edoc

Dynamic superlubricity on insulating and conductive surfaces in ultra-high vacuum and ambient environment

Gnecco, E. and Socoliuc, A. and Maier, S. and Gessler, J. and Glatzel, T. and Baratoff, A. and Meyer, E.. (2009) Dynamic superlubricity on insulating and conductive surfaces in ultra-high vacuum and ambient environment. Nanotechnology, Vol. 20, H. 2 , 025501, 7 S..

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5262096

Downloads: Statistics Overview

Abstract

Atomic-scale friction between a sharp tip at the end of a micro-fabricated silicon cantilever and atomically flat surfaces (NaCl, KBr, HOPG and mica) can be significantly reduced by piezo-induced perpendicular mechanical oscillations at specific resonance frequencies of the cantilever in gentle contact with the sample. The reported measurements confirm and extend the applicability of the effect recently demonstrated using electro-capacitive actuation on alkali halide surfaces in ultra-high vacuum (Socoliuc et al 2006 Science 313 208). A controlled reduction of friction is now observed even on a conductive surface and under ambient conditions, which is quite promising for applications to micro-electromechanical devices. The theory previously used to interpret `dynamic superlubricity` is supported by new measurements showing that the contact can be maintained in that regime and that the initial reduction of friction is linear versus oscillation amplitude. The calibration of the oscillating component of the normal force is also discussed.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Nanomechanik (Meyer)
UniBasel Contributors:Meyer, Ernst
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:IOP Publ.
ISSN:0957-4484
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:27
Deposited On:22 Mar 2012 13:57

Repository Staff Only: item control page