numbers were 5, 11, #i218n

Model C, fitted on all data, and using the CRU-T&&fall series (Table 4.3 and Figure 4.7),

also had a bad overall fit and did not predictdhta well. Of the 327 prevalence points, only
10, 20, 24 and 28% were correct within the 50,9%80and 95% credible intervals respectively,
which was even lower than the proportion of thes&lidation data predicted after fitting on

only 277 observations.

Since national level incidence data in Botswanaevieund to be associated with climate
(Thomsonet al2005), we calculated the mean prevalence for db@tcy, on an annual basis,
weighted by sample size. Mean summer rainfall ardmannual temperature were calculated

by year from all pixels corresponding to the sursigs, also weighted by sample size. In a
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binomial regression analysis, as described abdeeatgon, a linear time trend and temporal
correlation were accounted for. In this case ttagigpcorrelation was not considered. Again,

the temporal variation in prevalence could notx@aned by the variation in climate.

Discussion

The national malaria control programme was launchd®74 although some level of indoor
residual spraying was going on since the 1940'sL¥1/62 malaria prevalence in the North
of Botswana was already much below the level meakiwr 1944 (about 4@s 70%), and by
1974 was only around 10% (Mabastoal 2004). In 1997 the national control programme
changed the first-line drug from chloroquine tgpialdoxine-pyrimethamine, improved
access to treatment for severe malaria, replaceti With pyrethroids for indoor residual
spraying and extended the areas covered (Thoetsal2005). The period covered by this
study (1974-1997) thus represents a period of mokess uniform, but possibly gradually
failing, intervention. This is also suggested by ithcreasing incidence rates from the early

1980's to the late 1990's (Thomsairal 2005).

Malaria prevalence in the childhood population otd#vana from 1974 to 1997 remained at
with meso- and hypo-endemic levels with only seleeal prevalence estimates above 50%.
Inter-annual variability is apparent from the rag@revalence rated measured in locations
where surveys were carried out repeatedly over (figares 4.3 and 4.4). Some years appear
to have seen relatively widespread increase (e, 119885, 1993 and 1996) or decrease (eg
1982, 1984, 1991 and 1994) in prevalence, howdnetamporal pattern was not consistent.
This inter-annual variation and the high frequeotyero prevalence in known malarious

areas (Figure 4.3) also points to the epidemicreaitimalaria in this country.
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Annual case notifications since 1990 have beenlgnbstow 50 per 1000 population (Anon.
2003c). With its small population of around 1.8limail (Anon. 2004a) and fairly high GNP,
Botswana has the highest per-capita governmentspmgon health in the Africa WHO

region. Treatment is free, and no stock-outs wectended over a three-month surveillance
period (Anon. 2003c). This speaks of a situatiat th probably as good as it can be, short of
complete elimination. In such a controlled situatiowould have been important to
incorporate into the analysis indicators of contnadi its effectiveness, as was possible in
Chapters 6 and 7, especially considering that peeca is more prone to non-climatic factors

than incidence. However such data were not availabl

As in South Africa (Chapter 7) aggregated interwaivariation in incidence in Botswana
could be linked to climatic factors, such as rdinfamperature, vapour pressure and NDVI
(Thomsonet al2005). The spatial and temporal distribution ofaria incidence in
Zimbabwe (Mabaset al2006b) and South Africa (Chapter 7) was also astatwith
climate, but a similar association could not be destrated in these prevalence data from

Botswana.

Both models A and B predicted the validation poextemely badly. Only 30% were
correctly predicted at the 95% confidence levek phedictions were slightly better in model
A, though model B appeared to be the better moakstd on other criteria. Almost all
associations were negative. Elevation was a sagmifipredictor in both models - clearly only
of the spatial and not of the temporal variatiopiiavalence, the negative effect pointing
towards lower prevalence in higher-altitude aresbva. which was not surprising. A
negative year trend was also understandable, ghesaffect of control. But a negative, if
non-significant, impact of temperature and rainfiels counter-intuitive. Higher summer

rainfall and mean temperatures were not assocwatédan increase in prevalence in multiple
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variable regression analysis. In model C, which fited on all data, rainfall was positively

associated with prevalence, but the effect wastatistically significant.

The limited explanatory power of the climate datald be interpreted in various ways: it
could confirm that prevalence is not a suitabledatbr of transmission intensity in the
presence of control, or it may be due to a lackazuracy in the climate data series, or else it

may be due to a bad temporal match between theimalad climate data.

The first of these explanations, that prevaleng®tsa suitable indicator of transmission
intensity in the presence of control, is not urifkét low levels prevalence can vary
markedly, both in time and space, and more thaseul for interpretation, so that large
sample sizes are required to get a reliable estinfahe true prevalence in the population
(Molineauxet al 1988). Roughly, sample sizes below 100 are orffjcgent to demonstrate a
significant difference between proportions of 0t@®.3 in any particular location. On the
other hand, based on the number of survey poiraitade for each year for the entire
country, the sample sizes were large enough to dstrate a significant change at an
aggregated level (at the 95% level, and with 90%gyd smaller than the observed change in
13 out of the 17 observed time steps. So broadigildpg the data were able to detect inter-
annual change in prevalence in the country as deyhat not on a location-specific basis.
With such great uncertainty in the spatial-temparalaria prevalence data, it would not be

surprising if much or most of the variation coulat be explained.

The second possible explanation, that the badtseaté due to a lack of accuracy in the
climate data series, is equally likely. The problgoes not seem to have been the low spatial
resolution, as the high-resolution CRU-MARA datd dot explain the prevalence data better

than the low-resolution data series (Table 4.2 TRU climate coverages are based on
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weather station data. Rainfall pixels were cal@ddiased on all weather stations within a
450km radius, while temperature range was calatifisem stations within 750km, and mean
temperature within 1200km (Tim Mitchell, pers. cothnthe purpose of the CRU-TS2 data
series is the long-term assessment of global-stial@te trends, and not precise statistical
analysis against disease outcomes. In Botswanadhther station network utilized in the
production of this climate series must have bedremely uneven and generally very sparse.
Although the actual locations of stations are naiilable from the authors, images showing
the number of stations considered in the calcutadioeach pixel show a very low average
density in Botswana. In the GPCP data the dens§iyeather stations was also extremely low.
This means, while the large-scale climate trendg Ibeareflected, perhaps even quite

accurately, that much of the local variation inr@ie gets lost.

The third possible explanation, namely a bad temdpoatch between the malaria and climate
data, could theoretically be assessed by limitimganalysis to survey results in which the
month is known and regressing survey prevalenes jainst mean climate in say the three
preceding months. However, this would mean losi@ (almost half) of the observations.
Together with the lack of precision in the climdtda series, further investigation along this

line did not seem warranted.

That many of the data had no record of month ofesuremains a potential problem, as other
studies have shown that prevalence can vary sulababetween the wet and dry season
(Molineaux & Gramiccia 1980; Lindsast al 1991). However, over 60% of surveys, for
which the month was known, were carried out inHigg-transmission month of March, and
over 90% in the first half of the year, so that match extra information would be gained by

taking account of the month of survey. This alsggasts that most of the remaining surveys
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were likely to have been carried out during thstfiralf of the calendar year as well, which

corresponds to the second half of the season bgfvthe climate data were aggregated.

The most important issue here is the fact thatalveralaria prevalence post 1970 was very
much below the original malaria risk, presumablg ¢lw intensive control. Areas where the
vectorial capacity to transmit malaria is alreadyrgnal, responded extremely well to vector
control. This is evidenced by the significant retluts in malaria transmission over the past
decades observed in several southern African desr(ivlabascet al2004). Even hyper- and
holo-endemic areas can respond well to comprehesid integrated control (Shaepal
2007). Malaria control, and the efficacy of contitblus complicate the association between

malaria and climate.

A study in South Africa (Craigt al2004a) found that in the presence of intense obntith
transmission well below pre-control levels, ovelallels and longer-term trends in annual
malaria incidence were associated with non-climfatitors, predominantly the effectiveness
of control. Nevertheless inter-annual variatiomalaria incidence could be explained largely
by inter-annual trends in rainfall and tempera{@gaig et al2004b). Other studies in the
region have also found temporal links between dinaend malaria incidence in Zimbabwe

(Freeman & Bradley 1996; Mabasbal 2006b) and Botswana (Thomsenal 2005).

While incidence rates appear to remain prone t@trans in climate, even in the presence of
intensive malaria control operations, this studyggsts that the effects of vector control and

good access to treatment over-ride the effectéirafite on malaria prevalence.
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Conclusion

In this study we examined childhood prevalenceatsi@ana over a period during which
malaria control was intense, to determine whethigriannual variation in prevalence, like
incidence, was associated with inter-annual vanmeith climate. The results showed that
available monthly climate time series were not ulsef predicting inter-annual changes in

prevalence.
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Table 4.1 Four long-term spatial monthly rainfall data sosgreecluded in this study.

Spatial Time period Stations used
resolution
CRU-TS2 0.5 1901-2000 Number of stations used for calculating
(all data, each pixel (within 600km radius), and
327 surveys) not the actual distribution of stations,

are provided.

CRU-MARA 0.05 1951-1995 Stations per pixel can be calculated
(1996/97 excluded, from station locations
281 surveys left)

GPCP 0.5 1951-present Stations per pixel available
(all data)

CMAP 2.5 1979-2006 No information
(1974 excluded,

303 surveys left)

CRU-TS2 = Climate Research Unit Time Series 2 (Matket al2003)

CRU-MARA = Climate Research Unit climate data, cossioned by MARA project (New
& Hulme 1997)

GPCP = Global Precipitation Climatology Project [@det al2003)

CMAP = Climate Prediction Centre Merged AnalysifPoécipitation (Anon. 2007a)

Table 4.2 Co-efficients in bi-variate spatio-temporal anadysf different co-variates
against malaria prevalence in 5 to 10 year olddcéii in Botswana, 1979 to 1995, n=281. The
95% credible interval is shown in parentheses,ifsigmce at the 95% level is indicated with
an asterisk.

Year effect Co-efficient DIC
Elevation (per m) -0.05 (-0.39 to 0.18) -0.004 (-0.01 to 0.002) 1840

Summer rainfall (per mm)

CRU-TS2 -0.009 (-0.7 to 0.4) 0.003 (-0.001 to 0.006) 1839
CRU-MARA  0.002 (-0.5 to 0.3) -0.003 (-0.008 to 0.002) 1840
GPCP -0.03 (-0.4 to 0.4) -0.005* (-0.009 to -0.0005) 1836
CMAP -0.03 (-0.7 t0 0.25) 0.007 (-0.0001 to 0.01) 1836

Mean temperature (per C)
CRU-TS2 -0.07 (-0.5t0 0.2) 0.6* (0.01to 1.1) 1831
CRU-MARA -0.1(-0.7t00.2) 1.3* (0.7 to 1.6) 1782
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Table 4.3 Median incidence rate ratio and the 95% crediltieriral of co-variates fitted
on malaria prevalence in 5 to 10 year old childreBotswana, 1974 to 1997, for three
different multivariate spatial-temporal models.8igance at the 95% level is indicated with
an asterisk.

Median 95% credible interval
Variable Incidence Rate |
Ratio ower upper

Model A: results using CRU-TS2 rainfall series fited on derivation data only
(n =277, DIC = 2296)

rainfall summer mean (per mm) 0.999 0.995 1.002
temperature annual mean (p&) 0.799 0.6 1.047
elevation (per m) 0.996* 0.993 0.999
year trend 0.883 0.741 1.131

Model B: results using GPCP rainfall series, fittedon derivation data only
(n =277; DIC = 2293)

rainfall summer mean (per mm) 0.998 0.995 1.001
temperature annual mean (p&) 0.795 0.635 1.066
elevation (per m) 0.995* 0.993 0.999
year trend 0.871* 0.683 0.976

Model C: results using CRU-TS2 rainfall series, fited on all data
(n =327; DIC = 2729)

rainfall summer mean (per mm) 1.001 0.998 1.004
temperature annual mean (p&) 0.876 0.643 1.078
elevation (per m) 0.996* 0.992 0.999

year trend 0.997 0.763 1.176
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Figure 4.1  Total population density in Botswana per square k895
(Deichmann, 1997).
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Figure 4.2  Malaria prevalence of infection in 5 to 10 year okdldren, in
Botswana, for 327 surveys, from 1974 to 1997, d¥eseparate years and 87 separate
locations.

Figure 4.3  Malaria prevalence of infection in 5 to 10 year okdldren, in
northern Botswana, 1974 to 1997. Lines represettictiboundaries.
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Figure 4.4  Malaria prevalence of infection in 5 to 10 year okdldren, in 17

locations in northern Botswana, where eight or nsonr@eys were carried out over the
period 1974 to 1997.
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Figure 4.5 Summer (December to March) rainfall by year, for 28
surveys covered temporally by all four rainfallalaburces, plotted
against CRU-TS2: GPCP (blue), CMAP (green), CRU-MARed)
and CRU-TS2 (line).
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Figure 4.6  Mean annual temperature (calculated over 12 month
periods starting in July, ending in June), by yaat by location, for
the two different temperature data sources: CRU-MATR y-axis,
CRU-TS2 on the x-axis.
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Figure 4.7  Predicted prevalence plotted against observed |@m@s@ on
the logit scale (hollow circles), and the 95% coéglinterval (red vertical
lines), after fitting the model on all 327 malapieevalence data points for
Botswana in children 5 to 10 years old, from 1974 %97.
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Abstract

Large parts of Africa are prone to devastating mekpidemics. Advance epidemic warning
would give health services an opportunity to prepBecause malaria transmission is largely
limited by climate, climate based epidemic warnsggtems are a real possibility. To develop
and test such a system, good long-term malariaimate data are needed. In KwaZulu-
Natal, South Africa, 30 years of confirmed mala@se data provide a unique opportunity to
examine short- and long-term trends. Seasonaltotale and seasonal changes in cases (both
log-transformed) were analysed against a rangémoatic indicators obtained from three
weather stations in the highest malaria incidensticts, using linear regression analysis.
Seasonal changes in case numbers (delta log eases}kignificantly associated with several
climate variables. The two most significant onesenaean maximum daily temperatures
from January to October of the preceding seasen3®, ¥ = 0.364, p = 0.0004) and total
rainfall during the current summer months of Novemio March (n = 307r= 0.282,

p = 0.003). These two variables, when enteredthi@same regression model, together
explained 49.7% of the total variation in delta t@gpes. We found no evidence of association
between case totals and climate. In KwaZulu-Nathkre malaria control operations are
intense, climate appears to drive the inter-anaaahtion of malaria incidence, but does not
determine its overall level. The accompanying pd@&mapter 6) provides evidence that
overall levels are associated with non-climatiddes such as drug resistance and HIV

prevalence.
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Introduction

Over large parts of Africa malaria transmissionusadn distinct seasons and epidemics,
which vary in severity from year to year. Epidenmcay be caused by a range of factors
including movement and displacement of human pajouis, breakdown of control,

environmental changes, and meteorological / cliofatitors (Najerat al 1998).

