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Summary 

In mammals, fertilization triggers a cascade of events leading to the formation of a totipotent 

embryo from two highly specialized gametes. During this process both parental genomes 

undergo major epigenetic programming, suggesting a potential causal relationship between the 

two events. Several studies in mouse indicate that chromatin states of maternal and paternal 

genomes are initially highly asymmetric. At gamete fusion, maternal chromatin exists in a 

nucleosomal configuration marked by many distinct types of histone lysine methylation. 

Paternally, inheritance of nucleosomal chromatin and modifications is limited because of an 

extensive exchange of histones by protamines during spermiogenesis. Consequently, the 

paternal genome becomes de novo methylated at different lysine residues in a highly spatially 

and temporally coordinated manner after the protamine to histone exchange. The aim of this 

PhD project was to study the dynamics and biological function of histone lysine methylation in 

the maternal germ line and during pre-implantation development. In particular, I addressed the 

parental influence on the establishment of constitutive heterochromatin after fertilization. 

In eukaryotes, Suv39h H3K9 tri-methyltransferases are required for pericentric 

heterochromatin formation and function. In early mouse pre-implantation embryos, however, 

paternal pericentric heterochromatin lacks Suv39h-mediated H3K9me3 and downstream marks. 

Here we demonstrate Ezh2-independent targeting of a maternally provided Polycomb 

repressive complex 1 (PRC1) to paternal heterochromatin. In Suv39h2 deficient zygotes, PRC1 

also associates with maternal heterochromatin lacking H3K9me3, thereby revealing hierarchy 

between repressive pathways. In Rnf2 maternally deficient zygotes, the PRC1 complex is 

disrupted and levels of pericentric major satellite transcripts are increased at the paternal but 

not maternal genome. We conclude that in early embryos PRC1 functions as the default 

repressive back-up mechanism in absence of H3K9me3. Parental epigenetic asymmetry, also 

observed along cleavage chromosomes, is resolved by the end of the 8-cell stage, concurrent 

with blastomere polarization, marking the end of the maternal to embryonic transition. 

In mammals, Polycomb group targeting mechanisms remain poorly understood despite 

genome-wide studies identifying Polycomb target genes in different cell types. Using a 

heterologous ES cell system, we show that PRC1 recruitment to pericentric heterochromatin is 

mediated by the Cbx2 chromodomain and AT hook motif. We provide first evidence that the 

Cbx2 AT hook is also involved in heterochromatin and possibly euchromatin targeting in early 

embryos. Moreover, these studies are complemented by a bioinformatics approach to explore a 

potential role of the Cbx2 AT hook in the recognition of PRC1 target genes. 

Taken together, our studies revealed an unanticipated function of PRC1 proteins in the 

establishment of paternal heterochromatin in early mouse embryos. We discuss the potential 

role of Polycomb proteins in guiding other important events during pre-implantation 

development. Finally, we characterize the PRC1 binding mode to heterochromatin which may 

however also be involved in PRC1 recruitment to target genes. 
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Abbreviations 

aa  amino acid 

AT1  AT hook motif 1 

bp  base pair 

BrdU  5-bromo-2-deoxyuridine 

BrUTP  5-bromouridine-5-triphosphate 

CD  chromodomain 

cDNA  complementary DNA 

ChIP  chromatin immuno-precipitation 

CTD  carboxy terminal domain 

DAPI  4,6-diamidino-2-phenylindole 

Dnmt  DNA methyl transferase 

dsRNA  double-stranded RNA 

EM  equatorial division followed by meridional division 

EPI  epiblast 

ES  embryonic stem 

FCS  fetal calf serum 

FISH  fluorescence in situ hybridization 

FRAP  fluorescence recovery after photobleaching 

GFP  green fluorescent protein 

GO  gene ontology 

GV  germinal vesicle oocyte 

H2AK119ub1 histone H2A lysine 119 mono-ubiquitination 

H3K27me3 histone H3 lysine 27 tri-methylation 

HAT  histone acetyl transferase 

HCNE  highly conserved non-coding elements 

HDAC  histone deacetylase 

HDM  histone demethylase 

HMG  high mobility group 

HMT  histone methyl transferase 

HP1  heterochromatin protein 1 

ICM  inner cell mass 

ICSI  intra-cytoplasmic sperm injection 

IVF  in vitro fertilization 

JmjC  Jumonji C 

kb  kilo base 

LIF  leukemia inhibitory factor 

MII  metaphase II oocyte 

ME  meridional division followed by equatorial division 

5meC  5-methyl cytosine 
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MEF  mouse embryonic fibroblast 

miRNA  micro RNA 

NPB  nucleolar precursor body 

NPC  neural progenitor cell 

NSN  non-surrounding nucleolus oocyte 

NT  nuclear transfer 

PcG  Polycomb group 

PCH  pericentric heterochromatin 

PCR  polymerase chain reaction 

PE  primitive endoderm 

PN  pronucleus 

PRC  Polycomb repressive complex 

PRE  Polycomb response element 

RNAi  RNA interference 

RNAP  RNA polymerase 

ROSI  round spermatid injection 

RT-PCR reverse transcriptase PCR 

SCNT  somatic cell nuclear transfer 

SELEX  systematic evolution of ligands by exponential enrichment 

SET  Suppressor of variegation, Enhancer of Zeste, Trithorax 

SN  surrounding nucleolus oocyte 

ssRNA  single-stranded RNA 

SUMO  small ubiquitin-related modifier 

TCR  transcription requiring complex 

TE  trophectoderm 

TE buffer Tris-EDTA buffer 

TF  transcription factor 

TrxG  Trithorax group 

TS  trophoblast stem 

TSA  trichostatin A 

TSS  transcription start site 

ZGA  zygotic genome activation 
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1. Introduction 

Mammalian development begins at fertilization of the oocyte by the sperm leading to the 

formation of a totipotent zygote that has the ability to differentiate into an array of specific cells. 

A coordinated program of proliferation and differentiation will subsequently result in the 

formation of all the distinct cell types and tissues found in the adult organism. As embryonic 

cells differentiate, certain genes are activated while others are repressed resulting in a unique 

pattern of gene expression in each cell type. This process is directed by transcription factors 

binding to specific promoter and enhancer sequences. In addition chromatin plays a significant 

role as substrate for many genetic processes inside the nuclei of eukaryotic cells. Initially, 

chromatin was viewed as a static entity in which DNA was packaged to condense and maintain 

the integrity of such a large macromolecule. However, the chromatin template undergoes 

dynamic changes during many genetic processes such as DNA replication and repair, 

recombination, cell cycle progression and during gene expression. The basic unit of chromatin 

is the nucleosome consisting of 147 bp of DNA wrapped around a histone octamer that is 

composed of two copies each of H2A, H2B, H3 and H4. It is now well established that covalent 

modifications at the N-termini of histones and at histone cores, like histone phosphorylation, 

acetylation, methylation and ubiquitination, play a major role in maintaining differential patterns 

of gene expression. In addition to regulating chromatin compaction, modified nucleosomes 

affect gene expression by providing binding sites for regulatory proteins. The information that 

mediates inheritance of a given expression state without inducing alteration in the DNA 

sequence is termed epigenetic information. 

DNA methylation and histone modifications have been shown to regulate specific gene 

expression but they also affect the organization of chromatin to maintain the basic structure of 

chromosomes, and thus are important as regulators at the chromosome level. DNA methylation 

results from the addition of a methyl group to the 5 position of cytosine (5meC) and in mammals 

occurs almost exclusively at CpG dinucleotides. DNA methylation is in general associated with 

gene silencing and chromosome stability. The DNA methylation pattern in somatic cells is 

relatively stable and is maintained during each replication cycle. In contrast, histone acetylation, 

found on N-terminal lysine residues of histones H3 and H4, is mainly present in regions of 

transcriptional activation. Histone acetylation is viewed as a relatively dynamic mark that 

depends on a balance of the opposing activities of histone acetyltransferases (HATs) and 

histone deacetylases (HDACs). Another well-studied histone modification is histone 

methylation, which occurs on lysine and arginine residues, and exists in a mono-, di- or tri-

methylated state. Histone methylation can either be activating or repressive depending on the 

residue of the histone tail to which the mark is added. Histone methyltransferase (HMT) activity 

is found in a family of enzymes with a conserved SET (Suppressor of variegation, Enhancer of 

Zeste, Trithorax) domain. 

In all, a complex epigenetic system has evolved to coordinate and maintain tissue-specific 

patterns of gene expression, and thus contributes to cellular differentiation and lineage 

commitment during embryonic development. 



 7

1.1. Constitutive heterochromatin 

At the beginning of the twentieth century, cytological observations by Emil Heitz recognized 

regions of moss chromosomes that remained condensed and densely stained throughout the 

cell cycle 4. These domains were named heterochromatin, while regions that de-condensed 

during interphase well called euchromatin. Later, the term constitutive heterochromatin was 

coined to describe domains that remain condensed during the cell cycle and during 

development, involving chromosomal regions with a high density of repetitive DNA elements like 

transposable elements and satellite sequences, present at telomeres and centromeres. In 

contrast, facultative heterochromatin, present at developmentally regulated genes or at the 

inactive X chromosome in female mammals, can change its chromatin state in response to 

developmental signals. 

Centromeres are key chromosomal regions essential for chromosome segregation during 

mitosis and meiosis. The inner centromere, which is directly involved in kinetochore function, in 

mouse is composed of 120 bp minor satellite repeats 5, giving rise to centromeric 

heterochromatin. The surrounding regions are made up of major satellite repeats consisting of 

234 bp monomers that are tandemly arranged into arrays extending over a length ranging from 

140 kb to more than 2,000 kb in mammalian cells 6. These regions form large blocks of 

pericentric heterochromatin (PCH), a typical example of constitutive heterochromatin. Major 

satellite repeats are highly AT-rich in mouse, and therefore can be easily recognized by staining 

with dyes like 4,6-diamidino-2-phenylindole (DAPI), preferentially binding to AT base pairs. 

During interphase, PCH from several chromosomes cluster together as chromocenters, while 

minor satellites remain as separate entities, in close association with the chromocenters 7. 

Centromeric sequences are not found to be conserved between various species, indicating that 

the repetitive nature rather than any particular DNA sequence triggers heterochromatin 

formation 8. Once the chromatin organization is established, it has to be stably maintained 

through numerous cell divisions. 

1.1.1. Suv39h pathway 

Pericentric heterochromatin is characterized by a number of specific chromatin modifications, 

including hypoacetylation and tri-methylation at histone H3 lysine 9 (H3K9me3). In mammals, 

H3K9me3 is mediated by the Suv39h1 and Suv39h2 HMTs 9, creating a binding site for the 

heterochromatin protein 1 (HP1) 10,11. In mammals, three isoforms exist, HP1α, HP1β and HP1γ, 

which are primarily associated with PCH, but HP1β and particularly HP1γ are also found at 

euchromatic sites 12. HP1 contains an N-terminal chromodomain (CD) that recognizes the H3K9 

methylation mark and a C-terminal chromo shadow domain (CSD) which functions as a 

dimerization module to promote self-association and compaction 13. The CD and CSD are linked 

by a flexible hinge region. The HP1 chromodomain specifically recognizes H3K9me histone 

tails, which insert into a pocket of aromatic caging residues within the CD 14,15. Although 

H3K9me3 is required for PCH targeting of HP1 11, it does not seem to be sufficient. In 

mammalian cells, HP1 detection at chromocenters requires a structural RNA of unknown 

identity 12. The HP1 RNA binding domains has been shown to lie within the hinge region 16. 
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Moreover, HP1 isoforms can be modified by various post-translational modifications, and 

phosphorylation of HP1 profoundly affects its chromatin and protein binding properties 17. 

Similarly, the acetylation status of SUV39H1, which is regulated by the NAD+–dependent 

histone deacetylase SIRT1, has been recently shown to affect its HMT activity 18. Suv39h HMTs 

are able to both methylate H3K9 and to bind to HP1, suggesting that once heterochromatin 

formation has been initiated, it can be propagated in a self-sustaining loop 12. 

Even so heterochromatin domains are perceived to be highly stable, HP1 binding to PCH is 

highly dynamic 19,20. HP1 association with methylated H3K9 can be regulated by 

phosphorylation of the adjacent S10 residue, leading to dissociation of HP1 from chromatin 

during mitosis 21,22. In mammals, HP1 interacts with the DNA methyl transferases Dnmt1 and 

Dnmt3a/b 23, directing DNA methylation to major satellite repeats 1. Moreover, additional 

repressive histone methylation at H4K20 is mediated by the recruitment of the Suv4-20h HMTs 
24. Taken together, mammalian PCH is marked by a number of characteristic chromatin 

modifications (Fig. 1), establishing a transcriptionally repressed state. Loss of Suv39h-mediated 

chromatin modification leads to an increase in major satellite transcription 1. Importantly, in 

Suv39h-deficient mice chromosome segregation is perturbed, indicating that proper marking of 

PCH is essential to ensure correct chromosome segregation and genome stability 9. 

