Force microscopy experiments with ultrasensitive cantilevers

Rast, S. and Gysin, U. and Ruff, P. and Gerber, C. and Meyer, E. and Lee, D. W.. (2006) Force microscopy experiments with ultrasensitive cantilevers. Nanotechnology, Vol. 17, H. 7, Sp. Iss. SI , S189-S194.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5262113

Downloads: Statistics Overview


Force microscopy experiments with the pendulum geometry are performed with attonewton sensitivity (Rugar et al 2004 Nature 43 329). Single-crystalline cantilevers with sub-millinewton spring constants were annealed under ultrahigh-vacuum conditions. It is found that annealing with temperatures below 500 degrees C can improve the quality factor by an order of magnitude. The high force sensitivity of these ultrasoft cantilevers is used to characterize small magnetic and superconductive particles, which are Mounted on the end of the cantilever. Their magnetic properties are analysed in magnetic fields as a function of temperature. The transition of a superconducting sample mounted on a cantilever is measured by the detection of frequency shifts. An increase of dissipation is observed below the critical temperature. The magnetic moment of ferromagnetic particles is determined by real time frequency detection with a phase-locked loop (PLL) as a function of the magnetic field. The dissipation between the probing tip and the sample is another important ingredient for ultrasensitive force measurements. It is found that dissipation increases at separations of 30 nm. The origins of this type of dissipation are poorly understood. However, it is predicted theoretically that adsorbates can increase this dissipation channel (Volokitin and Persson 2005 Phys. Rev. Left. 94 086104). First experiments are performed under ultrahigh vacuum to investigate this type of dissipation. Long-range dissipation is closely related to long-range forces. The distance dependence of the contact potential is found to be an important aspect.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Nanomechanik (Meyer)
UniBasel Contributors:Meyer, Ernst
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:IOP Publ.
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:27
Deposited On:22 Mar 2012 13:58

Repository Staff Only: item control page