Climatic determinants are considered particularipartant, since both the disease agent
(Plasmodiurp and vectorsAnophelesnosquitoes) are strongly affected by climate:
temperature determines parasite and vector developmainfall provides mosquito breeding
sites, and humidity, together with temperaturee@f mosquito survival. It is thus believed
that malaria epidemics caused by meteorologicabfacan be predicted from climatic

indicators and climate forecasts.

In climatic conditions that are marginally suitabide transmission, patent and severe
epidemics may follow extreme climatic conditionfeTlink between climate and malaria in
strongly seasonal but endemic settings is probabbker and sometimes masked by non-
climatic variation. Yet climate still plays an imqpant role in driving inter-annual variation in
transmission, and climate data my prove usefudferting malaria control authorities to

unexpected risk of epidemic conditions.

Climate-based epidemic warning systems rely ondlaionship between climate and malaria
incidence. To demonstrate and quantify such aioelstiip, good, long-term malaria data sets
are required, but these are rare in sub-SaharaceAfrhirty years of incidence data from
KwaZulu-Natal province (KZN), South Africa, provideunique perspective on temporal

patterns of malaria incidence over the past themades. In this and the accompanying paper
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(Craiget al2004a) we focussed on the seasonal case totalsj®ixg possible reasons for

the observed season to season and longer termashang

Malaria incidence in KZN

During the first half of the 20century malaria was far more widely distributediouth

Africa than it is now; some areas suffered fromdrygpndemic conditions (Swellengrebel
1931). Resource-intensive control measures werengaléce in the late 1940's (Le Suetr

al 1993). The malaria control programme renderecklgogeviously endemic areas practically
malaria-free. That malaria in South Africa is atgbuthern limit must have aided the situation

because re-invasion of controlled areas was orggipte from the North.

Malaria is a notifiable disease in South AfricagTdase reporting system aims to capture
every infection rather than clinical cases onlyptigh both passive and active surveillance
(Sharpet al 1988). Malaria transmission is distinctly seaspwéh transmission limited to

the warm and rainy summer months. Case numbewsvarable for the KZN province from
1970 and by district from 1981. Of three malaripusvinces, KZN reports on average half of
the country’s cases, and over last twenty yearata®@ of KZN cases have been reported

from its two northern-most districts, Ingwavuma astsbmbo (Figure 5.1).

Case notifications generally increase from Novendmevards, peak in late summer to autumn
(March to May) and decline by the end of June. aberage seasonal pattern in malaria

incidence follows the periodicity in rainfall anghtperature with a three to four month lag.

Two longer-term trends are immediately evidentis 80 year data series (Figure 5.2): firstly
a steep exponential upward trend. A spatial coraparof malaria incidence between the

1988/89 and 1998/99 seasons also confirmed gedgehgspread, in that the steepest
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increases were observed in areas with previouslgdbincidence, andce versa

(Kleinschmidtet al2002). An almost ten-fold increase in cases averyears (from 1994/95
to 1999/2000), in spite of a malaria control prognae which was costing the state R82m in
1999 (at that time about US$13m, Rajendra Mahtrai) national malaria control manager,

pers. comm.) requires an explanation.

Statistics South Africa (Orkin 1999) cite an averagponential population growth rate of
0.024 per annum for rural communities in KZN foe feriod 1991 to 1999. At this rate the
population would have doubled over 30 years. Thmegntial growth rate of malaria on the
other hand has been around 0.206 per annum (seeefE@ for details). This translates into
an increase, over 30 years, of 400 times. Eveaptifation growth was higher in the early
part of the period, population growth cannot ac¢danthe strong long-term trend in malaria

cases.

The second obvious trend is the occurrence of &pid jumps’, such as in 1975, 78, 80 and
84, and more visibly in 1987, 93 and 96. In Figbu2the degree to which cases increased or
decreased compared to the previous season is sliomas calculated as the log of (current
season total / previous season total) or simpligddeg cases’. A high value corresponded to

an ‘epidemic jump’ in incidence.

The impact of climate

Epidemiological models of malaria describe the edterhich susceptible members of a
population become infected, and infected membersesmovering (Dietz 1988; Anderson &
May 1991). The reproductive rate jRlescribes the rate of disease propagation. VRRjile

above one the disease spreads; when it is belovherdisease declines. In a seasonal setting
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R, increases as conditions for transmission improaasing incidence to rise. At the end of

the season conditions deterioratg dBcreases and transmission ceases.

Several factors in this system are dependant ulpmate: mosquito abundance, survival and
biting rate, and extrinsic parasite developmenedrhtically, high-incidence seasons (and
epidemics) are most likely when the transmissi@sse is preceded by a warm and moist
winter (allowing greater mosquito survival and lolieg in winter, hence a larger starting
population in spring); if the preceding season waxy wet (a high water Table may lead to
increased pooling of the first rains and thus eadwailability of breeding sites); if the
previous season’s climate was generally more faldar(resulting in larger parasite and
vector populations); if favourable conditions pstsd for longer in the previous season
(resulting in a greater reservoir of infected peagtl the start of the transmission season); if
rains start or if temperatures rise earlier thammab (increasing early growth of vector
populations and earlier completion of extrinsicgsdtie development); if mean conditions
during summer are more favourable than normal éesing the rate of transmission); or if
warm and moist conditions persist later into autdhan usual (allowing transmission to

persist longer than usual). An epidemic may bet lldedy if these conditions are reversed.

Methods

Malaria case data for 1981 onwards were extracte®dZN province from the malaria
information system housed at the Medical Reseamin€il. These are confirmed case reports
submitted by the Malaria Control Programme. Foryiars 1971 to 1980 provincial data

from the National Department of Health were used.
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Cases were aggregated by annual season, a seasgpefticular year being defined as the
time from 1st July of the previous year to 30theJohthe current year. A measure reflecting
the changes in case numbers between consecutirgewasa defined as

delta log cases = logjy log(y,.,), or log (Y / Y.,),

where yis the seasonal case total for season t.

Meteorological data were obtained from three weathaions in Ingwavuma and Ubombo
districts (Figure 5.1). Rainfall data for the ftithe period were available from Makhatini and
Ndumu, and temperature data from Makhatini and M@aat Monthly mean daily maximum
temperature (Tmax) was calculated as the meanilgfrdaximums for each month. Monthly
mean daily temperature (Tavg) was calculated aawkeage of daily minimums and

maximums for each month.

The climate risk factors were summarised and caledlfor each season as indicated in
Table 5.1. Seasons were defined as follows: wimtdune to August; spring = August to

November; summer = November to March; autumn = MéocJune.

Spring indicatorsxs) were calculated using weighted means:

XS = (4% augt3X sept 2% octXnow) | 10 Wherex, ., IS the mean monthly temperature (maximum
or average) in C or monthly rainfall in mm for year t. This wasrsoto weight the mean in
favour of early spring values. Similarly, yearlyt@aon means, xa, were calculated, weighting
in favour of later conditions, i.€X,(a+2% apt 3 mayt 4% 00 / 10. The differential weighting
was intended to capture situations where suitaimeliions start earlier or persist longer than

normal, thus extending the transmission seasoathtdnds.
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Single variable linear regression analysis of lages and delta log cases was carried out
against each of the variables shown in Table Se&ryEsignificant variable was tested for
random walk using the Augmented Dickey Fuller (AD&3t (Dickey & Fuller 1979), and for
evidence of trend over the 30-year time period.lysiawas carried out using STATA

version 7 (Anon. 2001b) and SPSS version 10 (At©6A9b).

Since the temperatures of the previous season, sgnaotumn, and spring were all
significant in single-variable regression analyarsg since there was cross-correlation
between them, it was thought best to replace thgmansingle summary temperature
variable. To obtain the best summary mean, monémperatures were systematically
averaged unweighted over different contiguous fi@eods. Each combination was in turn
regressed against delta log cases. Starting wetldefinition for “previous autumn’(, ,,,, to
X.1.u), Months were added consecutively onto the stahti®period, up to and including
previous Octobemnx(, o). Correlation with delta log cases increased,hig@ca maximum for
the Jan-Jun period( ,,,t0 X, 5,), and decreased thereafter. Next, months weredadde
consecutively to the end of this period, up to enatliding current January,(.,). Again
correlation increased, reached a maximum for thealg-October periotk(; ;,,t0 X, o),
decreasing thereafter. The same procedure wasviEdlaising maximum monthly
temperatures, but the correlation between deltaésgs and mean temperature was stronger.
Mean monthly temperature during the pengd,,,to x, o, was thus established as the best

summary temperature variable.

Current season rainfall was better representeditrgict summer rainfall and was not used in
the multiple variable analysis. None of the remagrthree, i.e. rainfall in previous season,
preceding winter and current summer, were corrélatéh each other and were therefore

retained.
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The summary temperature variable and three randaiables were entered together into a
multi-variate linear regression analysis to deteetheir combined effect. Variables that were
non-significant in the combined model were removidtk final model contained summer
rainfall and the summary temperature indicator.rBegjon residuals were tested for serial
auto-correlation by constructing correlograms amahguting the Box-Pierce Portmanteau

Q-statistic (Box & Pierce 1970) for lags from 18gears.

For comparative purposes precipitation and tempegatata was also extracted from the
global CRU-TS2 time series supplied by the ClinRgsearch Unit (Mitchekt al2003).

This gridded data set is available by month forl1&02000, at a 0.5 degree spatial resolution
(approximately 50km). The grids represent interpoies of weather station data. Six pixels
overlap with the two districts of Ingwavuma and dtim. Precipitation, mean temperature
and temperature range data were extracted foradablese six pixels. A mean was calculated
for the six pixels. Mean maximum daily temperatwies calculated as mean temperature +

0.5*range.

Climate indicators were derived as with the weathation data, and regression analysis was
carried out. As before, a summary temperature aidiovas computed and, together with

summer rainfall, regressed against delta log dasasnulti-variate linear regression analysis.

Results

Several climate indicators were associated wittadet cases, but none were significantly
associated with seasonal case totals (direct etrdogformed). Table 5.2 shows all variables
from Table 5.1 that were significantly correlatedhwdelta log cases at the 5% probability
level. The two most strongly correlated variablesshown in Figure 5.2. The coefficients of

determination®) were relatively low, and even the most signiftcexplanatory variable only
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explained 28% of the total variance in the datae $limmary temperature indicator

(Figure 5.2) explained 36.4% of the total variationlelta log cases (= 30, p = 0.0004).

We found significant evidence against the null higesis of random walk for any of the
climatic variables, when applying the ADF testhe &eries, and no evidence of time trend
(Table 5.2). In the absence of evidence for a ti@ed any association with malaria case data

was therefore not simply an association of two ¢jtias that possess a long term drift.

The first multiple variable regression model inghglfour variables (three rainfall and one
temperature variable) explained 57% of the vanmiiodelta log cases. Two variables,
namely previous season rainfall and previous wirdggrfall, were no longer significant, and
were removed. In the final model, the summary tematpee variable (daily average
temperatures during preceding January to Octobggr(d total rainfall during the current
summer R) together explained 49.7% of the total variatipredicted delta log cases =
-10.649 + 0.468 + 0.00R (n = 31, overalP < 0.00001P of coefficientT = 0.002 and of

R=0.013).

There was no evidence of auto-correlation betweasans in the residuals of the final model
(Table 5.3). This shows that any temporal deperelbetween observations is explained by
the model, and standard errors of model coeffisian¢ not likely to have been under-

estimated as a result.

Regression diagnostic tests on the final modelaledeno evidence of pattern in the residuals
with fitted values (test for heteroskedasticRy0.96), confirming that regression modelling

assumptions had not been violated. The two vaalsed in the final model and the
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predicted delta log cases from this model weregioagainst observed delta log cases

(Figure 5.3).

The response delta log cases, as predicted frommdlel, was transformed back to the

predicted change in cases and multiplied with thgeoved previous season case totals:
Yi=Yer et

whereY, is the predicted number of cases for each seasadjtional on the previous

season’s observed casgsand the ratio of current : previous year’s casgspredicted from

the model (by exponentiation of fitted delta loges). The results (Figure 5.4) show that the

variability in the data series can be reproducedbr&ably well from the climate variables and

case totals observed during the previous season.

In the CRU-TS2 data analysis, only average tempegaturing the last autumn, and

maximum temperature during the previous seasorsamaner were significantly associated
with delta log cases (see Table 5.1). Correlatias higher when the summary temperature
variable was used. Of the rainfall variables onlgrent summer rainfall produced marginally
significant results. Correlation with the previaeason rainfall was also negative, but non-
significant P = 0.1). No CRU-based variable was significantlyretated with delta log cases

that was not also correlated in the station-basdal. d

When summer rainfall and the summary temperatuiiabla were regressed together, the
combined equation could explain 30.6% of total atawn; both explanatory coefficients were
significant: predicted delta log cases = -12.53558T + 0.0009R (n = 29, overall

P < 0.0087;P(T) = 0.015 andP(R) = 0.045).
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Discussion

Climate seems to be the main limiting factor of amial, restricting transmission both spatially
and temporally on a large scale (Craigal 1999; Tanseet al2003). Even at the small scale,
analysis of thepatial heterogeneity of malaria incidence in northern K&ieinschmidtet al
2001b) showed that case incidence in 1994/95 vgmifisiantly related to average winter
rainfall, average winter maximum temperature asd aiversely related to the distance of the
nearest mapped water body. It is therefore notrmimg that climate was also associated with

the generalemporalvariability of malaria transmission.