Figure 1: Pericentric heterochromatin. Suv39h-mediated H3K9me3 directs chromatin binding 
of the heterochromatin protein HP1, which targets the two H4K20me2/3-specific Suv4-20h 
HMTs and the Dnmt3a/3b DNA methyltransferases, to establish a transcriptionally repressed
state. It has been proposed that the methylated histone tails are arranged in a specific
configuration dependent on a structural RNA which is required for HP1 accumulation at 
chromocenters, as detected by immunofluorescence. 
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1.1.2. Heterochromatin establishment 

Most of what we know about the mechanisms of heterochromatin establishment comes from 

studies in the fission yeast S. pombe. In this organism H3K9 methylation at the outer 

centromeric dg and dh repeats is mediated by the Clr4 HMT, providing a binding site for the CD 

proteins Swi6, Chp1 and Chp2. Clr4-dependent H3K9me is initiated independent of Swi6, but 

subsequent spreading of H3K9me strictly requires Swi6 25, suggesting that Swi6 when bound to 

H3K9me serves as assembly platform for chromatin modifying factors that are involved in 

spreading of PCH 26. In S. pombe, deletion of key components of the RNAi machinery (including 

Dcr1, Ago1 or Rpd1) results in loss of H3K9me and Swi6 localization, and derepression of 

centromeric DNA repeats 27,28. Chp1 is part of an RNA-induced transcription silencing (RITS) 

complex that also contains Ago1 and Tas3, a protein of unknown function. In addition, RITS 

contains siRNAs that originate from centromeric repeat regions. These siRNAs are required for 

efficient binding of RITS throughout centromeric repeats 29. Although in conflict with 

heterochromatin being highly condensed and transcriptionally repressed, centromeric repeats 

are transcribed by RNA polymerase II to produce non-coding RNAs that could act as templates 

for RITS 30. S. pombe has an RNA-dependent RNA polymerase (RdRP) which can use ssRNA 

templates to generate dsRNA. The RNA-dependent RNA polymerase is part of the RDRC 

complex which interacts with the RITS complex. 

The emerging view is that siRNAs mediate the initial targeting of heterochromatin 

associated factors, resulting in the establishment of H3K9me. This in turn promotes the 

recruitment of the RITS complex to heterochromatin regions, functioning as a platform for the 

binding of other RNAi associated factors including RDRC, essential for the processing of 

nascent centromeric repeat transcripts into siRNAs. These siRNAs are part of positive feedback 

loop, triggering further the recruitment of the heterochromatin machinery 27,28. Altogether, 

heterochromatin formation seems to require a delicate balance between the need for 

expression and the need for silencing 28. Moreover, recent studies have shown that centromeric 

heterochromatin in not only required for the recruitment of cohesin but also to establish CENP-A 

on the central kinetochore domain 31. 

In contrast to fission yeast, Drosophila and mammals lack the canonical RNA-dependent 

RNA polymerase, suggesting that a different mechanism might be involved in heterochromatin 

propagation in these organisms 27,28, although recent evidence indicates that the RNA 

polymerase II might also be able to provide RdRP activity 32. Major satellite repeats are 

transcribed by RNA polymerase II in mammals, which is regulated in a cell cycle dependent 

manner 1,33. Moreover, loss of Dicer results in the accumulation of transcripts from 

heterochromatin repeats, suggesting that epigenetic silencing is impaired 34,35. The RNAi 

machinery has also been implicated in silencing and heterochromatin formation in Drosophila 36. 

Clearly, further work is needed to establish the mechanisms and order of events of pericentric 

heterochromatin formation in mammals. 



 10

1.2. Polycomb group complexes 

Polycomb proteins were originally identified in Drosophila as repressors of Hox genes based on 

their mutant phenotypes involving posterior transformations of body segments. In Drosophila, 

segmentation patterns along the Anterior-Posterior axis are established by the 'gap and pair 

rule' genes during the first hours of development. While the expression of these sequence 

specific activators and repressors is transient, the resulting transcriptional patterns persist. This 

memory system depends on the antagonistic function of the Trithorax (TrxG) and Polycomb 

(PcG) group of proteins. TrxG proteins maintain Hox gene expression pattern in the appropriate 

spatial domains, whereas PcG proteins restrict their expression. This function is conserved in 

vertebrates with several PcG mutants exhibiting skeletal transformations 37-40. At the molecular 

level, PcG proteins act as repressors of gene activation through the concerted function of at 

least two distinct classes of multimeric complexes, termed Polycomb repressive complexes 

(PRCs) (Fig. 2). 

1.2.1. PRC2 and H3K27 methylation 

Key components of PRC2 in Drosophila include Enhancer of zeste (E(Z)), Suppressor of zeste 

12 (SU(Z)12), Extra sex combs (ESC) and the nucleosome remodeling factor 55 (NURF55). 

PRC2 mediates repressive methylation at H3K27 through the histone methyltransferase E(Z) 

which does not show HMT activity alone but requires other complex members to be present 41-

43. E(Z) is responsible for global H3K27me1/2 and for H3K27me3 at PcG target genes 44,45. High 

levels of H3K27me3 at target genes, but not global H3K27me1/2, require the PcG protein 

Polycomb-like (PCL) 46, which has been proposed to act downstream of PHO/PHOL but 

Figure 2: Mouse and Drosophila Polycomb group complexes. At the molecular level, PcG 
proteins are classified into two groups based on their association with distinct multimeric
complexes, termed Polycomb repressive complexes (PRCs). In addition, several DNA binding
proteins associate with Polycomb proteins in Drosophila, most of which are not conserved in 
mammals. 
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upstream of PRC2 47. 

The mammalian PRC2 homologs comprise Enhancer of zeste 2 (Ezh2), Suppressor of 

zeste 12 (Suz12), Embryonic ectoderm development (Eed) and the histone binding proteins 

RbAp46/RbAp48. While Ezh2 confers HMT activity, Suz12 is required to stabilize the complex 

including the recruitment of RbAp48 48. In mammals, different isoforms of Eed direct the Ezh2 

HMT activity towards H1K26 (PRC2), H3K27me2/3 (PRC3) and SirT1 (PRC4) 49,50, though the 

in vivo functional significance of these specificities remains to be determined. Recently, the 

crystal structure of EZH2-EED interaction has been solved, revealing that EZH2 binds to the 

WD domain of EED 51. So far no mammalian H3K27me1 HMT has been identified; however, 

one report suggests that Eed is required for all H3K27me as part of an additional complex 

specific for H3K27me1 52. In contrast to H3K27me3 which is enriched at silent loci, H3K27me1 

has been detected downstream of the transcription start of active genes 53. In analogy to flies, 

the mammalian Polycomb-like protein PHF1 modulates EZH2 activity towards the repressive 

H3K27me3 mark 54. Interestingly, PcG regulation is linked to DNA methylation in mammals, 

suggesting that different repressive modifications cooperate to establish a silent state. EZH2 

has been shown to interact with DNMT1 and DNMT3A/B in vivo and is required for their binding 

and CpG methylation at PcG target promoters 55.  

1.2.2. PRC1 and H2A ubiquitination 

PRC2 mediated H3K27me3 provides a docking site for the PRC1 complex which recognizes 

methyl-lysine residues via the N-terminal chromodomain of Polycomb (PC) 15,56. PRC1 

complexes purified from flies contain stoichiometric amounts of PC, Posterior sex combs (PSC), 

Polyhomeotic (PH) and dRING, lower amounts of Sex combs midlegs (SCM) and additional 

proteins including ZESTE and numerous TBP-associated factors (TAFs) 57,58. In mammals, 

duplication of many PcG genes allows the assembly of PRC1 core complexes into various, 

functionally distinct sub-complexes depending on cell type and developmental stage 59-61. The 

PC chromodomain is well conserved in mammalian Cbx homologs (Cbx2, Cbx4, Cbx6, Cbx7 

and Cbx8) 61, displaying distinct in vitro binding specificities towards H3K27me3 and H3K9me3 
62. In addition, the Cbx proteins contain a conserved Pc Box at the C-terminus, a 15 amino acid 

motif necessary for interaction with Ring1a and Rnf2 61,63. The fly dRING and mammalian 

RING1A and RNF2 (RING1B) proteins contain a RING domain that mediates E3 ubiquitin ligase 

activity, resulting in mono-ubiquitination of histone H2A at K119 (H2AK119ub1) 64-66. Additional 

RING domains are present in the fly protein PSC and in mammalian homologs Bmi1 and Mel18 

(Rnf110), necessary to enhance the catalytic activity of Ring1a/Rnf2 67-69. Specifically, Mel18 

directs the E3 activity of Rnf2 towards H2AK119, requiring the prior phosphorylation of Mel18 

for its substrate-targeting function 68. Bmi1 directs self-ubiquitination of Rnf2 to generate atypical 

mixed chains necessary for H2A ubiquitination 70. 

H3K27me3 and H2AK119ub1 are thought to cooperate to mediate Hox gene silencing and 

the ubiquitination mark has been proposed to function downstream of H3K27me3 64,71. Purified 

and reconstituted PRC1 complexes from fly and human inhibit chromatin remodeling in vitro 
58,59,72,73. PRC1 proteins induce compaction of nucleosome arrays which requires the presence 
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of nucleosomes but not histone tails 74, suggesting a mechanism to account for the repressive 

activity of PcG proteins. However, there is no strong evidence to support PcG induced 

chromatin compaction in vivo 75. Instead, in vivo binding of PRC1 proteins is dynamic, 

exchanging rapidly within minutes 76. Recent live imaging studies suggest that mobility of PRC1 

proteins increases upon induction of ES cell differentiation but decreases again as 

differentiation progresses 77. Our understanding of how PcG proteins mediate their repressive 

function in vivo is still very limited. Access of the transcription machinery itself does not seem to 

be blocked; rather the activity of the transcriptional machinery at the promoter is affected by 

PcG proteins, preventing transcription initiation by the RNA polymerase (RNAP) 78. A recent 

study analyzing bivalent genes in ES cells supports this idea by showing that RNAP assembles 

at the promoters of these genes but is held in check by PRC1-mediated H2A ubiquitination 79. 

Clearly, further studies are needed to elucidate how PcG proteins repress transcription at 

the molecular level. The classical model of PcG function suggests that the H3K27me3 mark 

placed by PRC2 leads to recruitment of PRC1 and ultimately H2A ubiquitination, resulting in a 

heritable repressed state. However, a number of reports studying different genomic contexts, 

including X chromosome inactivation 80, gene promoters 81 and constitutive heterochromatin 

(Chapter 2.2), indicate that PRC1 targeting does not always rely on the presence of the H3K27 

methylation mark. 

In our way of thinking of PcG proteins as part of an epigenetic memory system, the 

H3K27me3 chromatin mark may provide a means to re-target the PRC complexes after mitotic 

divisions. Although modified histones are randomly distributed to daughter strands 82, thereby 

diluting the chromatin marks, they could be reestablished by PRC complexes recruited through 

the remaining modifications. We tend to assume that PcG-mediated chromatin modifications 

fully account for repression, but it is possible that they are just by-products of PcG complexes 

delivering their function to the right place 75. In light of this it is interesting to note that HMTs can 

modify other targets than histones 83-85 (reviewed in 86). Moreover, the role of chromatin 

modifications versus histone-independent functions of PRC complexes can only be addressed 

by expressing catalytically dead HMTs and E3 ligases at endogenous levels. So far, there are 

few examples of such mutants. One allele has been described in flies with a point mutation in 

the catalytic domain of the RING ubiquitin E3-ligase (Sce33M2) 87. Sce33M2 mutant flies display 

homeotic transformations but to a lesser extent than Sce1 mutants that express a truncated 

RING protein 87, suggesting that ubiquitination of H2A contributes to PcG-mediated repression 

but cannot fully account for PRC1 function. Similar approaches should be applied in 

mammalians systems and would certainly shed further light on the role of chromatin 

modifications in maintaining cell identities during development as part of an epigenetic memory 

system.  

1.2.3. Polycomb mediated chromatin marks are reversible 

With the recent identification of histone demethylases (HDMs) of the Jumonji (Jmj) family, our 

view of histone methylation as a permanent, heritable mark has changed drastically. The human 

genome encodes 27 proteins with JmjC domains, of which 15 have been shown to demethylate 
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histone lysines 88. Two of these demethylases, UTX and JMJD3, are specific for H3K27me 89-92. 

In vitro, both enzymes catalyze the transition from H3K27me3 and H3K27me2 to H3K27me1 on 

bulk histones, requiring Fe(II) and α-ketoglutarate as cofactors for the oxidative demethylation 

reaction. 

UTX is localized on the X chromosome, but escapes X inactivation in females. UTY is the 

male counterpart, localized on the Y chromosome, but is in vitro enzymatically inactive under 

the same assay conditions, possibly requiring different cofactors 91. Inhibition of UTX in HeLa 

cells results in a global increase in H3K27me3, suggesting that histone demethylation is 

continuously required to maintain a precise level of methylation 90. Consistent with the loss of 

H3K27me3 observed at HOX genes during differentiation, UTX is recruited to the promoters of 

several HOX genes, coinciding with the disappearance of H3K27me3 and decreased PRC2 

occupancy 90,91. Knockdown of UTX leads to increased H3K27me3, enhanced binding of PRC1 

proteins and increased H2Aub at HOX genes, resulting in their downregulation 91,92. In 

zebrafish, morpholino oligonucleotide inhibition of Utx1, one of the two zebrafish UTX 

homologs, leads to decreased expression of Hox genes and improper development of the 

posterior trunk 91. These defects could be partially rescued by wild-type but not catalytically 

inactive human UTX, suggesting that demethylase activity is required for proper posterior 

patterning. Overexpression of JMJD3, but not UTX, results in global H3K27 demethylation in 

vivo, resulting in delocalization of CBX8 90. Jmjd3 is expressed in macrophages upon induction 

by inflammatory stimuli, suggesting that it might contribute to macrophage plasticity 89. 