The fact that total seasonal case numbers werassotiated with climate firstly needs to be
viewed against the background of a highly contbiguation. For example, recently collated
prevalence data from Swaziland, which borders tudysarea (MARA/ARMA, unpublished
data) showed that prevalence dropped from aroufdt®80<10% when malaria vector control

was implemented.

Secondly, the malaria case totals display a stimmgrterm trend, over two orders of
magnitude during the past decade alone (582 case39pP, 34 364 in 2000). No such trend
was found in any of the meteorological indicatdfeder these conditions a lack of
association between seasonal case totals andieelvariables examined, is not surprising.
A study of four localities in the East African hilghds, where marked increases of malaria
incidence had been reported, also found no evidératehese were due to climate (Hzyal

2002a).

Against this background the strength of the coti@fia found between climate and
inter-seasonal variability of malaria as represgifgthe quantity delta log cases, is

noteworthy. The association between delta log casdsigh maximum temperatures in the
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previous autumn suggests that temperature lingtstmission at the end of the season and
conversely, that prolonged transmission occursxgwinseasonably warm autumns. The later
transmission comes to a standstill, the more irdastsurvive through winter, swelling the
reservoir that seeds the next transmission se&solunged higher temperatures also sustain

larval development, resulting in larger over-wimgrmosquito populations.

Temperatures during the preceding summer and dwspeimg were also significantly
associated with log delta cases, suggesting teatftact is a combination of high rate and
prolonged duration of transmission in the previseiason, as well as rapid growth of parasite

and / or vector populations in early spring.

The only way to explain the strong predictive vabfi¢ghe summary temperature indicator is
that temperatures over the entire period, i.e. fioetime of peak transmission in the
previous season all through winter, up to earlyngpmplay a role in determining the size of
the reservoir of parasites and /or mosquito veaorgiving and seeding the following season,

and consequently making an increase in cases likefg |

The dominant local vectoAnopheles arabiensi®hite 1974) breeds in shallow sun-lit
temporary pools formed by rain, by hoof printshet €dge of water bodies, or similar sites
(Gillies & de Meillon 1968). Availability of breedg sites during summer, when mosquito
development rate is highest, would impact moreotal /ector populations than rain during
the rest of the year when transmission rate is l@me mosquito development slower. This
may explain why summer rainfall was a better prediof delta log cases than total seasonal

rainfall.
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Winter rainfall was only marginally significant, édfailed to contribute significantly towards
predicting delta log cases in the combined mode dnticipated effect of moist winters
(enhancing mosquito survival during the dry morghd increasing the chance of an epidemic
surge in the following season) was therefore marat eclipsed by the effect of a wet

summer.

The negative correlation of delta log cases withgrevious summer’s rainfall can be
explained as follows: unusually high rainfall dgrithe previous summer would have been
accompanied by a greater increase in cases retatihe season before that. But a rise in
transmission is followed by a rise in immunity, wiireduces the chances of another
epidemic of the same magnitude following straigtéraThis phenomenon has been
described in terms of human vulnerability to epideniThomson & Connor 2001a). Signs of
the temporary acquisition of immunity in malarid¢eated populations of KwaZulu-Natal have
been previously observed (Kleinschmidt & Sharp 30@1s interesting that these data

confirm this statistically.

In Figure 5.3(c) it can be seen that in 13 out®&8asons, cases were correctly predicted to
increase, in 10/30 seasons case numbers weretbpmexdicted to decrease, and in 7 seasons
a decrease was predicted when an increase wayvetiservv. However, in years when the
direction of change was predicted correctly, thedmted magnitude of the change was not

necessarily accurate.

Figure 5.4 shows the outcome of applying the chamgases predicted from the model to the
previous season’s observed case totals. The risgsenumbers observed in 1987,1988,

1993, 1996, 1999 and 2000 for example, correspondtbdncreases predicted from climate
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data, although the predictions frequently overdrmaer-estimated case numbers actually

reported.

With regard to the seeming over-prediction in 12990 it must be added that case reporting
is known to have suffered greatly during this am&l previous one or two seasons; the great
influx of patients simply did not allow regular gagork to continue as normal. It is known
for example that thousands of confirmed cases frertain clinics were never incorporated

into the district case register.

It needs to be emphasized that, since the raidddd used in the analysis was data from the
current summer, the “prediction” shown in Figuré &. not a forecast in time. Whether actual
temporal forecasts can be achieved through longerareather forecasts, will be the subject

of further investigation.

Correlations of delta log cases with the CRU-TSate data were weaker than with the
weather station data. Many variables, including siemrainfall, were only marginally
significant, or not at all. The multiple variabkegression equation was significant, though it

explained substantially less of the overall vaoiaiin the malaria data.

As mentioned, the CRU-TS2 data represent intenoolsifrom weather stations, with each
pixel value being calculated from available stati@ta within a 450km radius in the case of
precipitation and a 1200km radius in the case anmrtemperature. In our study area pixel
values draw on data from 40 to 60 weather statigtisn a radius that includes the
Drakensberg mountains (10 mean annual temperature and +1000mm total annual
rainfall), the South African ‘highveld’ plateaux51C, 700mm), humid tropical Southern

Mozambique (25C, 700mm) and part of the dry Limpopo River valigg C, 400mm).
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We observed considerable discrepancy betweendtierstlata and the CRU-TS2 data,
particularly in precipitation, and particularly tihe seasonal means. Temperature data were
well correlated by month, but not by season. diésr that a global data set such as this,
prepared at a coarse resolution, would be suifablglobal rather than local applications

(Patzet al2002).

Given these facts, it is remarkable that some ettimate variables were correlated with
delta log cases, and that they were the very dreggptoduced the best results in the weather
station data. This strengthens our confidenceerotitcome of the analysis, suggesting that
observed associations between delta log casediaratecindicators were real and not

accidental.

Weather station data, it appears, provide bettiécation of local climate than the CRU-TS2
data, and should be used for local studies if als@l Another obvious reason for using
weather station data is that they are availableediately, whereas interpolated climate data
can only be obtained in retrospect. They requieeisp skills and resources to prepare and
their accuracy depends on how many weather stati@available within a reasonable

distance.

Conclusion

While the overall levels of malaria incidence inlKZould not be explained by climate, the
inter-seasonal variability was correlated with salvelimate indicators. As with most
retrospective observational studies, temporal ¢démce of peaks and troughs cannot offer
evidence of causal links. Specifically, in thiseahe link between a meteorological
measurement, such as rainfall, and malaria incelennot direct. Rather the two are

connected through a chain of biological processbg;h are non-linear and still ill-defined in
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practice. But the indicators were defined accordantheir expected role in transmission, and

the significant ones were thus plausible in terinbi® aetiology of the disease.

This paper, along with the accompanying paperstitates the risks involved with
over-simplified approaches which try to establitdtistical association between long term
health data and climate variability and / or climahange, without looking for possible

alternative explanations for observed trends.

Whether seasonal malaria incidence can be predittdvance, with sufficient accuracy and
time to help plan health care and control, remtorize seen. If the season-to-season variation
is indeed driven by climate, and the overall ldwehon-climatic factors, then the road to
malaria prediction has become a little clearerngjiang and accounting for non-climatic
determinants, which may alter or override the dpeeffect of climate, will be essential when

working towards a climate-based predictive system.
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Table 5.1 Climatic risk factors analysed against malaria ckda.

Risk factor Indicator

Larger reservoir of vectors / parasites
Wet preceding season Total rainfall during precedeason (July to June)

Warm preceding summer  Mean daily maximum / averaggperature in preceding
summer (November to March)

Prolonged high rainfall in Weighted average of rainfall (March to June)
preceding autumn

Prolonged high Weighted average of mean daily maximum / average
temperatures in precedingtemperature (March to June)
autumn

Transmission starts early

Water Table high Total rainfall during precedings@a(July to June)

Preceding winter wet Total rainfall during precedimigiter (June to August)

Preceding winter warm Mean daily maximum / averageperature during winter
(June to August)

Early spring rain Weighted average of rainfall (Aagto November)

Early rise in spring Weighted average of mean daily maximum / average

temperatures temperature (August to November)

Transmission unusually high
Wet summer Total rainfall in current summer (NovemtioeMarch)

Warm summer Mean daily maximum / average temperaturarrent
summer (November to March)

Wet season Total rainfall in current season (Juljutae)
Transmission ends late

Prolonged autumn Weighted average of rainfall (March to June)
rainfall

Prolonged high autumn  Weighted average of mean daily maximum / average
temperatures temperature curve (March to June)
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Table 5.3 Correlograms of the residuals of the regressionehofidelta log cases against
summer rainfall and mean maximum daily temperatdeesg preceding January to October.

Auto- Partial auto- Q-statistic
Lag correlation correlation Q-statistic  (P-value)
1 -0.1312 -0.1311 0.5695 0.4505
2 -0.0529 -0.0831 0.6653 0.7170
3 -0.0834 -0.1231 0.9128 0.8223
4 -0.2284 -0.3276 2.8383 0.5852
5 0.0696 -0.0431 3.0245 0.6962
6 0.0571 0.046 3.1547 0.7892
7 -0.0809 -0.2743 3.4276 0.8428
8 0.0185 -0.1074 3.4425 0.9036
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Figure 5.1  Three weather stations in Ingwavuma and Ubomboictist
northern KwaZulu-Natal. The inset shows the locatbthese two districts in
relation to the rest of South Africa. G.R. = gareserve.
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Figure 5.2  Total malaria case numbers recorded in KwaZulu-Natavince, South Africa
from July 1971 to June 2001 by month (light soiet) and aggregated by season (July to
June) (shaded bars); the exponential curve modetidtie seasonal data (bold solid line)
where total cases = 38.0733 * exp(0.2057x) andhe=season (year) minus 1970<0.828,
n = 30, p = <0.0005); the seasonal change in naataises (open bars) calculated as log of
(total case numbers in current / previous seasotal; summer rainfall (bold dashed line) in
mm; weighted mean daily maximum temperature duitiegoreceding autumn (dotted line)
and mean daily average temperature from precedingaly to October (light dashed line) in
C.
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Figure 5.3  Scatter plots (a) and (b) of the two variables usdte final model: (a) total
rainfall during current summer (November to Maralith regression model (dashed line)
where delta log cases = 0.001388 * rainfall — 0.663 30, f= 0.282, p = 0.003); and (b)
mean daily average temperature during previousosednuary to current season October,
with the linear regression model where delta logpsa= 0.574 * temperature — 12.632 (n =
30, = 0.364, p = 0.00004). (c) Scatter plot of prediote observed delta log cases where
predicted delta log cases = 0.001 * rainfall inthcga) + 0.463 * temperature indicator (b) —
10.649 (f= 0.497, p < 0.00001). The position of y = x (dakhee) and zero change in cases
(solid lines) are shown for visual purposes.
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Figure 5.4  Total malaria case numbers recorded in KwaZulu-Natavince, South Africa
from July 1971 to June 2001 (bars) aggregated &sose(July to June), and the predicted
number of cases (line), calculated though multigiythe predicted change in cases, as shown
in (c), by the case totals of the previous seasha.prediction is an estimate based on climate
but not a forecast in time; see the discussiomore detail.
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Abstract

Malaria transmission is a multi-factorial phenomenGlimate is a major limiting factor in

the spatial and temporal distribution of malariat, imany non-climatic factors may alter or
override the effect of climate. Thirty years of ritdg malaria incidence data from KwaZulu-
Natal province, South Africa, reveal strong mediama long term trends which were not
present in the climate data. This paper exploresws non-climatic factors that may have
contributed towards the observed trends. The dpusdoit of anti-malarial drug resistance,
available information on HIV prevalence, cross-lsrdeople movements, agricultural
activities, emergence of insecticide resistancetheaase reporting system are reviewed and
their potential effect on malaria transmission exsud. Single-variable linear regression
analysis showed significant association betweesosed case totals (log transformed) and the
measured level of drug resistance (log transforréd) 0.558, n = 10, p = 0.013) as well as
relative measures of HIV infection since 199050.846, n = 11, p = 0.001). The other
factors appear to have affected the level of mal@@nsmission at certain periods and to some
degree. The importance of surveillance and inclusionon-climatic variables in analysis of

malaria data is illustrated.

Introduction

Since the late 1940's malaria has been strictlyrolded in South Africa. Indoor residual
spraying of insecticides, periodic larval controtldreatment of known infections have
restricted malaria to the north-eastern bordeioregilnfection rates today are well below
those observed before systematic control was imgiéead (Swellengrebel 1931; Le Suetir
al 1993). Up until the early 1980’s recorded casdsvilmZulu-Natal (KZN) province
remained low, but since then case numbers have eiggonentially. The trend was
particularly pronounced in the 1990’s: cases ingddrom about 600 in 1991/92 to over

30 000 in the 1999/2000 season.
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Several possible causes for this trend have beeiopuard: climatic determinants,
agricultural developments, drug resistance, crasddy movement of people between KZN
and Mozambique, insecticide resistance and changbs malaria case reporting process
(Sharpet al 1988; Sharp & Le Sueur 1996; Durrhegtnal 2001). Intrinsic factors, related to
host-vector population dynamics, may additionalyse periodicity in transmission over
longer periods (Hagt al2000a). The difficulty lies in teasing out and quiying the

contribution of various climatic and non-climataxctors (Rogerst al2002).

In an effort to understand the dynamics of theatisen South Africa, a 30-year database of
monthly malaria case data in KZN is being analysethe associated paper rainfall and
temperature indicators were analysed in conneetitinthe observed trends in malaria
incidence (Craiget al2004b), while this paper explores possible lingsMeen malaria case

numbers and some of the non-climatic factors marticabove.

Non-climatic determinants

Drug resistance

Resistance dPlasmodium falciparuno chloroquine was confirmed in all southern Adinc
countries by 1985 (Deacat al 1994). In KZN a smali vitro drug resistance study indicated
88% resistance in 198A£17) and 100% in 198&€14) (Freeset al1988). Drug treatment
failures were increasing markedly (Hansford 19&9)h&t in February 1988 the first-line drug
was changed to sulphadoxine / pyrimethamine (SP)eSistance was low on introduction
(Hansford 1989), but soon started rising, reachiogind 80% in 2000 (Bredenkarapal

2001) the national malaria advisory group recomredrah alternative drug policy and co-

artemether was introduced as first-line treatmer@001.
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In Mpumalanga Province (MP) chloroquine resistaseesloped much later. Only isolated
cases of treatment failure were reported in 19&h@fbrd 1989) and only started rising in the
early 1990's (Krugeet al1996). Two smalin vitro studies showed 71% and 86% resistance
in 1993 and 1996 respectively (Deaaral 1994; Van Nieroget al1996). By 1997n vivo
resistance had reached 48.4% (Frestsd 2001). These findings again influenced policy and
SP was introduced as first-line drug in 1997. Adtiae study found SP resistance of 4% in

1998 (Govereet al 1999), which then increased to 6% in 1999 (Maletza 2001).

In Limpopo Province (LPn vivo chloroquine drug resistance was 40% in early 89&ese

et al2001) and SP was introduced in the 1998/99 masaason.

Evidence oin vivodrug resistance in South Africa has been sumnthiisEigure 6.1. The
‘treatment failure’ data published by Hansford (2P&8nd Krugekt al. (1996) are effectively
non-standardiseith vivo studies, based on post-treatment follow-up of icor&@d blood smear
positives, not at fixed times, but instead aftéo 2 weeks as part of routine active

surveillance. Exponential curves modelled on tiséstance data are also shown.

In all three malarious provinces drug policy changere accompanied by reduction in
malaria incidence: in KZN malaria, following intrection of SP in February 1988

(Figure 6.2), seasonal case totals were halvecklyseason. Cases were reduced in 1997 in
MP and in 1998 in LP, each time after introductidrSP. Following the introduction of co-
artemether in KZN after the highest incidence nialseason in 1999/2000, cases were
reduced to less than half. However, drug policy natsthe only change that was introduced

in 2001 (see below).
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HIV / AIDS

HIV / AIDS has spread rapidly in South Africa sirtbe early 1990's. According to annual
national surveys of women attending public antdraitaics, HIV sero-prevalence in KZN
increased from 1.6% in 1990 to 36.2% in reportsaiAr2004c; Anon. 2007d). Even though
the data are (possibly biassed) estimates of H&¥alence in a particular population group,
the steep upward trend is clear (Figure 6.3). Peevalence is somewhat lower in MP and

much lower in LP.

Early studies failed to detect significant relatibips between malaria and HIV / AIDS
(Muller & Moser 1990; Greenbergt al1991). Recent studies however have demonstrated
clear association between HIV infection and malprevalence in pregnant women (Steketee
et al1996; Verhoefiet al 1999) placental malaria infection rates and newlaiection
(Steketeeet al 1996), resulting in retarded foetal growth angéss HIV infection was also
related to severe malaria, hospitalisation and feeblood transfusion in small children
(Kalyesubuleet al1997), higher post-neonatal mortality in infantsose mothers were
co-infected with malaria and HIV (Blolaret al1995) and higher risk of clinical malaria in
adults (Whitworthet al2000). Higher parasite densities were found in HOgitive adults
(Whitworth et al2000) but not in children (Kalyesubugaal 1997). Malaria infection in turn

has been found to increase HIV viral loads (Hoffreaial 1999).

Cross-border movement

Malaria in KZN is primarily a border problem, asndae seen from maps of the area (Sharp &
Le Sueur 1996; Kleinschmidt & Sharp 2001). The isegace of malaria in the KZN border
areas, in the face of intense local malaria contvas been attributed to immigrating malaria
carriers. Indeed, people cross the border betweath@\frica and Mozambique daily for

various reasons (Sharp & Le Sueur 1996) and treerarening between Ndumu and Tembe
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game reserves on the border with Mozambique -Migahgweni corridor” - regularly reports
the highest malaria incidence in KZN. Across thedieo opposite this corridor, malaria
prevalence in children was around 89% (Sheral 2003). People entering KZN at this point
therefore come from or pass through a hyper-endarei. In 1996 58% of people coming
across the border were infected (J. Mthembu, Héathtaria Control, KZN). Being mostly
non-symptomatic, they do not present at clinicsyai@ untreated for longer and thereby

contribute significantly to local transmission.

Figure 6.4 shows the number of cases reportedgisating from Mozambique, or simply as
‘imported’ with no origin specified. Most of thesaspecified ‘imported’ cases probably also
originated from Mozambique, since cases reporteafiggating from other countries
(including Swaziland) are essentially negligiblexdér-reporting of imported malaria is

probable, due to the fear of deportation in the-8onth Africans.

Figure 6.4 also shows the number of cases thahatay in South Africa, and the proportion
of importedvstotal cases. From 1986 to 1992, 20 to 40% of cases imported. This period
coincided with the final years of war in Mozambiqui@e influx of refugees was considered a
major reason for the increase of cases aroundinmés(Sharpet al 1988). Since the early
nineties however, imported case numbers have rema@round 6% of the total. This surely is
an important contribution towards the reservoimééctions, but can probably not be blamed

for the steep upward trend during the 1990's.

Agricultural developments
In KZN 90% of malaria cases are usually reportedhfthe two northernmost districts,
Ingwavuma and Ubombo, which were historically hypedemic (Swellengrebel 1931; Anon.

1938). These districts were divided into contraltses over 20 years ago and case data have
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been spatially dis-aggregated since then (Share &leur 1996). For most of this period the
Mamfene control area, (£60km South of the bordentrtbuted on average only 3% (O -

6.7%) to the total malaria cases in these twoidistrin 1987 and 1988 it increased to 18%.

The Balamhlanga swamp, running along the centthisfarea, was a wetland that dried up in
winter. However, in 1984/85 water dumping from aigation scheme turned it into a
permanent swamp, inundating the periphery and gnoyiideal winter breeding sites for the
local vectors. The subsequent increase in malaoiapted intensive larviciding in this area,
in addition to routine house spraying, and als@a¢gpraying of replastered houses, which
brought the local epidemic under control. The situawas finally resolved in 1991 with the

construction of a retaining dam which preventethier water spillage (Shagt al1993a).

Insecticide resistance

Dichloro-Diphenyl-Trichloroethane (DDT) was sucdedlg used for indoor residual spraying
in South Africa since 1948 (Shagp al1993b). For several reasons, including human breas
milk contamination, community objection and intdraaal pressure (Le Sueat al1993;

Sharpet al1993b), DDT was replaced by synthetic pyrethroids.

In 1999 four members of thenopheles funestugoup, once eradicated, were found resting in
sprayed houses in northern KZN. Between 11 and @3R%6 25% in first generation

offspring) were resistant to permethrin. Thougtydaiv individuals were collected, the
sporozoite rate was 5.4%. These mosquitoes wesdrtlialved in local transmission
(Hargreave®t al2000). As a result vector control policy changgdia and in the winter of

2000 the KZN control programme re-sprayed all heusehis region with DDT.
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An. funestusdue to its habit of breeding in permanent watetiés rather than temporary
puddles (Gillies & de Meillon 1968), and its stromgference for man, tended to be
associated with intense and all-year transmissgorb large-scale control. Since its
eradication in this province, transmission has beanh reduced, more seasonal, and by the
more generalist vectdkn. arabiensisOne may thus expect the re-emergenc&mffunestus

to be followed by increase in winter malaria. Hoee\as the control programme responded
immediately by reverting to DDT, it is not possilolew to quantify the impact that the re-

emergence of this species had on malaria incidence.

Case reporting

In South Africa active malaria surveys are carpatias part of the malaria control operations,
to reduce transmission by treating asymptomatigerar Passive reporting covers only
patients with clinical symptoms presenting at pzibkctor health facilities. In a population

with low immunity, such as the South African popigda most infections lead to clinical
symptoms. Nevertheless, over the past 19 yeansefctietected cases have exceeded passive
cases on average ratio by 2:1. That the popul&iahleast partly immune has been
previously noted (Shargt al 1988; Kleinschmidt & Sharp 2001). Spatially digyegpgated

data also reveal that the proportion of passivebprted cases was lowest in high-incidence

areas (unpublished data).

In a low transmission environment one would exgestirge of clinical malaria during
epidemics as populations with little immunity agguinany new infections. This can be
observed in the KZN data (Figure 6.5). Indeed pituportion of passive to total cases is
clearly correlated with delta log cases (R2 = 0p46,0.0014, n = 19), i.e. the more cases
increase with respect to the previous season,i¢irehthe proportion of passively detected

cases. This could suggest that reporting has lessmonably complete or that resources for
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active surveillance are exhausted during epidemimgs, and active surveillance therefore

suffers.

Analysis and Results

Reported malaria cases were aggregated by anrasrsea season for a particular year being
defined as the time from 1st July of the previoearto 30th June of the current year. A
measure reflecting the changes in case numbergberteonsecutive years was defined as

delta log cases = log] - log(y,,), or log , / V...),

wherey, is the seasonal case total for season t.

Log case totals and delta log cases were analgsedsa all drug resistance data (chloroquine
and SP) and HIV prevalence, using simple linearaggjon analysis. In years for which more
than one drug resistance result was availableyarage was calculated, weighted by sample

size. SPSS software (Anon. 1999b) was used faauthéysis.

Log delta cases were not significantly associatikl erug resistance or HIV prevalence but
log cases were associated with both drug resisi@ahegd.558,n = 10,P = 0.013) and HIV
prevalencerf = 0.846,n = 11,P = 0.001). Unfortunately there were only two yeaten both
HIV and drug resistance data were available, sabooeal regression analysis of HIV and

drug resistance, using raw data, was not possible.

Discussion

The association of case numbers with drug resistaray be explained through the
contribution to transmission of persistent infeaion treated individuals. In 1984 only 1.2%
of hospital-treated cases remained positive onvelip (Hansford 1989). In 1985 9% were

positive on first follow-up, 5% remained positivitest a second curative dose of chloroquine.
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By 1987 3% still remained positive after having méeated four times. Though these
persistent infections are not counted again, teeyain in circulation for a number of extra

months, increasing the parasite reservoir, thuslating transmission.

Several authors have also observed that patiedis 8P treatment harbour an excess of
gametocytes in their blood compared to other treatsn(Roberet al2000; Bredenkamet al
2001; von Seidleiret al2001). Where SP is used exclusively such excesgetgayte

production must further accelerate transmissiortjquéarly of resistant strains.

The strong association of the trend in malariacasth HIV prevalence is note-worthy. It is
reminiscent of the documented HIV-related tubersisl¢TB) epidemic (Wilkinson & Davies
1997). However, since immunity does not prevergdgtibn of malaria (Molineaux 1988),
why have there been more reported cases? Immursty affect severity of disease
(Molineaux 1988), yet the current data are noticdihcases, but actual infections detected
through active and passive surveillance. So whylevoase numbers increase with HIV

prevalence?

Loss of immunity reduces recovery rates (Molinea888), so HIV infection and drug
resistance may be working together, affecting regpfrom infections with resistant strains.
In the case of an immune system weakened by HIVi paetial resistance in the parasite is
bound to result in recrudescence, while a healtingiine system may rid the body of low
levels of surviving resistant parasites after tre;tt. Thus as HIV prevalence increased, the
effect of drug resistance may have become worsth ive additional effect of increased
gametocyte production following SP treatment, thtesee effects may have worked together

to create the exceptionally high incidence in #ite 1990's. That the malaria upward trend
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was strongest in KZN, which has the highest HIWplence in South Africa, and where SP

drug resistance was probably above 50% by 199gastgpthis argument to some extent.

Another possible factor is that loss of immunitgda HIV may lead to larger parasite loads,
which result in greater infectiousness to feediagtors, thereby increasing transmission.
Increased parasite loads are also more easilygiggdy routine microscopy, which may

miss low-level infections in semi-immune carriers.

How and to what extent HIV infection impacts onteedoorne diseases certainly deserves
further attention. It is reasonable to accept tiwdlh HIV infection and drug resistance
contributed significantly to overall malaria incite in KZN. Another long-term data series

of malaria admissions available from Kericho (Shegikal 2000), reveals a similar
exponential increase in malaria case numbers dtlied990's. The authors offer the spread
of drug resistance as explanation for the trendpbthaps this was exacerbated by the spread

of HIV at the same time.

The impact of vector resistance to synthetic pyoetls, and the re-invasion of the highly
anthropophilicAn. funestuslefinitely contributed towards transmission in 2@2éhd 2000
(Hargreave®t al2000), but there is insufficient data to analysedxtent of the impact. It
remains only an interesting observation that in12€8se numbers were dramatically reduced
immediately after indoor residual spraying was edpe with DDT, even before the new drug

had been introduced.

One problem in this data set was the co-incidehcifferent explanatory variables. In the
late 1980's imported malaria and chloroquine desijstance peaked simultaneously and a

local epidemic occurred due to agricultural praectia the 1990's HIV infection and SP
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resistance emerged simultaneously and in additidm @as replaced with pyrethroids in

1996. Finally, in 2000/01 malaria incidence deceeasubstantially following re-introduction

of DDT for insecticide spraying, introduction ohaw effective anti-malaria drug, and
implementation of large-scale vector control in temn Mozambique (Shaet al2003) as

part of the Lubombo Spatial Development Initiat{iz&DI). The relative importance of each
variable can only be inferred if long time seriésnalaria case data and explanatory variables
are available, and perhaps not even then. So tideon is not a lack of possible

explanations, but the abundance of highly plausibles.

The recent decrease in malaria has been subsi&ases reported to the Department of
Health in KZN were down to about 17 500 in 200Ifrover 40 700 in 2000, and have been
reduced further to 3500 in the 2002 season. Thedt seductions were achieved in the face of
high HIV prevalence is extremely encouraging. TAmgtocidal action of artemisinin
compared to SP (von Seidleahal2001) surely helped to reduce transmission toramum,

and forms an additional intervention for effectoantrol.

Cases also decreased in MP, but only by about @¥ir@ operations in this province
continued as before. But because MP only partiadtglers the LSDI area, malaria control in
Mozambique did not seem to impact this provincea8land, which borders completely on
the LSDI area, saw a 65% reduction in malaria iectk, even though malaria control in this
country also remained unchanged (Shetrpl 2003). In LP, which does not adjoin the LSDI
area, cases have continued to rise. Thereby theraitt cross-border impact of large-scale

control is well illustrated.