Moreover, mutation of one of the three JMJD3 homologs in C. elegans results in impaired 

gonad development 90. 

In addition to HDMs, recently a number of mammalian deubiquitinating (DUB) enzymes 

have been characterized including the ubiquitin-specific proteases USP3, USP16 (Ubp-M), 

USP21 and 2A-DUB 93-96. USP3 deubiquitinates both H2A and H2B, is required for S phase 

progression and is involved in the response to DNA double strand breaks 95. In contrast, USP21 

is specific for H2A. In vitro H2Aub specifically represses transcription initiation by inhibiting 

H3K4me, which is relieved by USP21-mediated deubiquitination 95. The deubiquitinating 

enzyme USP16 might be linked to TrxG/PcG-mediated regulation, as blocking its function leads 

to defective posterior development in Xenopus laevis 93. 

How PcG complexes impose cellular memory when their modifications can be dynamically 

altered remains to be determined. In any case, a strict regulation of both the expression and 

recruitment of HDMs and deubiquitinating enzymes is required. Interestingly, a number of 

demethylases are found in complexes together with the HMTs specific for the lysine residues 

antagonistic to the marks removed by the HDM 88,89,92,97-99. UTX has been found in a complex 

together with MLL2, a H3K4-specific HMT of the trithorax group of proteins 92,97,98. Similarly, 

JMJD3 co-immunoprecipitates with RbAp5, which is an essential component of different 

multimeric MLL complexes 89. Vice versa, the H3K4-specific demethylase RBP2 (JARID1A) co-

purifies with the PRC2 complex 88. The presence of both histone methyltransferases and 

demethylases in one complex allows switching of transcriptional states by erasing pre-existing 

modifications followed by their replacement with new chromatin marks – a mechanism that 
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might be important during developmental transitions allowing cellular identities to switch fate 100-

102. 

1.2.4. Targeting of PcG complexes 

How PcG proteins are recruited to their target sequences is still poorly understood, 

especially in mammalian systems. In Drosophila, a number of DNA binding proteins have been 

found to associate with PcG complexes. Drosophila pleiohomeotic (PHO) and pleiohomeotic-

like (PHOL) encode DNA binding proteins with homology to the mammalian transcription factor 

YY1 63,103-106. PHO interacts with PRC2 and PRC1 59,71,107, and complex purification identified a 

PHO repressive complex (PhoRC) containing the PcG protein dSFMBT 106. In Drosophila a 

number of specific DNA modules, called Polycomb response elements (PRE), have been 

identified that control the transcriptional status of their associated promoters at a distance. Much 

information about the structure and function of these PREs comes from a few well characterized 

examples including the engrailed, Fab-7 and bxd elements 108. PREs are typically a few 

hundred base pairs long and contain many conserved short motifs that are recognized by DNA 

binding proteins. These include clusters of GAGAG bound by the GAGA factor (GAF) and 

pipsqueak (PSQ) 109,110, binding sites for PHO/PHOL and some more PRE specific binders like 

SP1 (KLF) 111 and the HMG-like protein DSP1 112, suggesting that a large number of factors 

might contribute to PcG targeting to PREs. 

Polycomb response elements (PREs) in Drosophila 

The number and topological order of consensus motifs for these proteins are not 

conserved between PREs 75,108. Ringrose and colleagues have used an algorithm to search for 

putative PREs using the consensus binding sites for GAF, PHO and ZESTE as basis 113. In 

addition, they took into account that clustered motifs may allow more effective binding. This 

approach identified more than hundred presumptive PREs in Drosophila, of which several 

candidates could be confirmed by ChIP and in transgenic assays 113. Since then a number of 

large-scale PcG binding studies became available, comprising different cell types and 

developmental stages 45,114,115. Taken together, only approximately 20% of the identified PcG 

binding sites were predicted by the algorithm 108, suggesting that in vivo other proteins than 

GAF, PHO and ZESTE may recruit PcG. This is supported by a study indicating that a synthetic 

PRE requires DSP1 binding sites in addition to GAF, PHO and ZESTE to support PRE function 
112. Conversely, many predicted PREs were not bound by PcG proteins in these assays, 

including some that were confirmed in transgenic approaches, possibly reflecting tissue and 

stage specific usage of PREs during development, or technical limitations in the detection of 

weak PcG binding. 

One classical hypothesis suggests that PRE binding factors recruit PRC2 proteins and the 

ensuing H3K27me3 would in turn recruit PRC1 75. Evidence for sequential binding comes from 

studies of the ubx PRE where PHO/PHOL recruit E(Z) leading to H3K7me and subsequent 

PRC1 targeting 71. Moreover, inactivation of E(Z) results in the loss of PRC1 binding from 

polytene chromosomes 42 and likewise PC binding can be competed with H3K27me3 peptides 
116. In contrast, ChIP data in flies argues against such a model 45,117,118. While PRC2 and PRC1 
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complexes peak sharply at known PREs, H3K27me3 is distributed over the entire transcription 

unit and upstream regulatory regions, often spanning several 10 kb. Although the distribution of 

PC is broader than that of other PRC1 members, PC declines gradually from PREs and does 

not parallel the H3K27me3 mark. In light of several ChIP and nuclease mapping studies 

suggesting that PREs are depleted of nucleosomes in vivo, it is interesting that PHO has been 

suggested to wrap the PRE DNA around its own surface, rather than the histone core 119.  

Although a number of PREs are known in flies and more PcG binding sites have been 

identified by genome-wide mapping approaches, the molecular mechanisms of PcG targeting 

are not well characterized. It remains open how PcG present at PREs, which are often far away 

from their target promotes, can induce silencing. It has been suggested that PRE-bound 

complexes loop out to contact their target promoter. In Drosophila, silent endogenous and 

transgenic PREs have been found to associate, with long distance nuclear interactions 

enforcing PcG mediated silencing 120-123. Moreover, PREs and PcG target promoters cluster and 

localize to PcG bodies 121. But then, how do PcG proteins interfere with transcriptional 

activation? At PREs a strong correlation can be established between H3K27me3 levels 

surrounding the PRE and PC binding to the PRE, but there is not always a clear correlation 

found to their transcriptional activity 116. Likely other chromatin determinants contribute to 

silencing of PcG target genes. The RNAi machinery is involved in the maintenance of long-

range contacts of transgenic Fab-7 copies and the association of endogenous homeotic genes, 

suggesting that RNAi might increase PcG-mediated silencing through an effect on nuclear 

organization 124. The RNAi machinery does, however, not seem to be involved in the recruitment 

of PcG complexes to their target sequences. 

PcG targeting mechanisms in mammals 

So far, no PREs have been indentified in mammals, despite the availability of large-scale ChIP 

data sets for chromatin modifications and different PRC2 and PRC1 members 2,53,125-127. Likely, 

PcG target regions do not contain a simple arrangement of consensus motifs. The Drosophila 

DNA binding proteins GAF, PSQ and ZESTE are not conserved in mammals. Instead, DNA 

binding transcription factors might hold the key for PcG recruitment to their target genes in 

different cell types and at different developmental stages. In ES cells, there is a significant 

overlap between genes bound by the pluripotency transcription factors OCT4, SOX2 and 

NANOG and PcG target genes 127. 

Another valid approach that has been taken recently to identify regulatory regions in 

mammalian genomes is the search for highly conserved non-coding elements (HCNE). 

Comparison of human and chimpanzee genomes identified approximately 200 genomic regions 

where the CpG distribution is far more conserved than predicted 128. Interestingly, many of these 

HCNEs coincide with domains bound by PRC2. Moreover, most of the HCNEs identified by 

comparison of human and the pufferfish Fugu rubripes are located around genes that act as 

developmental regulators 129. However, at the global scale, only 8% of HCNE regions are bound 

by Suz12 and the highest peaks of PcG binding do not appear to correlate strongly with regions 

of highest conservation 108. The small percentage of HCNEs bound by PcG does not necessary 
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argue against their role in PcG targeting, as likely other not PcG related regulatory sequences 

will be conserved. Functional tests of such elements will be required to elucidate their 

contribution to PcG recruitment. 

Yet another interesting possibility for PcG targeting comes from the analysis of 

transcription across human HOX gene clusters that identified a large number of non-coding 

RNAs 130,131. Sessa and colleagues suggest that intergenic antisense transcription might be 

important for the opening and maintenance of the active state at adjacent HOXA genes 131. In 

analogy, in Drosophila it has been shown that non-coding transcription through a PRE prevents 

the establishment of PcG silencing 132. Transcription through endogenous PREs can be 

detected at different stages of fly development, suggesting that it is required continuously as 

anti-silencing mechanism. In contrast, Rinn and colleagues identified a 2.2 kb non-coding RNA 

in the human HOXC locus, termed HOTAIR, which represses transcription in trans 130. Most 

importantly, HOTAIR interacts with PRC2 and is involved in PRC2 recruitment and H3K27me3 

of the HOXD locus. Clearly, a lot of work is still needed to fully understand PcG targeting in 

Drosophila and to get to targeting mechanisms in mammals. Probably a number of different 

mechanisms will collaborate to account for cell type specific regulation. 

1.2.5. Role of PcG proteins in development, pluripotency and disease 

Polycomb functions during development 

Mouse mutants for any PRC2 members result in embryonic lethality 48,133-135. They either cease 

development after implantation or initiate but fail to complete gastrulation, demonstrating that 

Polycomb function is essential for proper embryonic development. In addition, mice generated 

from oocytes lacking maternal Ezh2 but expressing Ezh2 from the paternal allele (resulting in 

Ezh2 protein from the 4-cell stage onwards) are post-natally growth retarded 136. This study by 

Erhardt and colleagues has often been held as an example in the literature for the very early 

requirement of PcG proteins during development, even before implantation. The idea is very 

tempting that the transient lack of a chromatin modifier early in development can have such 

long-term effects on the developmental outcome. Unfortunately, we were not able to reproduce 

these data with our maternal Ezh2 mutant embryos (unpublished results) that were generated 

with a different conditional targeting strategy (Chapter 2.2), arguing that the different alleles 

might affect molecular mechanisms to a different degree. 

Deletion of several PRC1 members leads to homeotic transformations 37-40. The most 

severe phenotype, resulting in embryonic lethality, is observed for ablation of Rnf2 137, indicating 

that PcG silencing requires both PRC complexes during development. Deletion of Rnf2 results 

in gastrulation arrest and cell cycle inhibition. With respect to the differences in the severity of 

Rnf2 and Ring1a phenotypes 38,137, it is interesting that global H2A ubiquitination levels are 

drastically reduced in Rnf2 but not Ring1a mutant ES cells 138.  The less severe phenotypes of 

the other PRC1 members might be to some extent explained by functional redundancy of the 

different mouse PRC1 homologs. 
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Polycomb proteins and the regulation of pluripotency 

In addition to the embryonic defects of PcG mutants, PRC1 members play a role in the 

maintenance and proliferation of adult stems cells 139,140. Deletion of Bmi1 results in loss of 

hematopoietic stem cells and also affects neuronal and mammary stem cells 140-143. Moreover, 

PRC2 proteins seem to be involved in maintaining the pluripotent state of embryonic stem cells. 

ES cells deficient for Eed tend to differentiate spontaneously, whereas Suz12 mutant ES cells 

can be derived and expanded in culture but have impaired differentiation potential 81. O'Carroll 

and colleagues could not derive ES cells from Ezh2 mutant blastocysts, suggesting that Ezh2 is 

required to maintain the pluripotent state 135. We used our conditional mice (Chapter 2.2) to 

establish Ezh2 F/F ES cells. Transfection of these cells with Cre expression plasmids results in 

Ezh2 mutant ES cells that can be normally maintained (M.P. and E. Posfai, unpublished). 

Maybe Ezh2 is required for the generation of ES cells from blastocysts but dispensable 

thereafter? If so, then Ezh2 is likely to have H3K27me3-independent functions during ES cell 

derivation as Suz12 mutant blastocysts devoid of global H3K27me3 give rise to ES cells.  

Large scale ChIP studies during recent years confirm that PcG target genes do not only 

include Hox genes but also other key regulators of development 2,125,144. It seems that in any 

given cell, most alternative transcription programs, not required for this cell type, are repressed 

by PcG silencing mechanisms 75. However, not all of the genes bound by PcG proteins are 

destined to be shut down permanently 145. Many of the developmental transcription factors 

repressed in ES cells become expressed upon entry into specific differentiation programs. 