The combined evidence may help unravel to whatngxdach factor contributed towards

reducing malaria incidence. The trend in casestkR®02 will give further insight, as drug
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resistance in KZN will have returned close to z&vbile HIV prevalence will remain at very

high levels for some time even if large-scale agtioviral treatment becomes policy.

Regular surveillance of important variables is @udn Sough Africa research has been
driving policies on drug use and vector contraiha past, and is now also beginning to
impact at a regional level. This is a healthy trémat needs to be maintained and that needs to

become mainstream practice elsewhere in Africa.

Conclusion

In this study longer-term trends in malaria incickeimave been found to coincide with, and -
where such analysis was possible - to correlatie Mitels of drug resistance, HIV prevalence,
trends in indoor residual spraying and insecticetgstance, among others. The effect of

climate could be seen in the inter-seasonal vanah malaria cases (Cragj al2004b).

The conclusion that the rate of transmission, whrargsmission is controlled, should be
subject to the effectiveness of these control nteasis not unreasonable or surprising. In the
same vein, one may expect stronger correlationdetwnalaria variability and climate
variability where, firstly, climate is marginallygable for malaria transmission, or suitable
for brief periods only, and secondly, where thauraltstate has not been greatly altered by

malaria control.

Malaria transmission is a highly complex and dyragystem. Nevertheless it was possible to
explain incidence patterns in retrospect, at legptirt. Obviously one can only account for
factors for which good long-term data are availablds underlines the importance of long-
term surveillance, including surveillance of thee@ge and effectiveness of control

interventions.
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Figure 6.1  KwaZulu-Natal province: chloroquine resistance tirgant failure (solid
square) (Herbstt al 1987; Hansford 1989) and chloroquinevivo resistance (solid triangle)
(Freeseet al2000) with the modelled curve (light solid lin&);vivo sulphadoxine-
phyrimethamine (SP) resistance (solid circle) (Hams1989; Freeset al2000; Bredenkamp
et al2001) with its modelled curve (heavy solid lingpumalanga province: chloroquine
resistance treatment failure (open square) (Hasf689; Krugeet al1996) and chloroquine
in vivo resistance (open triangle) (Freesel 2001) with the modelled curve (broken lini@);
vivo SP resistance (open circle) (Deaatral 1994; Govereet al 1999; Mabuzat al2001).
The vertical dashed lines indicate drug policy gemnin KZN from chloroquine to SP (1988)
and from SP to co-artemether (2001), the dottedlihdicates change from chloroquine to SP
in MP (1997).The shaded area graph shows monthlgrraaases in KZN. The modelled
curves are as follows: for chloroquine resistamc€ZN y = 1.7864 -1.7178+ 0.738&?
wherex is the year minus 1980 (n = 1170.675, p = 0.004); for chloroquine resistance in
MPy = 0.0106 * exp(0.5044 wherex is year - 1980 (n = 8= 0.965, p < 0.0005); for SP
resistance in KZIy = 1.163 * exp(0.39 wherex is year - 1987 (n = 37= 1, p = 0.002).
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Figure 6.2  Malaria case numbers in KZN reported by month dufii87 and 1988 (bars).
The arrow indicates introduction of sulphadoximpgrimethamine and the associated
reduction in cases.
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Figure 6.3  HIV sero-prevalence in women attending public aatehclinics in
KwaZulu-Natal (open bars), Mpumalanga (shaded tmard)Northern Province (solid
bars), South Africa.
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Figure 6.4  Number of malaria cases reported in KwaZulu-NasabfaMozambique origin
or ‘imported’ with unspecified origin (solid baripa of ‘local’ or ‘inconclusive’ origin
(shaded bar), and the ratio of all imported toltotanber of cases reported (line).
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Figure 6.5 Total number of malaria cases reported in KwaZuliaNby season (open
bar); number of cases reported from passive slaweg, i.e. patients reporting to clinics
(closed bar) and the ratio of passive to total £§lsee).
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Abstract

Introduction

Inter-annual variations in malaria incidence refleeterogeneities in both climatic and
non-climatic, particularly control-related facto8outh Africa is situated on the southern
fringe of the distribution of malaria in Africa, whe the relative importance of variations in
climate, and of non-climatic factors (such as amtiarial drug resistance) in determining

spatial and inter-annual patterns in incidence len unclear.

Methods

Monthly malaria case records, aggregated intowdixmovincial regions and by malaria
season (July to June), and calibrated by total ladipn, were analysed against four potential
risk factors using negative binomial autoregressioelels allowing for spatial and
inter-annual correlations. An initial model (A) witsed to data from 1981/82 to 1998/99 and

validated against data for 1999/2000 to 2004/05e¢ond model (B) was fitted to all data.

Results

Model A did not predict well when forecasting. Aotidns during the validation period were
both inaccurate and uncertain. In model B summniafaly annual mean temperature (which
had been identified as effective climatic predistior a related study focussing on KwaZulu-
Natal), and drug resistance were significant ptedscof malaria incidence. Major changes in
drug resistance levels occurred late in the stadlipd, and drug resistance was non-

significant in model A.

Conclusion
Temporal patterns in malaria incidence reflectataoins in the effectiveness of control, which

vary as a result of the emergence of drug and ficsde resistance and policy changes.



Chapter 7 - Incidence in South Africa: Spatial dremporal Variation 133

Therefore simple climate data driven malaria fostiog systems are not very useful unless

they incorporate factors that are proxy for thediff’eness of malaria control.

Introduction

South Africa is situated on the fringe of the digition of malaria in Africa, which is
concentrated in the tropics (Craggal 1999). Fringe areas tend to be epidemic and case
incidence in South Africa shows substantial intemaal variation. It has been suggested that
inter-annual variation in malaria incidence mayibked to climatic variation on an inter-
annual time scale, and possibly to the EldNSouthern Oscillation (ENSO) (Mabasbal
2006a) and climate change (Bouetaal 1994). This has further led to suggestions thatin
annual climate data, satellite data, and the ENf8I@x, could be used in epidemic-prone
areas to give early warning, potentially helpingliemanagers to plan interventions (Hgy

al 1998; Thomsort al2000; Thomson & Connor 2001b; Mabasal 2006a).

The current malaria risk areas in South Africaespnt only a fraction of areas where climate
is suitable for malaria, mainly as a result of imsi®e long-term malaria control using indoor
residual spraying (Le Sueast al1993; Mabaset al2004). Currently malaria is limited to the
North-East border regions, in the provinces of KulaANatal, Mpumalanga and Limpopo.
Variations in malaria incidence within the remagendemic areas are thought to reflect not
only heterogeneities in climate but also effectsnajration, drug and insecticide resistance,

and agricultural practices (Shagpal 1988; Sharp & Le Sueur 1996; Durrheétnal 2001).

We recently examined how these factors interadetermining patterns of malaria in
KwaZulu-Natal (Craiget al2004a; Craiget al2004b), but so far no analysis has considered
the contributions of these different factors to ttis& of malaria in the whole endemic part of

South Africa (that is, areas with autochthonousama). We have now assembled a
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comprehensive data set of case incidence dathdorears 1981 to 2005, for the three
endemic provinces. We examined both spatial angdeah patterns in annual incidence and

the extent to which these can be explained by timaend non-climatic factors.

Methods

Study area

South Africa is a country of widely varied topogng@and environment. It can be bisected into
a dry western half, with <500mm rain per year, anmdoist eastern half, with annual rainfall

of 500 to >1000mm (Schulze 1997). Most of the coufdrms a plateau that lies above
1000m altitude (Anon. 1998b), which is too cold fioalaria at these latitudes (22 to 35
South). The plateau peaks in the centre-East dl@drakensberg mountain range, dropping
off steeply towards the south-eastern coast-lir@engradually so towards the North and
West. The southern and western coastal areas@osld and dry to allow malaria
transmission, so that malaria is limited to themjamoist, partly sub-tropical and low-altitude
“low-veld” and the mid-altitude “middle-veld”, algnthe eastern seaboard and the north-

eastern borders with Mozambique and Zimbabwe.

The country is divided into nine provinces, thréevhich are malaria-endemic. Each

province is sub-divided into districts, which ane administrative units for which population
and malaria control data are available. The pr@srtave recently been organized into
political units termed municipalities with boundegithat are sometimes misaligned with
those of the districts (Figure 7.1). For the pugpofkthis analysis, the district-based data were
aggregated into six regions whose borders corresppproximately to what are known as

“Type C” municipalities.
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Malaria data

In South Africa malaria has been notifiable sin@8a. (Sharget al 1988) though early data
have been lost. The health system aims to detecy @vfection rather than clinical cases

only, through definitive diagnosis, via blood smearapid diagnostic test, during passive and
active surveillance (Shast al1988; Kleinschmidet al2002). There is a relatively good
spread of health facilities, including hospitaléics and mobile or malaria clinics. Based on
the 1996 census enumerator areas, and current fi@eility data, the proportion of the
population in the analysis regions who live witbikm of a health facility respectively range
from 52% in region A (arguably the most rural ar@a®0% in region C. The proportion of
people who live within 10km of a health facility 83 to 99% in regions A to E and 78% in

region F.

The provincial malaria control programmes employeber of epidemiological surveillance
teams consisting of a field officer and severdtfessistants, also known as malaria agents.
These teams follow up malaria cases diagnosedddthifacilities, private practitioners or
malaria agents. The purpose of the follow-up islémtify the probable source of infection, to
find non-symptomatic malaria carriers by takingdagemears from all people staying with the
patient, neighbours and immigrants, to identifygiole vector breeding places for larval
control, to identify possible outbreaks and clustgof cases via special or mass surveillance,
to conduct health education in the community asd & assist in the mapping of malaria
cases as well as data collecting during specidietisuch am vivo studies for monitoring

drug efficacy.

Confirmed malaria cases, presenting at healthitiasilor detected by active surveillance, are
recorded on standard report forms which are cateat one of the four provincial malaria

control centres in Nelspruit (Mpumalanga), Tzan@émpopo), Jozini and Richards Bay
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(KwaZulu-Natal). Here they are entered into a Méard Access-based national malaria
information system developed for data entry antiglaralidation. Electronic data are then
sent to the Medical Research Council for furtheaning and collation, and to the national
malaria control office at the Department of HeatthPretoria. Until the mid-1990's data were
entered from the report forms into a variety of poer programmes. These have since been

standardised and added into the malaria informatystem.

Malaria case records are available by districtlandieek (using the date of the blood test) for
KwaZulu-Natal from 1992 onwards (data by montharailable from 1981). Weekly malaria
case data for Mpumalanga are available from 198&¥ fer Limpopo from July 1986. In all

but 0.5% of cases the age has been reported.

In KwaZulu-Natal and Mpumalanga most cases wererte@ in a small number of districts,
while in Limpopo cases were distributed over a waea, though incidence was generally
lower. Since 1992, 95% of all cases were reporiazhe of the analysis regions shown in
Figure 7.1. Of all reported cases, 72% also reddte presumptive location of the source of
infection. In 79% of these the presumed sourceidistas the same as the reporting district.
In the present analysis the cases are assignad thdtrict in which they were reported, rather

than the district in which they are presumed toehaniginated.

Population data

The mean population throughout the study periodessisnated from the data of two
censuses of 10 October 1996 (Anon. 1999a) and 1db&c2001 (Anon. 2003a) for each
analysis region, by assuming a constant growthamatieprojecting both backwards and
forwards in time. The populations assigned to €aty#June period were calculated as the

geometric mean of the estimated weekly populations.



Chapter 7 - Incidence in South Africa: Spatial aremporal Variation 137

Drug resistance data

Available drug resistance data for South Africaeveaviewed previously (Craigt al2004a).
Drug policy is decided at provincial level and #tedy period included the first-line drug
policy change from chloroquine (CQ) to sulphadoxégeamethamine (SP), and then to

artemisinin combination therapy (ACT) (Table 7.1).

Climate data

Daily rainfall, and minimum and maximum temperatdata were obtained from the South
African Weather Services (Anon. 2007c). Thoughidyfdense network of weather stations
exists, only few currently operational stationséngenerated both temperature and rainfall
data for the entire period covering the malariadAfter careful investigation, the best
available, currently operational station in eachama region was selected to represent the
region (Figure 7.2). Data gaps were filled usintadeom the closest available stations (filler
stations). Table 7.2 shows the main, currently ajey stations representing each region, the

filler stations, their distances from the mainisias, and the dates of the data gaps.

Rainfall, being a sporadic event, is not well clated on a daily basis even between points in
close proximity, so missing days were substitutéd Viller station data. This was done
because some of the data gaps occurred in thesuaimer rainfall period, and because the
rainfall gauge network is quite dense, a suitatdé® could usually be found nearby for the
required time gap. Daily temperatures on the dtlaed are strongly correlated even over long
distances. Consequently the temperature-recordatigiss are more widely spaced. Filler
stations were only available between 50 and 100istamt, and auto-regressive integrated
moving average (ARIMA) regression models in STAT&ONn. 2001b) were used to estimate

missing data.
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Most of the data gaps were minor, involving dayd aeeks, or a month here and there. In the
rainfall data a one year gap in Messina and a temtimgap in Phalaborwa had to be filled
from stations 18 and 30km away respectively. Thefah series for region B comes from

three successively operating stations around Natsprfew kilometres apart. The most
serious case of missing data concerned the tenuperddta in Nelspruit, which had to be
inferred from three other stations for the entirst half of the study period, via ARIMA
regression based on the second half of the pekiadhe year, and an 18 month gap in
Messina and Phalaborwa respectively were the dhlgranajor temperature data gaps (Table

7.2).

Regression analysis

Given the over-dispersed nature of the case datmtive binomial regression was used to
analyse risk factors for malaria incidence, allayviar the overall patterns in space and inter-
annual variation. The recorded malaria cases wggeegated into 12 month periods starting
in July and ending June, to avoid splitting th@sraission season. The corresponding total
population of the region was used as a rate midtipThe logarithm of the incidence rate
during the season (July to June) was then modafidie sum of terms in each of the risk
factors, comprising mean temperature, summer fharid predicted drug resistance
prevalence (Table 7.3). These factors had emerged@ortant predictors of temporal

variation of malaria incidence in KwaZulu-Natal &iyet al2004a; Craiget al2004b).