Given this flexibility, the discovery of so called 'bivalent domains' in ES cells 144, that are marked 

by the presence of both active H3K4me and repressive H3K27me chromatin marks, was taken 

up with much excitement. It was suggested that bivalent domains silence developmental 

regulators in ES cells while keeping them 'poised' for later activation 144,146. Subsequent studies 

indicate that most of the genes in ES cells fall into three groups 3,147,148. Genes that are only 

marked by H3K4me3 are associated with high levels of expression and mainly comprise genes 

involved in the general metabolism. In contrast, the second group of genes, marked by both 

H3K4me3 and H3K27me3, is expressed at low levels 79,126 and is characterized by 

developmental regulators. Genes lacking either mark are generally not expressed and related to 

more tissue-specific functions. Upon differentiation of ES cells into neural progenitor cells 

(NPCs), approximately half of the bivalent domains are resolved to H3K4me3 alone and 

become highly expressed in NPC 3. The remaining genes retain their low expression and either 

resolve into H3K27me3 alone or loose both marks, whereas only a small percentage remains 

bivalent 3. Thus, bivalency does not only predispose genes for future activation but can also 

result in repression. Moreover, bivalent domains are not unique to ES cells as initially thought 

but are also found in differentiated cells, like NPCs, MEFs and T cells 3,149. However, the 

number of genes marked by bivalency in differentiated cells is much lower compared to ES 

cells, suggesting that the resolution of these domains is closely related to the commitment of 

cells. With progressive commitment, lineage choices become increasingly limited by the 

resolution of 'poised' promoter states into either ON or OFF states 145. 
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Polycomb proteins in cancer 

The PRC1 protein Bmi1 has been identified as a proto-oncogene that cooperates with Myc to 

promote the generation of B- and T-cell lymphomas 150,151. Bmi1 inhibits Myc induced apoptosis 

through the repression of the Ink1a-Arf (Cdkn2a) locus 152,153. INK4A encodes a cyclin-

dependent kinase inhibitor that activates the retinoblastoma (RB) pathway, while ARF induces 

the transcription factor p53 154. These proteins need to be activated upon stress, oncogene 

activation or senesce. The INK4A-ARF locus is also targeted by number of other PcG proteins, 

including CBX4, CBX7, CBX8, MEL18, RNF2, EZH2 and SUZ12 137,152,155-157. CBX7 was shown 

to extend the life span of human and mouse cells by bypassing replicative senescence through 

downregulation of the INK4A-ARF locus 157. Similarly, ectopic expression of CBX8 leads to 

repression of the Ink4a locus and immortalization of mouse embryonic fibroblasts 155. However, 

PcG proteins might also function through alternative pathways, as INK4A-ARF independent 

effects on cellular proliferation were reported for EED and PHC1 140,158. There is evidence that 

PcG proteins are also involved in cell cycle regulation in Drosophila, suggesting that the Cyclin 

A gene is directly controlled by PcG proteins 159. 

The importance of proper levels of PcG expression is highlighted by the fact that several 

PcG proteins are misregulated in different types of human cancers 160. For example, SUZ12 

overexpression has been found in colon and breast cancers 161. Moreover, EZH2 expression is 

associated with poor prognosis of cancer 162,163. Strikingly, a significant proportion of PcG 

targets genes is silenced in human tumors by DNA methylation, suggesting that PRC2 could 

promote tumorigenesis by specifically recruiting DNA methyltransferases to tumor-suppressor 

genes 160. Another interesting hypothesis suggests that PcG proteins may influence tumor 

development through 'misspecification' of cells towards the stem cell fate, particularly attractive 

in light of the 'cancer stem cell' hypothesis 160. 

1.2.6. Recent advances in our understanding of PcG function 

One of the fundamental mechanistic challenges in development represents the need to maintain 

the transcription pattern of key regulatory genes throughout the life time of an organism 164. The 

Polycomb proteins were identified as part of a cellular memory system that perpetuates Hox 

gene expression pattern after they have been established during embryogenesis. Recent 

studies in mammalian systems have, however, implicated Polycomb proteins in much more 

widespread functions in many different cell types. Especially the identification of key regulators 

of different developmental programs among PcG target genes suggests that PcG proteins may 

function already much earlier in development, before Hox gene expression patterns are 

established (~E6.5 in mouse). Along these lines, it is interesting to note that H3K27me3 is 

asymmetrically localized in inner and outer cells of morula and blastocyst embryos 136. It will be 

exciting to dissect the role of PcG proteins during pre-implantation development when the first 

lineage choices are made. 

Since the discovery of histone demethylating enzymes, our way of thinking of PcG 

mediated chromatin modifications as stable, heritable marks has been challenged. Moreover, 

active and repressive histone methylation can co-exist on the same promoter, indication that the 
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transcriptional outcome is mediated by a fine balance of two opposing systems 108. Interestingly, 

a theoretical model predicts that histone modifications can be highly dynamic without 

compromising stability 165. It suggests that bistable systems are resistant both to high noise and 

to random partitioning upon DNA replication. 

In addition, the concept of epigenetic stable silencing, that is established during early 

development and maintained throughout life, does not seem to be a general rule 75. Several 

examples 100-102 show that such a regulatory system can guide commitment and differentiation 

into different lineages, but at the same time remains flexible to respond to certain environmental 

and developmental cues 166. Bivalent domains have been suggested to provide means to 

postpone the decision of gene activation or repression to later stages of development 145. 

Accordingly, commitment of cells to a permanent cell fate may require recruitment of additional 

repressive mechanisms to manifest silencing. 

Some of the questions that remain to be tackled include: How do PcG proteins induce 

silencing at the molecular level? How are they recruited to their target promoters in mammalian 

systems? What allows PcG proteins to promote heritable silencing on the one hand, but 

simultaneously permits, at least to some extend, that cell fates can be switched? Presumably 

there must be another layer of regulation, possibly through association with specific 

transcription factors or modulators, allowing PcG proteins to do justice to these diverse needs. 

1.3. Epigenetic (re)programming during early embryonic development 

In mammals, development begins with the fertilization of the oocyte by the sperm and thus, 

brings together two of the most highly specialized cells found in an organism. The oocyte is 

arrested at meiotic metaphase II and is loaded with a pool of maternally stored transcripts and 

proteins, required to support early embryonic events up to zygotic genome activation. In 

contrast, sperm with its highly condensed chromatin, organized in a protamine-based structure, 

carries only very few transcripts and proteins. Despite the similar genetic content of the 

gametes, differences in epigenetic modifications reinforce their distinctive nature. Following 

fertilization, these cells undergo a series of reorganization events and epigenetic changes. In 

mouse several studies show that parental genomes are initially highly asymmetric with respect 

to their DNA and histone methylation status. But what is the significance of this epigenetic 

asymmetry for proper pre-implantation development? Does it influence zygotic genome 

activation and therefore gene expression from maternal and paternal genomes? Do chromatin 

modifications contribute to the establishment of the pluripotent state in early embryos? And 

what is their role in guiding first lineage decisions which are accompanied by differences in the 

expression of key transcriptional regulators?  

The following sections aim to summarize our current knowledge of chromatin dynamics in 

the maternal germ line and following fertilization at maternal and paternal genomes. So far, 

most data available remains descriptive but functional links are emerging from studies using 

conventional and conditional knock out and knock down approaches. The potential roles of 

chromatin modifications in guiding major events occurring during early development are 

discussed. 
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1.3.1. Inheritance of maternal RNAs, proteins and histone modifications 

The oocyte is a unique cell whose development is characterized by a period of active meiotic 

programming and a long period of meiotic arrest. In addition, a period of high transcriptional and 

translational activity is followed by a phase of relatively low metabolic activity 167.  

In mammals, the initial stages of oogenesis take place during fetal development when the 

primordial germ cells enter the genital ridges. They begin to divide mitotically to create a large 

supply of oogonia, which then enter into meiosis and start forming primary follicles. Of the 

oocytes initially present, at least 50% die but some 10,000 remain to provide the female with 

functional gametes for her entire reproductive life. Follicular growth and oocyte maturation are 

induced by follicle stimulating hormone (FSH). Growing oocytes actively transcribe many genes 

and accumulate proteins, thereby creating in its cytoplasm a store of maternal factors necessary 

to bridge the period of transcriptional silence that begins with the completion of oocyte growth 

and lasts until zygotic genome activation. The fully grown oocyte, also referred to as germinal 

vesicle (GV) oocyte, is induced to mature by the lutenizing hormone (LH). It completes the first 

meiosis and then arrests in metaphase of the second meiotic division, waiting to be fertilized by 

the sperm. 

Chromatin remodeling during oogenesis 

During its phase of growth and maturation the oocyte undergoes a number of changes in 

nuclear architecture and chromatin state (Fig. 3). At the GV stage, two types of oocytes can be 

Figure 3: Oocyte maturation. Growing oocytes are transcriptionally active but enter
transcriptional quiescence with completion of oocyte growth. At the germinal vesicle (GV) stage,
two types of oocytes are distinguished based on their chromatin organization either in a non-
surrounding nucleolus (NSN) or surrounding nucleolus (SN) configuration. Upon hormonal
stimuli, GV oocytes resume meiosis, complete the first meiotic division and arrest at the 
metaphase of the second meiotic division (MII), ready to be fertilized by sperm. Scale bar, 10 
μm. 
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distinguished on the basis of their chromatin organization 168. The first one is referred to as non-

surrounded nucleolus (NSN) oocyte and is characterized by a diffuse chromatin configuration, 

predominantly found in growing diplotene stage oocytes. Upon completion of oocyte growth, 

chromatin becomes progressively condensed around the nucleolus which is therefore called 

surrounded nucleolus (SN) configuration. NSN-oocytes represent an immature form of oocytes, 

not yet ready to be fertilized, whereas SN-oocytes are capable to support full development. The 

transition from NSN- to SN-oocytes is accompanied by the cessation of transcriptional activity. 

Centromeres, which are initially spread within the nucleus, progressively cluster around the 

periphery of the nucleolus in SN-oocytes, resulting in a ring of pericentric heterochromatin 

(PCH). PCH shows reduced H4K5 acetylation 169, enriched incorporation of macroH2A 170 and 

is bound by the ATP-dependent SWI/SNF chromatin remodeler Atrx that is required for proper 

chromosome segregation during meiosis 169. Chromatin remodeling does not seem to be 

required for transcriptional repression as in oocytes that are mutant for the nuclear chaperone 

Nucleoplasmin 2 (Npm2), transcription is shut down although nucleolar heterochromatin 

organization and chromatin compaction are impaired 168,171,172. In addition, chromatin 

decompaction within euchromatin, induced by treatment with the histone deacetylase inhibitor 

trichostatin A (TSA), does not restore transcriptional activity in fully grown GV-oocytes 168. 

Even so GV-oocytes are not transcriptionally active, their histones are acetylated at K9 and 

K14 of histone H3 and at lysines K5, K8, K12 and K16 of H4 173-175 – modifications that are 

associated with an active chromatin state. All histone acetylation marks disappear within hours 

after resumptions of meiosis and acetylation remains low until after fertilization, except for 

H4K12 acetylation which transiently reappears after first polar body extrusion on condensed 

metaphase-I chromosomes 173. Histone deacetylation is dependent on Hdac activity and 

incubation of oocytes with TSA results in a hyperacetylated state which delays germinal vesicle 

breakdown 176. In addition, hyperacetylation induced chromatin decondensation disturbs 

chromosome interactions with the microtubular network and proper alignment of chromosomes 

during meiotic metaphase resulting in frequent aneuploidy in zygotes 168,176,177. Strikingly, 

histone hyperacetylation is also observed in oocytes of aged female mice 177 suggesting that the 

high incidence of aneuploidy in older pregnancies (also observed in humans) might be due to 

inadequate histone deacetylation. Histone deacetylation during meiosis is conserved in pig 

oocytes, where it is required for phosphorylation of H3S10 and H3S28 to occur 178. Like in 

mouse, histones become reacetylated after oocyte activation in pig. Immunofluorescence with a 

newly characterized antibody recognizing dual di-methylated and phosphorylated H3K9/S10 

and H3K27/S28 showed that mouse metaphase chromosomes become also phosphorylated 

during meiosis I and II 179. This is however not specific for meiosis, as the H3K9me2/S10ph and 

H3K27me2/S28ph sites are also involved in the acquisition of a specific chromatin conformation 

during mitosis 179. Taken together, both histone acetylation and phosphorylation undergo 

dynamic changes during mouse and pig oocyte meiosis suggesting that the underlying 

mechanisms are conserved in different species and might therefore serve an important function 

during meiosis. 
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The kinetics of histone deacetylation suggest that it is probably not required to establish the 

transcriptional quiescent state in mature oocytes but might contribute to manifest silencing. 

Interestingly, by the end of the first meiotic cycle, a large number of transcription factors and 

chromatin associated proteins become dissociated from chromatin and are only retargeted after 

fertilization before first zygotic genome activation 180. Together these mechanisms might 

facilitate the transition from a maternal to a zygotic transcription program by erasing previously 

set transcriptional marks. At the global level, both active as well as repressive histone lysine 

methylation marks are thought to remain stable during oocyte meiosis. However, this 

assumption is probably based on the fact that histone marks are detectable at maternal 

chromatin prior to fertilization 169,181 (our data, Chapter 2.2), as the dynamics of few histone 

methylation marks have been studied in detail during oogenesis 182. Moreover, it is not known 

how much reprogramming of histone methylation is occurring at the level of individual promoters 

or regulatory sequences and whether changes in histone methylation contribute to the oocyte to 

embryo transition. 

Maternal transcripts are required for embryonic development 

At fertilization, the oocyte is loaded with a huge store of maternal transcripts. In both, human 

and mouse oocytes more than 5,000 different transcripts can be detected 183,184. Microarray 

analysis has shown that of the transcripts accumulated during oocyte growth only ~25% are 

specifically degraded from the GV to the MII stage 185. This degradation is a selective process 

and targets transcripts involved in meiotic arrest at the GV stage and progression of oocyte 

meiosis. Overrepresented processes include oxidative phosphorylation, energy production and 

protein metabolism which are among other things required to generate the high levels of cAMP 

from ATP necessary to keep GV oocytes arrested. Other transcripts that are not required during 

oocyte maturation are masked by deadenylation generating short poly A tails to maintain mRNA 

stability for long periods of time 167,186,187. In Xenopus oocyte, three different cis regulatory 

elements in the 3’ untranslated region of maternal mRNAs regulate their polyadenylation 188. In 

mouse, the oocyte-specifc RNA-binding protein Msy2 plays an important role in the translational 

repression and storage of maternal mRNAs 189. 