To estimate drug resistance an exponential growthecwas assumed in the resistance rate
during the period of use of each drug. Separateesurere fitted to the data for each province
where sufficient data were available, using noedinleast-squares estimation (nl command)
in STATA (Anon. 2001b). The drug resistance wasljated for timet as follows:

predicted drug resistance i ;)
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where ,and ; are constants specific for each drug/area cunatt,as the introduction date

of the drug.

Because of sparse data, CQ resistance was assorodidw the same dynamics in
Mpumalanga and Limpopo (the samgand , but different introduction dates were used).
The SP data were combined for all three provinbesg resistance against ACT has been

assumed to be very low; a constant value of 0.5%usad.

A hierarchical Bayesian model was fitted using alda chain Monte Carlo (MCMC)
algorithm in Winbugs (Lunet al2000). Case¥ in regioni and yeat were assumed to
follow a negative binomial distributior, ~ NB (p,, r) with ratep, and the over-dispersion
factorr. The ratep is related to the average incidence raté the negative binomial

distribution and the dispersion parameter r a®vat

Pe=r/(r+ )

The following regression model was used to estirttegenean , for each regiom and yeat:
log( ) = log(population sizg + ,+ ,(summer rainfall)+ ,(annual mean
temperaturg)+ ,(drug resistance prevalenge) ; +
where .. , are the regression coefficients of the co-varjatethe spatial random effect for
regioni, and , the temporal random effect for ygaNormal distributions were assumed for

coefficients .

The random spatial effectswere modelled by a conditional autoregressive m(ci&R) by

assuming that;'s for region are independent (conditional on the neighbourd)reormally
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distributed, with a mean equal to the mean spatfal:tsj_i of all neighbours of and

variance ?inversely proportional to the number of neighbaurs

| _i~NormaI(/'_i, 2In)

The random temporal effectswere assumed to be independent for each yeari{mmad on

the previous year) and normally distributed, Wiutmearﬁ/t equal to the mea;yt_l of the

previous yeat-1 and the temporal correlatiorfactor:

2
SWO

1- r?

.~ Normal ( ,, ?),t=2,...Tand , ~ N(O, )| | <1.

The variance of the first year was based on thawee estimated for the rest of the time
series. A Uniform U(-1,1) prior distribution wasrgidered for and vague inverse gamma

distributions were assumed for varian@,% ,SW2 ,S‘W20 and fedibpersion factar.

The model was initially fitted only on the data tbe period of 1981/82 to 1998/99 and
validated by comparing the predictions for the eaas1999/2000 until 2004/05 with the
observations for these years (Model A). Subsequémtl model was also fitted on all data
(Model B). Both models were run for 800 000 iteyva. Convergence was confirmed using
the Geweke and Heidelberger/Welch convergenceite&®A (Smith 2005). The agreement
between the predicted median log incidence frorh @a@del and the observed data was

assessed using the concordance correlation ceeffiCi.) (Lin 1989; Lin 2000).

Results

The observed and unsmoothed malaria incidencevatea 13 year period (Figure 7.3) was

highest around the North-eastern border of Soutlt&fthe areas adjoining southern tip of
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Mozambique reporting the highest incidence. The&®owith Swaziland experiences very
low incidence, and intermediate incidence is reedralong the borders with Zimbabwe and

Botswana. The area of the Kruger National Parkaheasry low resident population.

Region A, roughly the “Type C” municipality of Umihyakude, contains three districts that
report 90% of all KwaZulu-Natal cases (65% fromvilaguma, 20% from Ubombo 5%, from
Hlabisa, listed from North to South). Region B, ghly Ehlanzeni, reports 95% of all
Mpumalanga cases (62% cases in Nkomazi, 19% ineBary 8% in Nelspruit, 6% in
Witrivier, and 3% in Pelgrimsrust, listed East t@$t). Analysis region C corresponds to two
municipalities and reports 42% of cases in Limpofite Bohlabela and Mopani
municipalities had to be combined because the Ibdnidects several districts. Region D,
approximately Vhembe, reports 54% of Limpopo caReglions E (roughly Capricorn) and

F (Waterberg) are low-incidence regions, reportinty < 1% and 3.8% of Limpopo cases

respectively.

Drug resistance increased in each province, tr€@, then to SP, but was finally reduced to
near-zero after change to ACT (Figure 7.6). Whileuvhalanga and Limpopo were still using
CQ, SP resistance in KwaZulu-Natal had alreadyemsed around 40%. Mpumalanga and
Limpopo switched from SP mono-therapy to ACT befsReresistance had reached 10%.
Because of this Mpumalanga decided to use SP gmtheer drug when initially changing to

ACT. Detalils of the predicted curves are showrhadaption of Figure 7.6.

Figure 7.4 clearly shows that the observed annaddma case incidence (calculating from
July to June) is much higher in KwaZulu-Natal thathe other two provinces. Though
Mpumalanga and Limpopo report comparable absolumeters of cases (96 102 and 74 730

respectively), the four regions in Limpopo are muubre populous, resulting in very low
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overall observed incidence rates. Incidence irfitleeanalysis regions is displayed on
different scales in Figure 7.5, together with thenmer rainfall for each season. Some peaks

in observed incidence coincided with peaks in &inbut this pattern was not consistent.

Table 7.3 shows the results of the spatio-tempuoralel, first fitted on 18 years of data, then
fitted on 24 years, over six analysis regions. @letand predicted log incidence is shown
for each analysis region in Figure 7.7, using treagtions from Model A, fitted on 18 years
of data and forecast for six. Though the fit of thedel, when calculated over all regions, was
high ( . = 0.86, Table 7.4), the confidence intervals efphedictions diverged substantially

in the validation period (Figure 7.7). The accurattyhe predictions differed between regions
(Table 7.4). In region B incidence could be prestianost accurately from the available
co-variates, while in region E there was no sigatfit correlation between the observations
and predictions. Drug resistance was only a sicgnifi predictor in the model fitted on all

data.

Discussion

Over the analysis period a dramatic upward trendafaria incidence was observed in South
Africa (Figure 7.4). This trend was most pronouncelwaZulu-Natal and least pronounced
in Limpopo. Climatic variables together with trendgrug resistance accounted for much of
the spatial and temporal variation across all aisigegions (Table 7.4). Rainfall provides
important breeding sites for the dominant local quite vectors Anopheles arabiengis
particularly in summer when warm temperatures allapid larval development. Years with
particularly high rainfall sometimes, but not alwagoincide with a peak in malaria incidence
(Figure 7.5). Temperature determines extrinsicpaevelopment not just in summer, but
also after the main mosquito breeding season; wanimeers presumably boost the reservoir

of parasites that start the new transmission seiasearly spring (Crai@t al2004b).
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Much of the region-specific temporal trends howeeenained unexplained. The predictions
from Model A (Figure 7.7) appear reasonable oridgescale, but when converted to actual
incidence, the observed values were over- or upceicted by up to two orders of
magnitude. Since the variance in each individugioreis much lower than the overall
variance, the good overall model fit hides impartagion-specific discrepancies. Since
malaria control is implemented at the provinciakle the lack of accuracy in the regional

predictions limits the usefulness of the resultsdecision-making.

Furthermore, the model, fitted on the beginninghefseries, certainly did not perform very
well predicting ahead in time. Predictions durihg validation period were both inaccurate
and uncertain. A model fitted on all data not sisipgly predicted the data post 2000 much

better, but then of course the forecasting bereefdst.

The weak fit in the validation period (2000 to 2D@&n be explained partially by the
tremendous changes that were taking place in raataritrol at this time. The epidemic of
1999/2000 in KwaZulu-Natal was probably caused bgrabination of a failed drug

(Figure 7.6), a failed insecticide and re-invasadthe highly anthropophilic, previously
eliminated, and now insecticide resistAmibpheles funestyslargreave®t al2000). The
epidemic was followed by substantial reductionscidence, a combined result of drug
policy changes (Barnext al2005), return to DDT for IRS (Maharef al2005) and the
launch of the malaria control programme of the Lmbo Spatial Development Initiative
(LSDI) in neighbouring Mozambique (Shagpal 2007). Some of these factors could not be

included numerically in the analysis.

The drug-resistance values used in the regressioleimvere estimated from another model,

based on very few observations (Table 7.1). Themainty in these estimates was not
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allowed for in the regression model. Not allowfogthe error in the independent variables
generally leads to an over-estimate in the staneiamits of the model coefficients; had the
errors been allowed for, the confidence intervaightinhave been smaller, and the predictions

even more divergent.

Though the suspected source of infection (basdtde@mvestigations by the malaria agents)
was not recorded in a third of cases, it seemylikat migration has had a significant impact
on malaria in all the three provinces, particuldMyumalanga (Table 7.5). Though migration
has varied over time, a major determinant of thegggphical pattern seems to have been the
ongoing introduction of infections from Mozambiquéjich presumably replenishes the local
parasite reservoir despite intensive control intB@drica. Not only are the neighbouring
areas of southern Mozambique highly endemic, btit ratently there was no effective
control in this country. Conversely, intensive ni@aontrol in Zimbabwe, Botswana and
Swaziland, coupled with lower general malaria rgglesumably contributed to lower reported
incidence along the other borders. The number sgc&om other endemic countries has

been very low throughout the study period.

Drug resistance appears not to have been a mdgnnuaant of either the spatial or temporal
patterns in incidence rates (Table 7.3). Major geann resistance levels occurred late in the
study period, when other factors were also changipglly. CQ resistance emerged about
eight years later in Mpumalanga than in KwaZuluall@Eigure 7.6), only really starting to
spread after the drug had already failed and beglaged by SP in KwaZulu-Natal.
Nevertheless, the spread of CQ resistance, ontedstappears to have continued at similar
rates in both provinces. This raises the questiavhether CQ resistant strains were present
in Mpumalanga early on, but remained at low freqiesfor longer, or whether resistant

strains only reached Mpumalanga eight years [@itez.latter explanation is not entirely
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unlikely given negligible direct influx of infectgokeople from KwaZulu-Natal. Diffusion of
resistant strains from KwaZulu-Natal across therimational borders also seems unlikely due

to low levels of transmission in Swaziland and ldnug pressure in Mozambique.

Baseline surveys of SP resistance were carried/ben the drug was introduced in KwaZulu-
Natal and a few months after introduction in Mpuamgja. In Mpumalanga the baseline
resistance to SP was twice that of KwaZulu-Natedugh low, suggesting that resistant genes
were already present and were selected for immedgiahen SP was introduced. By 2001 all
three provinces were using effective drugs, andagons in malaria incidence were seen in
each province (Figure 7.4), most notably in KwazZhlatal. By this time KwaZulu-Natal in
particular was also benefiting from both direct anakss-border effects of the LSDI malaria
control programme (Shagt al2007), which has extended IRS to neighbouringsaoéa

Mozambique and intensified detection and treatroémtfections.

Mpumalanga (region B) saw an excess of observessdaesy/ond what could be explained by
the co-variates (a positive spatial random effédt)s is likely due to the frequency of
imported malaria in this province, where half orrmof the infections were probably not
contracted locally (Table 7.5). Limpopo on the othand, reported lower incidence in all
regions than predicted based on the co-variategioRe E and F included large and fairly
densely populated areas where malaria risk is meielow (Figures 7.3 and 7.4), so that the
prediction, which assumes uniform conditions, oestimated the overall incidence. In

regions C and D the weather stations that providedtlimate data were located in the highest
malaria risk areas of these regions respectivegpectively Phalaborwa in the hot and humid
‘low-veld', and Messina on the Limpopo river, tlibe deficit of cases actually observed in

regions C and D.
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Strongly positive temporal random effects wereneated in the seasons of 1988/89 and
2000/01 (and not in the remaining years). Botheéhe=ars followed after a change in drug
policy in Region A (Table 7.1), where incidence madched epidemic proportions with the
rise of drug resistance (Figures 7.4 and 7.6). €ktess of cases suggests that it may take a
year after introducing an effective drug, untilidence returns to ‘normal’, or what can be

explained by other risk factors.

Conclusion

Malaria in South Africa is mainly found along therthern eastern borders, with the highest
incidence reported along the border with Mozambigbere there has been no control until
recently. Weather station data was able to exphaioh of the spatial and temporal variation
in the incidence data. Region-specific temporaigoas on the other hand largely appear to
reflect variations in the effectiveness of contwahich in turn reflect emergence of drug and
insecticide resistance and policy changes. Pratlint@dence, on a regional or provincial
level, diverged quite substantially from the repdrincidence, perhaps more so than would be
useful for planning purposes. In this context taasion highly modified by malaria control -
it seems clear that malaria forecasting systemvediy climate data are not very useful.
Even when they incorporate factors that are proxyife effectiveness of malaria control,
predictions were not very accurate. Since some itapbnon-climatic determinants of
malaria transmission are difficult if not impossittb quantify, accurate predictions of

incidence remain elusive.
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Table 7.1 Introduction dates and number of available rescsaurveys for chloroquine
(CQ), sulphadoxine-pyremthamine (SP) and artermsisbmbination therapy (ACT) in the
three malarious provinces of South Africa.

KwaZulu-Natal Mpumalanga Limpopo
CQ Introduced in: 1980 t 1980 t 1980 t
Number of surveys 11 7 1
SP Introduced in: February 1988  October 1997 June 1999 f
Number of surveys 3 2 1
ACT &  Introduced in: January 2001 January 2003 October 2004

Tt Though CQ was introduced in the 1940's, 1980usas as introduction date for the curve
fitting.

¥ SP was introduced gradually between January 4888€ecember 2000; June 1999
represents the midpoint.

8§ Mpumalanga first changed from SP to an artemét8€r combination, then to

artemether / lumefantrine (Coartem) in 2005. KwaZNhtal and Limpopo changed from SP
directly to Coartem.
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Table 7.3 Incidence Rate Ratios, with 95% credible intervatimated from two spatio-
temporal models, for each of the three coefficieamtBided in the model. Credible intervals
that do not overlap with unity, correspond to statal significance and are marked with (*).