Maternal transcripts serve important roles during oogenesis and early embryonic 

development including embryonic genome activation. Gene knockout approaches during recent 

years have identified a limited number of murine "maternal effect genes" which refer to the 

dependence of early embryonic development on maternal products and their deletion results in 

female sterility 167,190. Unlike in invertebrates and lower vertebrates, the molecular mechanisms 

of mammalian maternal effect genes are not well understood yet and few have been studied in 

detail. For example, Zar1 was identified as a gene exclusively expressed in the growing oocyte 

and accordingly, Zar1-/- mice are viable and grossly normal but Zar1-/- females are sterile 191. 

Oocytes from Zar1-/- mice progress normally through oogenesis, but early embryonic 

development arrests at the 1- or 2-cell stage though the exact mechanisms remain elusive. 

Similarly, oogenesis is unaffected in females mutant for Maternal antigen that embryos require 

(Mater) 192, a factor that has been identified as an oocyte antigen in a mouse model of 
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autoimmune premature ovarian failure. Like in mice mutant for the ubiquitin-conjugating DNA 

repair enzyme Hr6a 193 or the heat shock factor Hsf1 194 early embryos from these females 

arrest at the 1- or 2-cell stage. 

Another maternal effect gene, whose molecular role in still unclear in mouse, is the 

nucleoplasmin Npm2 171. In Npm2-/- oocytes, DNA appears amorphous and diffuse and does not 

condense around the nucleolus, which does however not impair meiotic progression. In 

Xenopus laevis, NPM2 removes sperm protamines, facilitates nuclear assembly and replication 

of the paternal genome. In contrast, sperm decondensation occurs normally in Npm2 maternal 

mutant mouse embryos; however, no nucleoli are visible in zygotes, first mitosis is delayed 

followed by fragmentation and death of most embryos. The fact that no nucleoli are formed is 

very interesting in light of a very recent study showing that maternal nucleoli are essential for 

embryonic development 195. 

Knockdown of Basonuclin in growing oocytes using a Zp3-hairpin approach also results in 

female sub-fertility 196. This is not strictly a maternal effect gene as oogenesis is also affected. 

Basonuclin is a zinc-finger protein involved in the transcription of rRNA. In oocytes, Basonuclin 

co-localizes with RNAP I activity in the nucleus, however, Basonuclin is also abundant in the 

nucleoplasm and interacts with RNAP II promoters. In Basonuclin knockdown oocytes, RNA 

polymerase I and II mediated transcription and normal oocyte morphology are perturbed. 

However, some oocytes do mature and are capable to support fertilization. In the resulting 

embryos chromatin decondensation of the paternal pronucleus is decreased, chromatin is 

frequently observed to fragment and DNA is unequally distributed between daughter cells 

resulting in embryonic arrest at the 2-cell stage. Other maternal factors include Brg1, Tif1α, 

Stella (PGC7) and Dnmt1 that will be discussed in detail later. 

It is striking to note that most of these maternal affect genes lead to embryonic arrest at the 

late 1- or 2-cell stage. Similar observations were made in early in vitro culture studies, where 

embryos from the majority of inbred and outbred mouse strains underwent cleavage arrest at 

the 2-cell stage 197. This stage represents a crucial and very sensitive period of early embryonic 

development in mouse as is coincides with first zygotic genome activation and therefore marks 

the maternal to embryo transition. 

Role of maternal micro RNAs 

In addition to protein coding RNAs, small regulatory RNAs are maternally inherited from the 

oocyte. MicroRNAs (miRNAs) are single-stranded RNA molecules of about 21-23 nucleotides in 

length with 3' two-nucleotide overhangs and are complementary to sites in the 3' UTR of their 

target messages 198. miRNAs downregulate gene expression by inhibition of protein translation 

or by induced cleavage of the target mRNA. miRNAs are first transcribed as primary transcripts 

(pri-miRNA) and processed to 70 nucleotide stem-loop structures known as pre-miRNAs by the 

RNase III nuclease Drosha. These pre-miRNAs are further processed to mature miRNAs by the 

endonuclease Dicer which also initiates the formation of the RNA-induced silencing complex 

(RISC). The endonuclease Dicer is expressed in growing and mature oocyte as well as in early 

embryos 199. Zp3-Cre mediated deletion of Dicer in growing oocytes results in loss of most 
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maternal miRNAs. The mutant oocytes mature and undergo GV breakdown but are defective in 

meiotic spindle organization 199,200. Some Dicer mutant oocytes are capable to support 

fertilization but do not progress through the first cell cycle 200. Microarray analysis showed that 

Dicer is essential for the turnover of a substantial subset of maternal messages that are 

normally degraded during oocyte maturation. Interestingly, the upregulated set includes a 

number of genes involved in microtubule associated processes which might explain the 

observed chromosome segregation defect. Furthermore, expression of certain transposon-

derived sequences is elevated in Dicer mutant oocytes which is interesting in light of another 

recent study that identified a novel class of 20-24 nucleotides long small RNAs from oocytes 

that are derived from retroelements 201. The functional significance of these siRNAs is not 

known but it has been proposed that they might act to suppress retrotransposition events in 

germ cells. 

Taken together, at fertilization the oocyte is equipped with a pool of maternal messages, 

small RNAs and proteins, some of which are absolutely essential to support the earliest stages 

of mouse embryonic development. Maternal chromatin is inherited in a chromosomal 

configuration and is globally characterized by various histone acetylation and methylation marks 
202. Although several transcription factors and histone modifiers are not chromatin bound at 

fertilization, they are present in the oocyte cytoplasm, ready to be retargeted before zygotic 

genome activation is initiated. 

1.3.2. Paternal de novo establishment of a nucleosomal chromatin structure 

The production of male gametes is a result of a complex multistep process of cellular 

differentiation. During spermatogenesis, the paternal genome undergoes major changes 

including meiotic recombination and chromosome segregation 203. The aim of meiosis is to 

produce great genetic diversity within a population to allow a species to maintain stability under 

environmental fluctuations. Chromatin changes are characterized by the appearance of testis-

specific histone variants 204, the silencing of the XY-body by acquisition of heterochromatic 

histone modifications 9,205-207, the epigenetic marking of imprinted genes 208 as well as the post-

meiotic packaging of the genome in a highly condensed chromatin structure 203,204. The final 

product, the mature spermatozoon, is designed for the safe delivery of a haploid copy of the 

paternal genetic information to the future zygote. 

Chromatin packaging in mature sperm 

High density packaging of the paternal genome is achieved by the removal of histones that are 

first replaced by transition proteins (TPs) which are later exchanged by sperm-specific 

nucleoproteins, the protamines 203,204. Protamines are highly basic proteins of a low molecular 

mass that essentially allow complete neutralization of DNA negative charges. In mouse and 

human, two classes of protamines, called Prm1 and Prm2, are present in sperm nuclei. 

Protamines can be post-translationally modified, e.g. phosphorylated, and during final sperm 

maturation form di-sulfide bridges between neighboring protamines to further increase stability. 

However, in several mammalian species, including mouse and human, the protamine exchange 

is not complete resulting in the retention of varying amounts of histones in mature sperm 203,204. 
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In human, a substantial amount of histones is kept corresponding to approximately 15% of the 

usual haploid histone complement. Biochemical purifications of human sperm have identified all 

four core histones 204. The precise localization of these histones within the genome is not 

known, but it was noted that sperm telomeres are clustered at the nuclear periphery and retain 

a nucleosomal configuration 209. In contrast, mouse sperm is more homogeneous containing up 

to 99% of protamines. 

Recently it was shown that the retained histones are post-translationally modified 210. In 

mature sperm derived from the caput epididymis, histone acetylation at H4K8 and H4K12 was 

detected in chromocenters, suggesting that sperm contributes more than just its genetic 

information to the embryo. Currently it is not clear which genomic regions in addition to 

centromeric and telomeric heterochromatin are associated with a nucleosomal configuration in 

sperm. Furthermore, it will be very interesting to determine the full post-translational 

modification status of retained histones, especially with respect to more stable modifications like 

histone methylation. It is intriguing to speculate that the retained histones are not merely leftover 

artifacts from an inefficient exchange process but might indeed serve a biological function. 

Modified histones might direct de novo histone deposition after fertilization and targeting of 

HMTs to reestablish the correct chromatin state, thereby guiding embryonic gene expression in 

the newly formed embryo. 

Acquisition of a nucleosomal chromatin configuration 

After fertilization, paternal protamines are re-exchanged to histones that are maternally provided 

(Fig. 3). Shedding of protamines from DNA is a rapid process that occurs within 30 minutes after 

sperm entry 202. Upon start of sperm decondensation the nucleosomal density increases, 

coinciding with the presence of the histone chaperone Hira in paternal chromatin 202. Hira is 

specifically involved in the replication-independent assembly of nucleosomes containing the 

histone variant H3.3 211. In contrast, H3.1, which differs from H3.3 by only five amino acids, is 

deposited by the histone chaperone Caf-1 exclusively during DNA replication. Indeed, H3.3 is 

incorporated preferentially into the paternal genome following sperm decondensation 212. In 

contrast, H3.1 is not detectable in early paternal chromatin and its appearance is delayed until 

the start of DNA replication in later zygotes 202. 

In Drosophila it was shown that the H3.3 histone chaperone Hira is essential for de novo 

assembly of paternal chromatin after fertilization 213,214. Hirassm (sesame) mutant flies which 

carry a point mutation in the Hira gene 214 as well as HiraHR1 mutant flies generated by 

homologous recombination 213 show defects is paternal pronucleus formation, resulting in 

haploid embryos that develop with only maternal chromosomes and die before hatching. 

Maternally provided FLAG-tagged H3.3 accumulates specifically in paternal chromatin. It 

strongly labels the paternal genome during first mitosis but fades away after a few nuclear 

divisions. Interestingly, these mutations of Hira only affect paternal pronucleus formation but not 

H3.3 deposition in other tissues 213,214. In addition to Hira, the Drosophila molecular motor 

protein CHD1 is required for deposition of H3.3 into paternal chromatin, but is dispensable for 

protamine removal 215. Molecular motors are known to assemble nucleosomes in vitro and
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 CHD1 belongs to the CHD (chromo, helicase and DNA-binding domain) subfamily of Snf2-like 

ATPases. In analogy to the Hira phenotype, in maternal CHD1 mutant embryos, the paternal 

genome does not participate in mitosis resulting in haploid embryos. Although H3.3 is recruited 

to the paternal genome it remains at the nuclear periphery, suggesting that Hira is essential for 

histone delivery whereas CHD1 facilitates histone deposition. 

Further research is needed to elucidate how the protamine-to-histone exchange is 

accomplished in mouse and whether the same players, most of which have homologs in 

mammals, are involved. Moreover, it will be very exciting to dissect the epigenetic contributions 

of the paternal complement to early embryonic development. 

1.3.3. Parental asymmetry in histone modifications 

Following fertilization, the highly specialized maternal and paternal genomes need to undergo a 

series of structural changes and epigenetic programming events to give rise to the pluripotent 

embryonic cells that ultimately have the power to regenerate a complete organism consisting of 

hundreds of distinct cell types. Upon sperm entry into the metaphase II oocyte, female meiosis 

resumes with the extrusion of the second polarbody and the sperm head decondenses followed 

by a transient recondensation after nucleosome deposition. The paternal pronucleus (PN) forms 

shortly after the maternal one and then the pronuclei swell and migrate toward the center of the 

zygote where they become apposed. Based on morphology, zygotic substages have been 

defined 216,217. PN0 refers to the zygote immediately after fertilization characterized by maternal 

chromosome segregation and paternal sperm decondensation, PN1 pronuclei are small and 

reside at the periphery of the embryo, PN2 pronuclei have an increased size and have started 

to migrate toward the center of the embryo, PN3 pronuclei have migrated toward the center, 

large PN4 pronuclei are close to each other and PN5 refers to large central pronuclei. 

Paternal histones are de novo methylated in the zygote 

During the first embryonic cell cycle, reprogramming of maternal and paternal genomes takes 

place in the same environment of the zygotic cytoplasm but the epigenetic outcomes are 

markedly different. While maternal DNA is embedded in a chromatin structure characterized by 

the presence of histone methylation marks, de novo histone deposition occurs paternally. 

Immediately upon incorporation, these histones show strong signals for acetylation at various 

Figure 4: Epigenetic (re)programming during mouse pre-implantation development. 
Fertilization triggers the resumption of the second meiotic division including the extrusion of the
second polar body. Following sperm decondensation, paternal and maternal pronuclei (PN) are
formed which undergo the first round of DNA replication while remaining spatially separated.
First minor zygotic genome activation (ZGA) occurs at the late 1-cell stage, followed by 
degradation of maternal messages which are replaced by zygotic ones during major ZGA at the
2-cell stage. In pre-implantation embryos, paternal and maternal DNA methylation is erased by
active and passive mechanisms, respectively, giving rise to asymmetric labeling of parental 
genomes. De novo methylation at the morula stage results in high levels of DNA methylation
specifically in the cells of the inner cell mass (ICM). During sperm decondensation, paternal
protamines (Prm) are exchanged to maternally provided histones, involving the specific 
incorporation of the replication independent histone variant H3.3. Subsequently, various
different histone methylation marks are acquired at the paternal genome in a highly spatially
and temporally coordinated manner. 
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lysine residues 181,210,216,218 but lack detectable amounts of known histone methylation marks. In 

contrast, acetylation of maternal chromatin is delayed until after pronucleus formation resulting 

in differential acetylation levels between parental genomes which are resolved during the mid 

zygote stage. At subsequent embryonic stages, histone acetylation remains high during 

interphase but is absent from cleavage chromosomes 174,181.  

In addition, asymmetry of histone lysine methylation has been observed for most residues 

studied. Di- and tri-methylation of H3K4, H3K9, H3K27 and H4K20 are initially only present in 

the maternal pronucleus. The earliest methylation mark that appears on paternal chromatin is 

H4K20me1 which is detected strikingly fast after gamete fusion, in the periphery of expanding 

sperm 202. Following that mono-methylation of H3K4, H3K9 and H3K27 appear after paternal 

pronucleus formation (PN1/2), resulting in equal levels at both parental genomes. Generally, the 

acquisition of histone methylation seems to follow a strict spatially and temporally coordinated 

program with mono-methylation marks appearing first, followed by di- and tri-methylation (Fig. 

3). Interestingly, the Polycomb proteins Ezh2 and Eed that confer the di- and tri-methylation of 

H3K27 are present very early in the paternal pronucleus (at PN1/2) but nonetheless H3K27me3 

only appears around PN3/4 concurrent with DNA replication 136,218. The H3K27 mono-methylase 

has not been identified in mammals, however, since H3K27me1 is already present at PN1 in 

paternal chromatin, lack of substrate for PRC2 cannot be the limiting factor. Absence of other 

essential PRC2 complex members or post-translational modifications on PRC2 itself 219 may 

explain the catalytic inactivity. Alternatively, H3K27me3 on the paternal genome might be 

directly linked to DNA replication. It is interesting to note that deletion of the maternally inherited 

Ezh2 protein in the oocyte results in growth retardation of resulting offspring apparent until 

weaning, although Ezh2 is expressed from the paternal allele starting from the 4-cell stage, 

suggesting that Ezh2 has an important function very early in embryonic development 136. 

De novo methylation of H3K9 is delayed 

Whereas all three H3K4 and H3K27 methylation states are acquired on the paternal genome 

until the end of the first cell cycle 181,218,220, acquisition of H3K9me2 and H3K9me3 is further 

delayed until the 4- to 8-cell stage 218,220-223. H3K9me2 on the maternal genome, which is 

inherited from the oocyte, declines from the 1- to the 2-cell stage, indicating that no active 

H3K9me2 HMT is present in the zygotic cytoplasm to maintain H3K9me2 during DNA 

replication 221,223. In contrast, nuclear transfer of the unmethylated paternal pronucleus into 

enucleated GV or MII oocytes allows de novo H3K9me2 to occur suggesting that the oocyte 

cytoplasm but not the embryonic cytoplasm contains H3K9me2 activity. Moreover, inhibition of 

protein synthesis with cyclohexamid in the zygote results in H3K9me2 at the paternal genome, 

suggesting that the H3K9me2 HMT is active before fertilization but is deactivated by a newly 

synthesized protein in the early embryo. 

It remains to be resolved whether the stepwise appearance of the various histone lysine 

methylation marks simply reflects the consecutive mode of action of the mono-, di- and tri-HMTs 

or whether is it used as a means to distinguish the parental genomes. So far, it is not known 

which of the mammalian HMTs establish histone methylation marks at the paternal genome 
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following fertilization, except for Ezh2 which mediates de novo H3K27me2/3 136 (our results, 

Chapter 2.2). Notably, at the zygote stage, the paternal pronucleus is characterized by the 

presence of hyperacetylated histones associated with an active transcriptional state but lacks 

repressive methylation marks like H3K9me2/3. One possibility is that the open chromatin 

configuration of the paternal genome is required to allow efficient reprogramming of the paternal 

genome into a proper embryonic chromatin configuration.  

1.3.4. Asymmetric DNA demethylation 

Mammalian development is accompanied by two-major waves of genome-wide DNA 

demethylation and remethylation: one during germ cell formation and the other during pre-

implantation development. DNA demethylation following fertilization occurs asymmetrically. 

While the paternal genome looses its methylation very rapidly within hours after sperm 

decondensation through an active process, maternal demethylation is reduced passively 

through successive DNA replication cycles up to the morula stage (Fig. 3) 217,224. At the 2-cell 

stage, half of the nucleus is stained by an antibody against 5-methyl cytosine (5meC) 224, 

corresponding to the maternal complement which is still spatially separated from the paternal 

one at that stage 225. Methylation is further reduced in 4-cell embryos. A few genes have been 

studied in detail and those that are highly methylated in sperm rapidly loose their methylation in 

zygotes 226, except for paternally imprinted genes 227. In addition, pericentric heterochromatin 
217,218,228 and the intracisternal A particle (IAP) retrotransposon 229 are excluded from active DNA 

demethylation. Using polyspermic zygotes, it was shown that active paternal demethylation is a 

very powerful process as up to five paternal pronuclei loose their DNA methylation within a 

zygote 217. De novo methylation occurs specifically in the inner cell mass (ICM) of the blastocyst 

whereas much lower levels of methylation are detected in the trophectoderm (TE) 217. 

Maintenance DNA methyl transferases 

Maintenance of genomic DNA methylation patterns in somatic cells depends on the DNA 

methyltransferase 1 (Dnmt1). In growing oocytes, a specific variant of the maintenance 

methyltransferase, called Dnmt1o, is expressed from an oocyte specific promoter. Dnmt1o can 

be detected in the nucleus of growing oocytes, but is excluded from the nucleus upon oocyte 

maturation and remains cytoplasmic during pre-implantation development 230. It only specifically 

translocates into the nucleus for one cell cycle at the 8-cell stage. Homozygous Dnmt1o mutant 

mice are normal, but embryos from Dnmt1o-/- females die during the last third of gestation. 

Deletion of Dnmt1o does not effect the establishment of genomic methylation patterns and 

embryos show normal levels of 5meC content as well as normal methylation at IAPs, major 

satellites and single copy genes. However, around 50% of methylation is lost post-zygotically at 

some imprinted genes resulting in defective allele specific expression, suggesting that transient 

nuclear localization of Dnmt1o during the 8-cell stage is required to maintain methylation at 

specific imprinted genes. In addition, during pre-implantation development, Dnmt1o is important 

to maintain methylation of IAP sequences inserted in the agouti locus linked to transcriptional 

silencing of the agouti gene 231. 
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In contrast, the longer somatic Dnmt1 isoform, Dnmt1s, is required to maintain IAP 

methylation during post-implantation stages. This is in agreement with earlier studies that failed 

to detect Dnmt1s in pre-implantation embryos, whereas two recent reports found Dnmt1s to be 

expressed early 232,233. Using newly characterized antibodies, they showed that Dnmt1s 

localizes to maternal chromosomes in MII oocytes and is recruited to the paternal pronucleus 

during PN3-4. It remains in pronuclei during first G1/S phase but is excluded during G2. 

Following that, Dnmt1s can be found in nuclei up to the blastocyst stage. Antibody or siRNA 

microinjections directed against Dnmt1s during the zygote stage result in reduced methylation 

at IAPs and the paternally imprinted H19 gene 233. These studies suggest that both variants of 

the maintenance methyltransferase Dnmt1 are required during early embryonic development to 

maintain specific methylation of imprinted genes. It remains to be resolved, however, how 

specific sequences are protected from active as well as passive DNA demethylation. Despite 

many speculations about possible mechanisms to remove DNA methylation 234-236 and targeted 

deletion of several candidate demethylases (including Mbd2 and Mbd4) 217,234, the enzyme 

responsible for paternal specific active demethylation has not been identified.  

Importance of asymmetric DNA demethylation 

The lack of a specific enzyme also hampers further studies to address the role of asymmetric 

DNA demethylation. Like genomic imprinting, active demethylation seems to have evolved in 

mammals and does not take place in Xenopus laevis or zebrafish. Paternal specific loss of DNA 

methylation has been observed in mouse, rat, pig, bovine and humans but not in rabbit and 

sheep 217,234,237-240. In sheep, no differences between maternal and paternal methylation is 

detected in the zygote and limited demethylation is observed from the 2- to the 8-cell stage. 

There is no evidence for remethylation of the sheep ICM; instead the TE lineage is further 

demethylated from the morula to the blastocyst stage 238,239. However, sheep oocytes are 

capable to demethylate mouse sperm and sheep sperm becomes demethylated in mouse 

oocytes 241. The fact that asymmetric DNA demethylation is conserved in most mammals 

studied so far suggests that it may be needed for proper embryonic development and might 

facilitate paternal epigenetic remodeling by erasing previously acquired spermatogenesis 

specific DNA methylation marks. Alternatively, paternal DNA demethylation may be required to 

allow for the generalized de-repression of paternal alleles to accommodate the minor 

transcriptional burst at the zygote stage. Paternal specific DNA demethylation is in line with the 

general more active paternal chromatin state defined by histone hyperacetylation and lack of 

repressive histone methylation marks. 

Some further mechanistic insights come from studies of the recently identified maternal 

effect gene Stella (also known as PGC7) 242. Stella mutant mice are viable, but females show 

reduced fertility due to a failure during pre-implantation development. In MII oocytes, Stella 

localizes to the cytoplasm but translocates to pronuclei in zygotes which is mediated by the 

nuclear transport shuttle Ran binding protein 5 (RanBP5) 243. Although Stella is present in both 

maternal and paternal pronuclei, it is specifically required to protect the maternal genome from 

active demethylation after localizing to the nucleus. In addition, Stella is important to maintain 



 31

the methylation of some maternally and paternally imprinted genes. This is the first study to 

provide some evidence for the requirement of asymmetric DNA demethylation for proper pre-

implantation development, but the ultimate proof will have to await the identification of the 

paternal specific DNA demethylase. 

1.3.5. Maternal to zygotic transition in gene expression 

The maternal to zygotic transition that occurs following fertilization entails a dramatic 

reprogramming of gene expression that is required for continued development. In mouse, the 

first wave of zygotic transcription is observed at the late zygote stage, also known as minor 

zygotic genome activation (ZGA), followed by the major ZGA in the 2-cell embryo (Fig. 3). 

Genome activation is accompanied by a global degradation of maternally inherited transcripts at 

the 2-cell stage which restricts the period of time in which these genes can function and allows 

the embryo to replace oocyte-specific transcripts with those required for embryonic 

development 187,244-246. 

First zygotic transcription takes place at the 1-cell stage 

Transcription at the 1-cell stage has been studied by BrUTP incorporation and microinjection of 

reporter plasmids 187, revealing that the paternal pronucleus supports approximately five-fold 

higher levels of transcription 246. Inhibition of the first round of DNA replication results in reduced 

BrUTP incorporation at the zygote stage, suggesting that first DNA replication and transcription 

are functionally linked. More recent microarray profiling studies detected a large number of 

transcripts that increase during the 1-cell stage 247. Based on gene ontology (GO) analysis, a 

significant number of these genes are involved in the regulation of transcription and in 

chromatin assembly, two processes that play major roles during early pre-implantation 

development. At the 1-cell stage, RNA polymerases I, II and III are functional 187. RNA 

polymerase II (RNAP II) gradually translocates into the nucleus throughout the minor ZGA 

phase and becomes phosphorylated at its C-terminal domain (CTD) at the onset of major ZGA 
248. Analysis of polyspermic zygotes suggests that the availability of the transcription machinery 

represents a rate limiting step 246,249. Surprisingly, although the 1-cell embryo is transcriptionally 

active, no α-amanitin sensitive transcripts were detected in the zygote, suggesting that the 

apparent increase in transcripts is due to the recruitment of maternal messages coupled with 

polyadenylation of their poly(A) tails 250. This does, however, not explain what the BrUTP 

incorporation in the 1-cell embryo reflects. Moreover, from earlier studies using luciferase 

reporters, it is not clear whether the transcripts made at the 1-cell stage are efficiently translated 
187. But if that is the case, what is the purpose of 1-cell transcription? 

Maybe it is simply a consequence of chromatin remodeling allowing easy access of the 

transcription machinery. If so, a first burst of transcription at the 1-cell stage, where paternal 

chromatin is reorganized into a chromosomal configuration, should be common to other animal 

species. Two transcriptional waves are indeed no exception and also occur in Drosophila 

melanogaster, Caenorhabditis elegans and Xenopus laevis, however, the timing is markedly 

different 244,249. Following pronuclear fusion, Drosophila embryos go through 13 synchronous 

nuclear divisions without cellular divisions. The first weak wave of transcription occurs during 
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nuclear divisions 8 to 10, clearly after initial remodeling of the paternal genome, and for 

example involves pair rule and sex determination genes. In C. elegans, first zygotic transcription 

is observed at the 4-cell stage, which is however not required for embryonic development, 

followed by major ZGA at the mid-blastula transition (MBT) at the 100-cell stage. Early Xenopus 

development is characterized by 11 rapid mitotic cycles with a small transcriptional burst at the 

6th mitotic division and ZGA at the MBT when the embryo is at the 4000-cell stage. Summing 

up, in all four organisms described here, two transcriptional waves occur during early 

embryogenesis, though first transcription only happens immediately following paternal 

chromatin remodeling in mouse zygotes, indicating that other mechanisms are likely to 

contribute to initiate first genome activation. 