Variable Incidence Rate  95% credible interval
Ratio
Model A: fitted on 18 years, predicted for last 6 gars
summer rainfall monthly mean 1.01 1.00 - 1.02*
(mm)
temperature annual mearQ) 3.39 2.58 - 4.34*
Drug resistance (%)t 1.02 0.996 - 1.05
Model B: fitted on all 24 years
summer rainfall monthly mean 1.01 1.00 - 1.02*
(mm)
temperature annual mearQ) 2.70 2.26 - 3.30*
Drug resistance (%)t 1.03 1.01 - 1.04*

T The quoted IRR is the estimated effect on casdence of an increase in drug resistance of
1%.

Table 7.4 Concordance correlation coefficients) between observed and predicted log
incidence for two models; the number of observatiand the 95% confidence intervals are
shown in parentheses; p < 0.005 (**), p < 0.05 (*).

Region Derivation period Validation period Entire period
Model A: fitted on 18 years, predicted for 6 years

All regions 0.90** (n=81; 0.86, 0.94) 0.76** (n=36;6%, 0.89) 0.86** (n=117; 0.81, 0.9)
0.68** (n=18; 0.44, 0.92) 0.17 (n=6; -0.19, 0.52) 5%.(n=24; 0.2, 0.79)
0.78* (n=12; 0.62, 0.94) 0.22 (n=6; -0.24, 0.67) 62* (n=18; 0.4, 0.84)
0.58** (n=13; 0.27, 0.89) -0.53 (n=6; -1.29, 0.23) .540* (n=19; 0.26, 0.83)
0.49* (n=13; 0.13, 0.85) -0.22 (n=6; -0.54, 0.09) 46¥* (n=19; 0.16, 0.76)
0.11 (n=12; -0.35, 0.57) -0.28 (n=6; -0.79, 0.23) 11Qn=18; -0.28, 0.5)
0.56** (n=13; 0.24, 0.87) -0.08 (n=6; -0.32, 0.15) .3%r (n=19; 0.09, 0.69)
Model B: fitted on all 24 years

All regions 0.89** (n=81; 0.85, 0.93) 0.97** (n=36;95, 0.99) 0.92** (n=117; 0.89, 0.94)
0.64** (n=18; 0.4, 0.89) 0.88** (n=6; 0.7, 1.05) @& (n=24; 0.56, 0.92)
0.77** (n=12; 0.6, 0.95) 0.86** (n=6; 0.69, 1.02) 80** (n=18; 0.68, 0.94)
0.45** (n=13; 0.15, 0.75) 0.82** (n=6; 0.52, 1.12).58** (n=19; 0.26, 0.8)
0.46* (n=13; 0.1, 0.81)  -0.07 (n=6; -0.86, 0.71) 4¥35(n=19; 0.25, 0.82)
0.1 (n=12;-0.32,0.52) -0.1 (n=6;-0.84, 0.63) (@418; -0.26, 0.45)
0.59** (n=13; 0.3, 0.88) 0.27 (n=6; -0.35, 0.88) 15(n=19; 0.32, 0.82)

Mmoo m>

Mmoo m>
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Table 7.5 Suspected source of infections of malaria casemtegin the three malarious
provinces of South Africa, as a percentage of dted humber of cases with source reported,
by province and by decade.

Local Mozambique Botswana, Zimbabwe, Other countries
Swaziland
KwaZulu-Natal
1980's 87.15 12.64 0.17 0.03
1990's 89.94 9.37 0.32 0.36
2000's 87.93 10.55 0.56 0.96
Mpumalanga
1980's 4851 514 0.07 0.02
1990's 56.84 429 0.22 0.04
2000's 30.35 68.79 0.61 0.24
Limpopo
1980's 65.85 32.43 1.21 0.51
1990's 85.85 10.88 2.27 1

2000's 93.16 4.17 2.22 0.46
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Figure 7.1  Study area showing political boundaries and armakggions (A to
F), in north-eastern South Africa.
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Figure 7.2  Selected weather stations and filler stations withi
malarious regions (A to F) used in the analysisidrth-eastern
South Africa.



154 Chapter 7 - Incidence in South Africa: Spatial aremporal Variation

Figure 7.3  Total observed, unsmoothed, malaria cases in S&utta, of
all ages, for the time period 1992 - 2004, per 1088ple, by magisterial
district.
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Figure 7.4  Reported total population malaria incidence in 8frica, by season (July to
June), per 100 000 people, in analysis regionsa#k(tlue), B (red), C (light blue), D
(yellow), E (pink) and F (green).
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Figure 7.5  Observed total population malaria incidence (sliti) and summer rainfall
(dashed line), in South Africa , by season (Julyune), for analysis regions A (a); B (b); C
(c); D (d); E (e) and F (f).
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Figure 7.6  Modelled drug resistance curves, to chloroquine)(CQ
then sulphadoxine-pyramithemine (SP), then artenmgiombination
therapy (ACT), for three provinces in South AfrigavaZulu-Natal
(blue), Mpumalanga (red) and Limpopo (green). Tinves were as
follows: resistance to CQ in KwaZulu-Natal, = 1.2(}, in
Mpumalanga and Limpopo = 0.01(J),6resistance to SP in all three

provinces = 1.9(1.%; t is the time the drug was introduceddr CQ
was taken as 1980).
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Chapter 8

Discussion and Conclusions

Determinants of malaria

The three-way interaction between the disease ajenalaria Plasmodiunspp), its

mosquito vectorAnophelespp) and the human host, is affected by a rangeradtic,
behavioural, environmental and anthropogenic factGhapter 1). Each of these determinants
varies in time and space, with different magnitualed frequencies, so that the prediction of

malaria transmission rates, in both dimensionspimes a complex undertaking.

In sub-Saharan Africa and Southern Africa as a ®jtble distribution of malaria can be
estimated more or less successfully based onlyeamrlimatic conditions (Chapter 2). This
highlights the importance of temperature and rdlimidimiting transmission. Temperature
has a powerful, non-linear effect on exothermical@wment rates of botlasmodium
(Macdonald 1957; Detinova 1962) and the mosquiteaka (Jepsoet al1947; Bayoh &
Lindsay 2003; Bayoh & Lindsay 2004), and on the quite (Muir 1988). Rainfall affects the
availability of breeding sites (Gillies & de Meiltdl968), while both temperature and rainfall

affect humidity, which is another important detamamt of mosquito survival (Muir 1988).

Climatic factors not only determine the distributiof endemiamalaria, but also likely
distribution and frequency @pidemicmalaria in Africa (Coxet al1999) and the nature of
intra-annual seasonality (Mabasbal 2007). Epidemics are particularly likely in margiin

areas marked by extreme intra- and inter-annualatic variation (Najera 1974), where
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unusually suitable conditions can trigger epidenmasiostly non-immune populations
(Thomson & Connor 2001b). Epidemic malaria is int@ot in Botswana and South Africa,
both of which lie in the marginal / epidemic zoriéAdrica, which is marked by strong

seasonality.

While many studies have so far addressed the sdaiebution of malaria risk, this thesis
specifically aimed to include the question of splatariation across time. Temporal effects
can also lead to potentially devastating malaridezpics. The ability to predict epidemics is
something that control programme managers in theggens sorely wish for. It has been
suggested that malaria epidemics caused by mebggical factors can be predicted from
climatic indicators and a process model for a nkpidemic early warning system have
been proposed (Myeert al2000). Temporal effects can also lead to interdahmariation

that would be considered to be within the “nornralige, but which still has serious

implications for the management and control of mala

Investigating trends in malaria over time requseficient retrospective evidence not only on
malaria but also on any factors that may causeguwiribute to, the temporal trends, be they
biotic or abiotic. Rogerst al. (2002), discussing satellite-derived environmkinidices,
comment that “until we can dissect quantitativély toles played by extrinsic and intrinsic
factors [..], we cannot use these new tools tocmstoutbreaks”. Indeed there are several
problems with over-simplified approaches whichttrestablish statistical association
between long term health data and climate varigtald / or climate change, without looking

for possible alternative explanations for obsernvedds (Chapters 3 to 7).

Comprehensive monthly malaria incidence data fromtls Africa - 36 years in KwaZulu-

Natal province, and 18 years in Mpumalanga and bipapgprovince, provided a unique
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opportunity to examine the association of climaticl non-climatic factors with short- and
long-term trends in malaria incidence (Chapters B)t A similar opportunity was provided
by the regular prevalence surveys carried out byBibtswana Ministry of Health between

1961 and 1997, and collated within the MARA projghapters 3 and 4).

In South Africa, cross-border people movementscatjural activities and changes in the
case reporting system, available information on Hi¥valence, as well as control-related
factors namely the emergence of insecticide anehaaliarial drug resistance, and subsequent
control policy changes, were reviewed and theieptial effect on malaria transmission
examined (Chapters 6 and 7). In Botswana the asalys limited to climatic and
environmental factors (Chapters 3 and 4). In botimtries the calendar year would have split
the malaria transmission season in two, therefoalata were aggregated into periods

starting in July and ending in June.

Climatic factors

An introductory remark is appropriate at this ppotncerning the spatial-temporal analysis of
malaria data against climate, namely the availstoli climatic data with corresponding
temporal and spatial extent and frequency. Thexrgyanerally three main alternatives:

monthly temperature and rainfall coverages, thaehmeeen interpolated from weather station
data, using different techniques and sometimegocating other important factors such as
elevation (Chapters 2 to 4); actual weather stateta (Chapters 5 and 7); or remotely sensed
data which offer surrogates of climate variablelgjater 3). Each data source has weaknesses,
related to availability (in terms of accessibiligd timeliness), completeness, temporal and
spatial extent and resolution, interpretation arwheacy. Unfortunately there is no optimal

solution.



162 Chapter 8 - Discussion

A previous analysis of thepatial heterogeneity of malaria incidence in northern Rula-

Natal, South Africa (Kleinschmidit al2001b) showed that case incidence in 1994/95 was
significantly related to average winter rainfalleaage winter maximum temperature and also
inversely related to the distance of the nearegip®a water body. A subsequéeatporal
analysis of malaria case data (Kleinschneidal 2001c) failed to detect significant
relationships of malaria incidence between 1993188¥, and in small geographical areas,

with remotely sensed climate indicators. Furtherlysis was recommended.

We have now analysed total annual malaria casegelagas inter-seasonal variability
(calculated as the between year rate ratio), agairenge of climatic indicators obtained from
three weather stations in the highest malaria eme area of KwaZulu-Natal (Chapter 5). No
evidence was found of association between taés and climate. However, the inter-annual
variationin case numbers could be explained significantlgdoyeral climatic variables. The
two most significant ones were mean maximum daiggderatures from January to October
preceding the current season, or otherwise meaoisebtemperature, and total rainfall

during the current summer months (December to March

In an examination of the entire malarious areamft® Africa (Chapter 7), summer rainfall
and mean annual temperature were significant pradiof the observed temporal and spatial
variability in malaria incidence. In South Africdespite intense malaria control operations,
climate still appears to be a major driving foréénter-annual variation in malaria incidence,

though it did not seem to be linked to overall srarssion levels.

When examining malaria prevalence, rather thardenze, in Botswana, climatic factors -
notably again summer rainfall and mean annual teatpee - were significant predictors of

thespatialvariation (Chapter 3), but not of themporalvariation (Chapter 4) in malaria
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prevalence. The coverage of malaria control opmmatin 1961/62 (the period focussed on in
Chapter 3) was still rather incomplete, while aftér4 (the period covered in Chapter 4)
malaria control was intense and coverage moresgrdemplete. It is not clear whether
climate failed to explain prevalence over time leseaprevalence is less sensitive to temporal
changes in climate (than incidence for exampleytoether it is the intensive control that
broke down the relationship between climate angglemce. Presumably this would only be
clarified through a time-space analysis of the cetegprevalence data set, possibly even
including the three surveys available in the 194@$ore any control operations were going

on in Botswana.

Temporal coincidence of peaks and troughs aloneatasffer evidence of causal links
(Chapters 3 and 5). Specifically, in this case litiiebetween a meteorological measurement,
such as rainfall, and malaria incidence is notair@ather the two are connected through a
web of biological processes (Chapter 1), whichrame-linear and ill-defined in practice.
Having said this, summer rainfall and mean tempeeatave emerged repeatedly, in this
thesis (Chapters 3, 5 and 7), as well as in otiugliess, as important predictors of malaria.
These two variables in particular are highly plalesin terms of the aetiology of the disease

(Chapter 5).

Climate definitely has a limiting effect on malatiansmission, particularly average
conditions. In this thesis climate repeatedly eradrgs an important and consistent
explanatory variable of the spatial distributiomedlaria, in various contexts and given
different types of data. Temporal trends in mala@aasmission however were not so easily
linked to climatic variations, even though extreavents, such as wide-spread epidemics

following high rainfall and flooding, are clearlygzipitated by extreme weather. It seems
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therefore that non-climatic effects exert a powlegftect on malaria transmission,

particularly, it appears, on the temporal distridit

Non-climatic factors

While climate probably acts as the main ultimatating factor in the spatial and temporal
distribution of malaria, non-climatic factors cdteaor override the effects of climate at
different levels and scales. Environmental detayslrological factors such as the presence of
surface water where rainfall is low, agricultureagtice, deforestation and other human
activities, have the power to affect distributiarrate of malaria transmission beyond what

can be explained by a knowledge of general climate.

The important role of the presence and effectiveimésnalaria control, both South Africa and
Botswana, has already been mentioned. Control fuedgally modifies the basic
transmission pattern as it emerged in respondeetanderlying environmental, climatic and
human conditions, presumably over millennia. Cosely, in KwaZulu-Natal, the failure of
control due to drug and insecticide resistancetdeltemporary return of the highly effective
vectorAn. funestusind a partial return to the hyper-endemic transimisstate that
characterized the northern part of this provinderee1940. Subsequent policy changes
brought the worsening situation back under controBotswana malaria risk today is also
much lower than it was in the 1940's, thanks teféective national control programme
(Mabasoet al2004). The South African example proves againrtetria risk can quickly
regain, or at least approach, historical levetiitrol fails. There are other examples of this
around the world, where malaria re-invaded areasrevit had been eradicated previously,
following the interruption or suspension of contactivities (Sharma 1996; Chadeieal

1999; Povoat al2003).
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The 30-year malaria case data series in KwaZulaNaterred to above, as well as the
shorter series in the other two provinces, revesiezhg medium and long term trends, which
could not be explained by climate. In KwaZulu-Na@hple, single-variable linear regression
analysis showed significant association betweel sotnual cases and the measured level of
drug resistance, as well as relative measures\éfitdéction (Chapter 6). The same was true
for the whole country, while accounting for tempaad spatial correlation (Chapter 7).
Agricultural factors and insecticide resistanceegpo have affected the level of malaria
transmission at certain periods and to some defgtee@yumerical analysis of these was not

possible due to paucity of data (Chapter 6).

Migration also affects malaria incidence in KwazNatal and Mpumalanga, both of which
border on Mozambique (Chapters 6 and 7). Beingddv@rea was found to be a significant
risk factor in a previous small-area analysis ofdence data in KwaZulu-Natal
(Kleinschmidtet al2002). Cross-border movement of infected peopben funcontrolled to
controlled areas leads to the continued introdaabioparasites, and the supplementation of

the local parasite reservoir.

Migration also needs to be considered with resfmettie transportation of drug resistant
strains. A recent study (Ropet al2004) inferred the global spread of drug resisanc
comparing the genetics of different parasite papata and concluded that drug resistance
was probably introduced to Africa from South Eastal That chloroquine failed about eight
years earlier in KwaZulu-Natal than in Mpumalangd &impopo (Chapter 7) suggests that
chloroquine resistant strains first arrived in ghisvince. Mpumalanga and Limpopo appear
to have been spared for almost a decade by a catinrof fortunate factors, including low
transmission in neighbouring Swaziland, low druggsure in neighbouring Mozambique,

minimal influx of malaria from KwaZulu-Natal, tighttorder control with other malaria
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endemic neighbouring countries, and a politicahalie that was uninviting to immigrants
from African countries where chloroquine was algegpreading by the mid-1980's.
Chloroquine resistance was reported in Mozambigueagly as 1975 (Pillay & Bhoola 1975)
and definitely by the mid-1980s (Schapira & Schwalb1988), so given the high rate of
imported malaria from this country (Chapters 6 @ndt is possible that despite negligible
drug pressure in Mozambique, resistant strainstaaéy crossed the border into

Mpumalanga.

It was suggested (Chapter 6) that one may expectger correlation between malaria
variability and climate variability where the nadlstate has not been greatly altered by
malaria control. This was found to be the casedts®ana: climatic variation failed to
account for the spatial and temporal variationrgvplence in Botswana at a time when
malaria control was intense (Chapter 4), even thalighate factors were able to explain
much of the spatial variation in Botswana befoeed¢bmprehensive coverage of control

(Chapter 3).

In 2004 a Delphi workshop in South Africa set autiecide to what extent the policy change
to an artemisinin-based combination antimalariad vesponsible for the marked decline in
malaria morbidity and mortality in KwaZulu-Natallk@mwving the epidemic of 1999/2000
(Muheki et al2004). The need for such a workshop illustratesjow complex the interplay
of various climatic and non-climatic risk factossim determining malaria morbidity and
mortality. Even where relevant data are availatble question can not be answered with
finality. Since some important non-climatic detemamts of malaria transmission are difficult
if not impossible to quantify, we may remain at lagh unexplained trends that still require

“expert opinion” to identify and hopefully, to adds.
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Statistical and spatial methods

A progressive development of spatial and statistiegthods employed for mapping malaria
risk was seen in a series of publications, whicduésed initially on Kenya (Snoet al 1998)
and Mali (Kleinschmidet al2000). An early spatial statistical analysis acdfyalence data
from West Africa (Kleinschmidét al2001a) was followed by a more sophisticated armalys
which included central Africa (Gempedt al2006a). Analysis of the East African (Omumbo
et al2005) data moved into a different direction, dragwon remote sensing rather than geo-
statistical techniques, particularly discriminanalysis and Fourier-transformed remotely
sensed data. In all of these studies climatic,renmental and hydrological factors were
considered in an attempt to explain observed dpati@ations in the prevalence data, and to

predict to unobserved locations.

While developing a geo-statistical risk model frpoint-referenced malaria prevalence in
Botswana (Chapter 3), a formerly neglected issuradaressed, namely the variable
selection process. A staged process of variabéets@h and model formulation was
demonstrated, which proved to be a practical, thowa necessarily the optimal solution.
Instead of using once-off automated step-wise kiaelection, it was repeated on multiple
bootstrap samples drawn from the data. This methadee it possible to identify the most
consistent and stable explanatory variables. Setefrequency provided an objective
rationale for choosing one variable above anotadl, to choose between similar and strongly

correlated indicators.

Recent developments in Bayesian spatial modellfigvare packages such as geoR
(Christensen & Ribeiro 2002) or Winbugs (Anon. 2004ave made the analysis of point-
referenced spatial data more widely accessiblehand so opened the door to detailed and

appropriate analysis of the MARA prevalence dat&001 this still presented an obstacle



168 Chapter 8 - Discussion

(Kleinschmidt 2001). Bayesian methods are so uselfigih analysing malaria data against
environmental variables, because the complexith®@imalaria transmission system outlined
in Chapter 1 involves so very many uncertaintiesh in the nature and degree of observed or

suspected associations, and Bayesian methods théglahcertainty in a formal way.

Uncertainties in the model parameters are treaguabability distributions. The shapes of
the various (“prior”) distributions are initiallypgcified only as belonging to a particular
family, based on the type of data or parameterliraeh As the observed data are taken into
consideration, the curves are then free to takengrshape (“posterior” distributions), within
generous limits (“precision”). The uncertainty mygredictions and modelled risk maps is
also reflected in the form of probability distribarts, which reduce the risk of wrong or

misleading conclusions being drawn.

Markov chain Monte Carlo algorithms allow these en&inties to be estimated, by drawing
random samples of any unknown parameter, withimde wossible range, and estimating the
probability of any particular combination of thes@mdomly generated values, given the
observed data. By repeating this many times ovehability distributions are generated for
each unknown parameter, which provides an overateraccurate picture than frequentist
statistical methods. Gibbs sampling, used by thebijs software, by always sampling from
the probability distributions that are being estdidd as the sampling continues, ensure that
the most probable values are being sampled mast,aftsulting in the model over time

converging upon the most probable combination ohpater values.

Spatial tiers of modelling malaria

Modelling of malaria involves different approach&sgeting different spatial scales

(Chapters 1 and 2). The first, continental, tidiral the broad distribution of disease based
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on climatic conditions in an average year (ChapjeOther studies at this scale have
followed. Tanseet al (2003) for example developed a different kindlistribution model,
that defined the likely absence or presence of maaleansmission on a monthly basis, also
based on long-term mean climate profiles. The nurabmonths during which transmission
was possible then supplied a measure of the pessilshtion and timing of the average
malaria transmission season, and in some areaarmbal seasonality pattern. This model
later provided the transmission season requiredféo malaria transmission intensity in West
Africa, where the Garki transmission model was usetbnvert age-prevalence curves into

estimates of entomological inoculation rates (Gahet al2006a).

The second, sub-continental level, the distributibthe periphery is refined using annual data
sets for higher temporal resolution, taking intoamt differences between major malaria
ecological zones (MARA/ARMA). Data on epidemic nraan the African highlands was
collated and analysed within the Highlands Mal&naject (Coxet al1999), a sister-project

of MARA. A map of epidemic risk was produced.

The third tier of modelling considers malaria distion at the regional or national level. This
tier of modelling has been the target of many déife investigations, mostly under the
umbrella of the MARA project, or at least, involgidata collected by the MARA project.
Malaria risk models have been produced for Malefkéchmidtet al2000; Gemperlet al
2006b), West (and central) Africa (Kleinschmédtal 2001a; Gemperkt al2006a), Kenya

(Snowet al1998), East Africa (Omumbet al2005), and now for Botswana (Chapter 3).

The fourth tier of spatial modelling, at a scal86knt and below, has been addressed by
various investigations seeking to identify locatizesk factors, such as the location of

breeding sites and their impact on various mal@laindices (Trapet al1993; Smithet al
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1995; Thompsowet al1997). The usefulness of highly detailed mappihgnalaria cases,
such as at the house-hold level, as illustratdtivaZulu-Natal (Hayet al2000b), is
debatable. In some cases it may allow highly tadjebntrol activities, such as treatment or
drainage of breeding sites, but in general thislle¥ investigation is arguably mostly

academic in nature.

Further application of malaria models

Maps produced of the malaria distribution modeld@tier 2) have evoked much interest and
have been used widely, mainly for visual representaf malaria risk in Africa, by global
institutions such as the World Health Organizafidnon. 2003c; Gordoet al2004) or in the
United States President’s Malaria Initiative (An@007e) for example. The model has even
been used, rightly or wrongly, for guiding prestiop malaria prophylaxis for travellers, and
posters of this model in particular have been ithisted to pharmacies in many countries by

GlaxoSmithKline.

In contrast to hand-drawn historical expert opimoaps, geographical models of malaria
distribution that have been produced through ati@kpumerical process have major
advantages. For one it is possible to combine th@émother geographical data coverages,
such as a population distribution model. This hesnbdone to estimate continental
populations at risk of malaria, as well as disdagéen and mortality (Snoet al1999a;
Snowet al2003). The Africa Malaria Report (Anon. 2003c),ag others, has drawn on
these estimates for the countries’ situation aealy§he population at risk estimated by the
distribution model have also been used to makenastis for upscaling of control, for
example estimating the number of insecticide tabatss required to cover to reach country

targets (Milleret al2007). The widespread use of the malaria distiobunodel illustrates
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above all the desperate need for -, the potergefiulness of -, and despite decades of

research, the dearth of - reliable large-scale mniaatesk maps and estimates of malaria risk.

A further benefit of numerically defined distriboti models is that they can be reproduced or
modified by other authors, or that they can beiaddb different spatial climate data sets. As
such they provide a baseline against which clirohtange scenarios could be evaluated.
Thomaset al(2004) for example re-calculated the distributioadel (Chapter 2) using a
different climate data base (provided by the Inteegnmental Panel on Climate Change) as
well as climate data predicted by the second géperbladley Centre coupled global climate
model, specifically the medium-high scenario, tareine the potential effect of climate
change on malaria distribution in Africa. What egeat was a mixed picture, confirming the
complexity and spatial heterogeneity of the trassion system in Africa. However, the
authors concluded rather surprisingly that in thetriew decades malaria distribution in

Africa was more likely to shrink than to expand.

Tanseret al (2003) also recalculated their continental seaktyrmodel for three different
Hadley Centre climate change scenarios, and coadltitht, though the extent of malaria may
change but little, transmission seasons may inergaguration and that person-months of
exposure may well increase, largely in areas dfterg transmission. The publication of these
findings further fuelled the debate between reseascwho make dire predictions of the fall-
out of climate change and global warming on maland other vector-borne diseases, and
those who urge caution and reason and a more tigpewvidence-based approach to this

issue.

The distribution model (Chapter 2) has also begieghin South Africa, to predict potential

changes in malaria distribution due to climate geams part of a vulnerability and adaptation
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assessment in the South African county study anaté change (Craig & Sharp 2000). Both
the potential future distribution and the incressthe number of people at risk was derived.
The results from this study have been used subga#yte estimate the potential unmitigated
economic impact of climate change (Turpteal 2002; van Rensburg & Blignaut 2002). The
potential future malaria distribution and populasat risk received wide press coverage,

particularly following a cabinet meeting where tkesults were presented.

What neither parliament nor the public were reméhdg was that in South Africa malaria
has been near eradicated, and that even withooatdichange, malaria could spread again to
its previous level and extent, if control were gase and existing health system were to
collapse. Malaria mortality estimates by magissateKwaZulu-Natal from November 1931
to June 1932 totalled 22 132 (population at risk Em) (Le Sueuet al1993). That is

>20 000deathsof malaria, as opposed to <20@@ections(and around 15 deaths) in 2004,
and around 20 OO@fectionsduring the most serious epidemic during the pastears
(Chapter 5). Some fear that wildly pessimistic aighly “sellable” predictions all too often
eclipse the voice of evidence and reason, provoaogsional articles such as “Hot topic or
hot air?” (Hayet al2002b), “Global warming and malaria: a call focaacy” (Reiteret al
2004), or “Climate of fear: global-warming alarnsistimidate dissenting scientists into

silence” (Lindzen 2006).

It is unfortunate that in the context of malaria thimate change debate attracts such a
disproportionate amount of political attention, alrsng issues that are actually quite
straight-forward. All too often the climate chardgbate unduly postpones the problem to
some future date, diverting valuable expertisefands, rather than dealing with the situation
now, with ways and means at our disposal todayeE&pce has shown that monumental

improvements are possible, even while global teatpegs are rising. Experience has also
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shown that, with or without climate change, malaaa spread and re-invade areas where was
previously eradicated. The problem of malaria indsf is enormous and has been for a very

long time; climate change can hardly make mattense:

Conclusion

As suggested by the title, this thesis contribtw@sards understanding how malaria
transmission risk is distributed in space and ¢wvee, and what factors might explain the
observed heterogeneities. This question has bebesstd at different spatial scales, from the
continental down to the sub-national, with focuswa countries in Southern Africa where
seasonal and inter-annual variation plays an inapbrble. After examining the large-scale
distribution using an inductive approach that baiitthe theoretical link between climate and
malaria transmission, actual malariometric datath lsegional incidence and point-referenced
prevalence data - were analysed. The long-ternetaffenean climatic conditions was
considered, as well as effects of inter- and iatraual variations. The implications for control

planning has been highlighted.

Whether inter-annual malaria incidence in genenadl malaria epidemics specifically, can be
predicted in advance, with sufficient accuracy ana to help plan health care and control,
remains to be seen. The findings of this thesitardy emphasise that in addition to shorter-
term variation, which seems to be driven by climatmany cases, malaria transmission is
largely determined by non-climatic factors. Thipagrs to be particularly true where the
natural malaria endemicity has been modified bytrobimterventions. As the drive to control
malaria in Africa continues and intensifies, thedéor long-term surveillance of not merely
malaria transmission, but also of the coverageedigttiveness of control interventions, will

grow.
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