Notably, at the time when first zygotic transcription is initiated in the mouse, both parental 

genomes are marked by histone hyperacetylation and H3K4me3, RNAP II is present in the 

pronuclei, and the paternal genome is lacking repressive H3K9me2/3 and DNA methylation. 

Genome-wide studies in yeast and Drosophila have shown that specific histone modifications 

around transcription start sites of genes, including H3K4me3 and H3K9/14ac, are excellent 

predictors of active transcription 251,252. The situation is more complex in human, where the 

majority of genes are marked by H3K4me3 and H3K9/14ac, although active genes show clearly 

higher enrichments 126. In addition, the form of RNAP II that initiates transcription is present at 

low levels at 5' regions of many inactive genes that do not generate detectable levels of full-

length transcripts 53,126, suggesting that many genes initiate transcription but do not proceed to 

productive elongation 126,253-255. Consistently, histone modifications characteristic of ongoing 

transcriptional elongation, like H3K36me3 and H3K79me2, are found exclusively downstream of 

promoters that do generate full-length transcripts. It was hypothesized that the unique capacity 

of human ES cells to initiate various differentiation programs might require inactive genes to be 

poised for rapid activation 126, yet similar chromatin states and RNAP II patterns were detected 

in human hepatocytes and B lymphocytes. First zygotic transcription in the mouse embryo may 

follow a similar mechanism. Maternal and paternal genomes are being remodeled into a 

configuration compatible with major ZGA at the 2-cell stage and establishment of a pluripotent 

epigenetic state. One possible is that RNAP II 248 and other transcription factors and chromatin 

modifiers 180 are targeted in preparation of the following ZGA, establishing a state poised for 

transcriptional activation. Interestingly, H3K36me3 that is maternally inherited from the oocyte, 

declines during the first cell cycle and is almost undetectable at the time when first transcription 

occurs (our unpublished results). It only reappears at the late 2-cell stage, around the time of 

ZGA, and remains globally present at both parental genomes throughout further pre-

implantation development. Based on these observations, a possible hypothesis is that BrUTP 

incorporation at the 1-cell stage reflects spurious transcription initiation which would not be 

detected by the microarrays used to analyze global transcription profiles. It could be analyzed, 

however, using quantitative RT-PCR along candidate genes in early embryos. Clearly, further 

studies are also needed to elucidate the localization of the involved histone modifications within 

the genome and with respect to transcription start sites in early embryos. New chromatin 

immunoprecipitation (ChIP) protocols, adjusted to permit the analysis of small samples, have 
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been described 256 and should make higher resolution analysis of histone modifications in pre-

implantation embryos possible in the future. 

Major zygotic genome activation occurs at the 2-cell stage 

Super-imposed on genome activation at the 2-cell stage is the development of a chromatin-

based transcriptionally repressive state 246 that leads to the requirement of enhancer elements 

for efficient transcription following ZGA 187. In contrast to differentiated cells, transcription in 

early blastomeres and ES cells does not require a TATA box for enhancer-driven expression 187. 

Of the transcripts detected in 2-cell embryos, 17% are sensitive to α-amanitin treatment which 

represents a significant proportion, however, also indicates that genome activation is not as 

global as previously anticipated but rather specific 250. Compatible with ZGA taking place, 20% 

of the genes that are transiently up-regulated at the 2-cell stage are related to transcription 247. 

Analysis of global gene expression changes during pre-implantation development revealed 

one wave of transcription (ZGA) that contributes mainly to the preparation of the basic cellular 

machinery and a second one, named mid-pre-implantation genome activation (MGA), which 

induces dramatic biological and morphological events 257,258. GO term analysis identifies the 

switch from pyruvate as primary energy source in early embryos (GO: pyruvate metabolism, 

tricarboxylic acid cycle) to glucose-dependency in later pre-implantation development (GO: 

glycolysis, gluconeogenesis). Furthermore, GO terms for cell communication are 

overrepresented in unfertilized oocytes and 1-cell embryos, likely reflecting the communication 

between oocytes and follicle cells, and then again from the 8-cell stage when gap junctions are 

formed between the blastomeres 247,258. 

It has been proposed that the function of the repressive state established in 2-cell embryos 

is to dictate an appropriate profile of gene expression that is compatible with further 

development 247. Yet it remains to be determined, how specific genes are activated in early 

embryos and what exactly is keeping the remaining ones repressed. A number of maternal 

effect genes affect the overall transcriptional competence of the 2-cell embryo, including Npm2 
171 and Mater 192 (discussed in Chapter 1.3.1). In addition, maternal Brg1 has been implicated in 

the regulation of zygotic genome activation 259. Brg1 encodes the catalytic subunit of SWI/SNF 

chromatin remodeling complexes and exhibits DNA dependent ATPase activity. The energy 

derived from ATP hydrolysis alters the conformation and position of nucleosomes. Maternal 

deletion of Brg1 results in embryonic arrest at the 2-cell (78%) and 3/4-cell (10%) stage. In such 

mutant embryos, the transcription requiring complex (TCR), an accepted marker of ZGA, is 

markedly reduced, BrUTP incorporation is decreased to 35% and approximately one third of the 

α-amanitin sensitive genes are downregulated. Reduced transcriptional competence is 

accompanied by significantly lower levels of H3K4me2. Treatment of the mutant embryos with 

TSA induces increased levels of histone acetylation, H3K4me and BrUTP incorporation, 

however, cannot overcome the 2/4-cell arrest. These results suggest that maternal Brg1 is 

required for the activation of a significant number of genes, some of which seem to be important 

for further embryonic development. Another modulator of embryonic transcription is the 

Transcription intermediary factor 1 α (Tif1α) 260. Tif1α contains a bromodomain and was first 
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identified as transcriptional regulator of nuclear receptors. At the onset of first genome activation 

in the zygote, Tif1α translocates from the cytoplasm into the pronuclei to sites of active 

transcription, that are also enriched in Brg1 and Snf2h, the ATPase subunit of the mammalian 

ISWI complex. Ablation of Tif1α by microinjection of dsRNAs or anti-Tif1α antibodies results in 

embryonic arrest at the 2/4-cell stage. Moreover, ablation of Tif1α induces mislocalization of 

active RNAP II and the chromatin remodelers Brg1 and Snf2h as well as a small albeit 

significant increase in BrUTP incorporation at the late 1-cell stage. Using a ChIP cloning 

approach, the authors show that Tif1α has no general effect on transcription but affects specific 

sets of genes. 

It is noteworthy that even at the 2-cell stage parental genomes are differentially marked at 

the global level, with paternal chromatin lacking repressive H3K9me2/3 and DNA methylation, 

although this might be compensated by the presence of Polycomb repressive complexes (our 

results, Chapter 2.2). Given the correlation of chromatin configurations and transcriptional 

states, several questions arise. Does the differential labeling of maternal and paternal genomes 

result in preferential expression of one parental allele over the other? Allele specific 

transcription due to distinct chromatin states has been described for imprinted genes 208. It 

would be very interesting to analyze levels of maternal versus paternal alleles in early pre-

implantation embryos. Along these lines, does deletion of specific chromatin modifiers affect 

parental genomes and their expression in the same extent? Currently, it is not completely clear 

whether the high levels of histone acetylation and H3K4me are causative factors of transcription 

or merely consequential to acquisition of transcriptional competence. Conditional deletion of 

chromatin modifying enzymes in maternal and paternal germlines in combination with local 

analysis of histone modifications by ChIP in early embryos should shed further light on these 

issues. Furthermore, when are maternal specific histone modifications reset to allow 

establishment of modifications compatible with embryonic development? In contrast to 

spermatogenic chromatin remodeling, global histone methylation appears stable during 

oogenesis 182. Possibly, histone methylation marks are specifically erased at regulatory 

sequences through the action of recently identified histone demethylases 88. Alternatively, 

passive dilution though the first and second round of replication might be sufficient to erase 

undesired modifications before ZGA. Recent studies in zebrafish have identified the miRNA 

miR-430 as a potential link between zygotic genome activation and the decay of maternal 

mRNAs 261. In mouse, maternally inherited miRNAs are down-regulated between the 1- and 2-

cell stage and replaced by de novo synthesized miRNAs in 2- to 4-cell embryos 200. It remains to 

be revealed whether mouse miRNAs participate in the regulation of the maternal to zygotic 

transition. 

1.3.6. Insights from nuclear transfer and cloning 

In the 1990s, the first reports from mammals born after nuclear transfer (NT) cloning appeared 
262. These initial experiments used donor cells derived from pre-implantation embryos. The first 

successful cloning using the nucleus of a somatic cell from an adult animal to create Dolly the 

sheep 263 gained much public recognition. Since then it has become possible to clone a number 
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of species by somatic cell nuclear transfer (SCNT) including pigs, goats, horses, cats and mice. 

Although many different donor cells have been used for NT, all experiments show that cloning is 

an inefficient process resulting in embryonic lethality of most cloned embryos and aberrant 

development of surviving embryos 264. In many cloned species abnormal placental development 

has been described, which may lead to malnutrition of seemingly normal cloned embryos 265. 

The precise mechanisms leading to these severe defects are unclear, however, accumulating 

evidence suggests that epigenetic reprogramming is deficient in cloned embryos. Epigenetic 

reprogramming involves two steps. First, the differentiated donor cell nucleus has to undergo 

dedifferentiation including the erasure of somatic epigenetic marks to reestablish a totipotent 

embryonic state. Second, the totipotent cells of the cloned embryo need to redifferentiate to give 

rise to specific somatic cell types during later development 264. 

Abnormal DNA and histone methylation 

Cloning experiments in bovine reveal an inverse correlation between high levels of H3K9me3 

and DNA methylation versus developmental potential of cloned embryos 266. They demonstrate 

that H3K9me3 is reprogrammed in parallel with DNA methylation in normal embryos whereas 

the majority of cloned embryos are characterized by H3K9 hyperacetylation and -methylation 

associated with DNA hypermethylation. In such cloned embryos, DNA methylation is reduced at 

the zygote stage but no further demethylation takes place during cleavage divisions, de novo 

methylation occurs precociously and at the morula stage all cells are highly methylated 

including the TE that is normally characterized by hypomethylation 240. Along these lines, it was 

shown that TSA treatment following oocyte activation results in more efficient development of 

SCNT embryos to the blastocyst stage and allowed the cloning of an outbred mouse strain 

which was not previously achieved 267,268, suggesting that induction of histone hypoacetylation 

may facilitate reprogramming. 

Intracytoplasmic sperm injection (ICSI) can be used to create progeny for males who have 

fertility problems due to immobile mature sperm. In addition, round spermatid injection (ROSI) 

has also been used for males who do not produce mature sperm, although the rate of 

successful embryogenesis is significantly lower compared to that for ICSI. The poor 

development of embryos from ROSI may be associated with epigenetic errors after fertilization 
269. Even though the paternal genome is normally demethylated, it becomes remethylated in the 

zygote which is dependent on Dnmts and DNA replication. This remethylation is also observed 

when elongated spermatids are injected but remethylation is less strong, suggesting that during 

spermiogenesis paternal germ cells gradually acquire the ability to maintain an undermethylated 

state in the zygote which seems to be required for proper embryonic development. Consistent 

with reports from SCNT cloning experiments 267,268, aberrant DNA methylation in the spermatid-

derived genome can be reduced by TSA treatment of zygotes 269. 

Nuclear transfer experiments 

For NT experiments in mouse, MII oocytes are used as recipients as the use of activated 

oocytes even minutes after resumption of meiosis results in chromosome damage leading to 

100% abnormal karyotypes and failure to develop to the blastocyst stage 270. Oocyte sperm 
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fusion induces a series of Ca2+ oscillations within one to three minutes that are transduced by 

Calmodulin kinase II. As a consequence, within minutes after fertilization, the early embryo is 

either biochemically or functionally different to MII oocytes. The chromatin remodeling capacity 

of MII oocytes has been studied using demembranated sperm heads that have been heated to 

48°C, preventing meiotic exit normally induced by sperm 270. These studies show that the 

paternal genome undergoes DNA demethylation and acquires H4K12 acetylation in MII 

oocytes, delineating non-zygotic chromatin remodeling. One hypothesis to explain why zygotes 

are not suitable for NT suggests that factors required for reprogramming or embryonic 

development become sequestered in the pronuclei and are therefore removed by enucleation 

before NT 271. This model does not explain the rapid loss of developmental potential following 

oocyte activation as pronuclei are formed only hours after fertilization. However, the authors 

show that developmental reprogramming is possible in mouse zygotes that are in mitosis 

suggesting that the breakdown of the pronuclear envelop at entry into mitosis releases the 

required factors. Reversible inhibition of the metaphase-to-anaphase transition with the 

proteasome inhibitor MG-132 allows the mitotic spindle to form which can be observed under 

the light microscope and therefore easily removed. Chromosome transfer into mitotic mouse 

zygotes allows the production of cloned mice as well as embryonic stem (ES) cell lines. These 

results open up new perspectives for the generation of human genetically tailored ES cell lines 

without the need of fresh oocytes. Instead "left over" polyspermic zygotes from assisted 

reproduction treatments could be used, which are aneuploid and therefore are excluded from 

clinical use. 

Oocytes and pre-implantation embryos are characterized by the presence of a special 

linker histone subtype, called H1foo 272. H1foo expression, which is regulated by DNA 

methylation 273, is coupled to the initiation of oocyte growth 274 and is indispensible for meiotic 

maturation of mouse oocytes 275. During the late 2- to 4-cell stage, H1foo is replaced by somatic 

linker histones 272,276. Linker histone composition does not seem to be affected in SCNT, as 

H1foo rapidly populates the donor nucleus (within minutes) and subsequently somatic H1 

subtypes are lost 276-278. 

To study the extent of nuclear reprogramming at the molecular level, several studies have 

analyzed gene expression in cloned pre-implantation embryos. Global gene expression patterns 

of bovine SCNT blastocysts closely resemble those of fertilized control embryos and are very 

different from somatic donor cells, suggesting that significant reprogramming does occur 279. 

Instead, small changes in the expression of a few pluripotency related genes seem to 

compromise embryonic development in cloned embryos 280,281. Incomplete re-activation of Oct4-

related genes has been observed in mouse SCNT embryos 280 and increased Oct4 expression 

correlates with higher success in the blastocyst rate 281. Taken together, studies of cloned 

embryos from several species indicate that epigenetic reprogramming following fertilization is 

crucial for proper embryogenesis, and that even tiny changes in the expression of key 

regulatory genes may have a tremendous impact on the developmental outcome. 
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1.3.7. Trans-generational epigenetic inheritance 

Epigenetic information is inherited through mitotic rounds of cell divisions to maintain active and 

repressive transcriptional states. At certain times in development – during gametogenesis and 

early embryogenesis – the epigenetic state is reset. This clearing of epigenetic marks between 

generations is necessary to provide a 'clean state', correlating with totipotency, on which new 

heritable gene expression programs can be established to initiate various differentiation 

programs. However, evidence that epigenetic information is not always completely erased and 

can be inherited from parent to offspring comes from studies in several different eukaryotic 

organisms 282-285. 

The best studied example is paramutation, which is a widespread epigenetic phenomenon 

in plants (reviewed in 284). The term paramutation was first used to describe non-Mendelian 

inheritance of pigmentation in maize, and subsequently further examples involving phenotypes 

that were easy to score, like pigment levels, morphological changes or drug resistance, were 

described in several other plants. Paramutation involves communication between homologous 

sequences that are present in trans to set up distinct epigenetic states that are heritable. Two 

models have been proposed for trans communications: the pairing model where epigenetic 

states are altered by direct interaction between chromatin complexes, and the trans-RNA model 

which involves the participation of RNA-mediated chromatin changes 284,285. One well studied 

example of paramutation in the b1 locus in maize, where communication between different 

alleles is mediated by RNA leading to the establishment of distinct chromatin states at 

downstream tandem repeats – the key sequences required for paramutation 286. 

Remarkably little is known about the contribution of histone modifications and associated 

proteins towards trans-generational epigenetic inheritance in animals. In flies and mammals, 

female germ cells maintain a nucleosomal chromatin configuration during oogenesis that is 

transmitted to the zygote whereas paternal inheritance of nucleosomal chromatin and 

modifications is limited. Two studies in flies support the concept of maternal epigenetic 

transmission. Firstly, transmission of a hyperactive SU(VAR)3-9 allele (pitkinDominant) through the 

maternal but not paternal germline results in impaired development of wild-type progeny, likely 

due to a combined effect of aberrantly established H3K9 methylation patterns and inheritance of 

mutant maternal protein 44,287. Secondly, trans-generational epigenetic inheritance through 

female meiosis of an activated state, mediated by release of Polycomb-dependent silencing, 

has been reported at the Fab-7 chromosomal element 288. 

Examples of trans-generational inheritance in mouse 

In mice, maternal and grand-maternal (but not paternal) inheritance of epigenetic information 

has been observed at the agouti viable yellow (Avy) locus, in which an IAP retrotransposon 

inserted upstream of the agouti gene (A) 283,285. A encodes a paracrine signaling molecule that 

induces hair follicle melanocytes to switch from synthesis of eumelanin (black) to phaeomelanin 

(yellow), resulting in yellow fur color. Mosaic expression of the IAP correlates with its DNA 

methylation status and is responsible for a range of fur color phenotypes. The maternal effect at 

this locus is not the result of the maternally contributed environment but is due to incomplete 
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erasure of epigenetic modifications in the germ line 289. Recently it was shown, that DNA 

methylation is not the inherited mark at the Avy locus as DNA methylation is cleared immediately 

post-fertilization and is stochastically re-established before mid-gestation 290. Interestingly, 

maternal heterozygousity for the PRC1 component Mel18 (Rnf110) introduces epigenetic 

inheritance at the paternal Avy allele only in heterozygous offspring, arguing that this is 

dependent on events occurring after zygotic genome activation and therefore, despite rapid 

DNA demethylation at the locus 290.  

Moreover, recent screening experiments in mice have identified a limited number of 

paternal effect genes, in which mutation in the male parental germ line affects wild-type 

offspring 291. One example is paternal heterozygousity of the ISWI chromatin remodeler Snf2h 

(Smarca5) that enhances variegation at the Avy allele. Snf2h is highly expressed in testis and 

therefore could induce epigenetic modifications at chromosomes that would enter both wild-type 

and mutant sperm. Such differences may be retained and could affect maternal chromatin in 

trans following fertilization. Another example of a paternal effect gene is Dnmt1 which is highly 

expressed in spermatocytes, providing an opportunity to modify paternally transmitted DNA. 

The chromosomes from heterozygous Dnmt1 fathers may enter the zygotes in a 

hypomethylated state and may act as a sink for chromatin factors, diverting them from sensitive 

alleles like the Avy locus. These examples of paternal effect genes show that there is potential 

for transmission of paternal epigenetic information across generations despite extensive 

chromatin remodeling during spermatogenesis. 

Another recent study supports the idea that sperm can transmit more to the embryo than 

the information encoded in the primary DNA sequence 282. A paramutation-like phenomenon 

was described at the mouse Kittm1Alf locus in which a lacZ-neo cassette was inserted down-

stream of the Kit promoter 292. The Kit gene encodes a receptor tyrosine kinase, crucial for 

development. Mice heterozygous for Kittm1Alf have distinctive pigmentation patterns: a white tail 

tip and white feet. This phenotype can be transmitted from heterozygous parents to wild-type 

offspring through both the male and female germ line for several generations. Paramutated 

mice have reduced amounts of Kit mRNA and accumulate non-polyadenylated RNAs of 

abnormal size, particularly in testis. Strikingly, these RNAs are also present in Kittm1Alf mature 

sperm and microinjection of total RNA from Kittm1Alf heterozygotes or of Kit-specific miRNAs into 

wild-type zygotes induces the heritable white tail phenotype. In contrast to the b1 locus in maize 

where gene silencing occurs at the transcriptional level, posttranscriptional silencing may be 

employed in the Kit system 286. One possibility is that the transferred RNA leads to degradation 

of wild-type Kit transcripts. Alternative, it is also possible that the transmitted RNA establishes a 

chromatin state that results in reduced transcription. Taken together, transmission of parental 

RNAs can induce permanent and heritable epigenetic changes affecting gene expression. 

Evidence for trans-generational inheritance in human 

In human, there is emerging evidence of germ-line inheritance of epigenetic information at the 

promoters of two DNA mismatch repair genes, MLH1 and MSH2 293,294. However, due to great 

genetic diversity between individuals it is very difficult to rule out alternative explanations and to 
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argue for a case of trans-generational inheritance in humans. Two individuals with soma-wide, 

allele-specific and mosaic hypermethylation of MLH1 were reported 294. Both had multiple 

tumors that show mismatch repair deficiency but no mutation in any repair gene was detected. 

Instead, both carried germ-line epimutations in MLH1 and one showed the epimutation in a low 

proportion of sperm cells. Although compelling, definite proof of inheritance of the germ-line 

mutation is still lacking. Germ-line allele-specific and mosaic somatic hypermethylation has also 

been described for the MSH2 gene in a family with inheritance in three successive generations 
293. Three siblings developed cancer, all associated with microsatellite instability and MSH2 

protein loss. Again, evidence is missing that the epimutation is indeed a germ-line event and it 

cannot be ruled out that a mutation in the disease haplotype is responsible 295,296. 

To sum up, evidence for incomplete clearance of epigenetic information in the germ-line 

resulting in trans-generational epigenetic inheritance has been presented in a number of 

species. In many of the reported cases, inheritance occurs at transgenes or genes under 

transcriptional control of retrotransposons or other repetitive elements. These repeat elements 

often have critical roles in chromosome function and the maintenance of their epigenetic state 

may be required for proper segregation and pairing of chromosomes during meiosis 285. 

Moreover, resistance of IAP elements to DNA demethylation following fertilization 229 may be 

desirable to prevent IAP retrotransposition but in turn can lead to heritable epimutations of 

neighboring genes. In the future, it will be challenging to study trans-generational inheritance at 

endogenous loci, although the phenotypes will be more difficult to score. Such analysis will give 

us a better understanding of the significance of epigenetic inheritance across generations and 

may shine further light on the question of the evolutionary purpose of paramutation-like events 
282,283,285. 

1.3.8. Constitutive heterochromatin reprogramming 

During early pre-implantation development, both maternal and paternal genomes undergo major 

structural and epigenetic changes which also involve constitutive heterochromatin of pericentric 

and centromeric regions 297. Upon pronucleus formation, maternal PCH regions form a 

discontinuous ring surrounding the nucleolar precursor bodies (NPBs) 298. PCH can be 

visualized by fluorochromes like 4,6-diamidino-2-phenylindole (DAPI), preferentially binding to 

the underlying AT-rich major satellite sequences or by DNA fluorescence in situ hybridization 

(FISH) using probes specific for major satellites. Centromeric minor satellite foci insert into 

pockets within major satellite rings 298. In maternal pronuclei, at least one centromere resides at 

the nuclear periphery and is not associated with the NPBs 298,299. Paternal PCH initially occupies 

a single cluster in the centre of the nucleus of decondensing sperm but is subsequently 

relocated to NPBs upon pronucleus formation 298. In contrast to maternal PCH, paternal major 

satellites form a continuous ring with minor satellites positioned on either site and all 

centromeres associated to NPBs. Notably, in female pronuclei, all NPBs are associated with 

centromeres whereas this is only the case for 60% of paternal NPBs 299. 
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Heterochromatin marking following fertilization 

In zygotes, only maternal PCH is labeled by H3K9me3 and H4K20me3 202,218,298-300, 

characteristic marks of constitutive heterochromatin that have been inherited from the oocyte 
202. HP1β is loaded onto maternal heterochromatin upon gamete fusion and is subsequently 

present within euchromatin and is enriched at PCH rings. Both histone methylation marks as 

well as HP1β are excluded from minor satellite foci 298. Despite the lack of H3K9me3 binding 

sites at paternal chromatin, HP1β is also present in paternal pronuclei, albeit less strongly 

bound 202,218. Depending on the antibody used, HP1β shows either weak 202,218,298 or no 299 (our 

data, Chapter 2.2) enrichment at paternal PCH. It is unclear why paternal chromatin is initially 

refractory towards H3K9me3. One possibility is that the Suv39h enzymes, if present, are 

enzymatically inhibited as has been reported for a H3K9 di-methyltransferase 223 (Chapter 

1.3.3). Alternatively, conditions that enable de novo H3K9me3 may first need to be established 

in analogy to heterochromatin maturation in fly embryos 301 or S. pombe 26. In fly embryos, PCH 

becomes first visible at the apical pole of early blastoderm nuclei. Establishment of PCH 

involves removal of H3K4me2 by the histone demethylase SU(VAR)3-3, the Drosophila 

homolog of Lsd1, which facilitates subsequent H3K9me by SU(VAR)3-9 301. SU(VAR)3-3 co-

immunoprecipitates with SU(VAR)3-9, HP1 and the histone deacetylase RPD3 which together 

form a silencing complex that provides activities for erasing pre-existing chromatin modifications 

and replacing them with new ones. In line with this it is interesting to note that extensive 

reprogramming of PCH is occurring during mouse spermatogenesis 302, resulting in 

transmission of acetylated core histones as well as specific histone variants at PCH with mature 

sperm 210,302. Intriguingly, despite the lack of H3K9me3 at paternal centromeres, chromosomes 

are properly segregated during first mitosis suggesting that paternal chromatin can compensate 

for the lack of canonical heterochromatin marks. Future studies should be aimed to understand 

how parental asymmetry at constitutive heterochromatin could influence chromatid segregation 

during cleavage divisions, which in humans is remarkable irregular 303. Maybe the differential 

epigenetic marking of maternal and paternal PCH is even required to "sort" chromosomes into 

separate nuclear compartments according to their parental origin 225, which may facilitate further 

remodeling of paternal chromatin or selective transcriptional activation. 

Further reprogramming during pre-implantation stages 

At the 2-cell stage, an increasing number of centromeres relocate from the periphery of the 

NPBs to the nucleoplasm where they form clusters with centromeres of other chromosomes 
222,298,299, resembling chromocenters of mouse somatic cells 7. At the 4-cell stage, only 10% of 

centromeres remain associated with NPBs and relocation is complete at the 8-cell stage 222. In 

parallel to chromocenter formation, HP1β which is initially only present at half of the PCH foci at 

the 2-cell stage, is progressively acquired, marking all chromocenters at the late 8-cell stage 222. 

Moreover, fluorescence recovery after photobleaching (FRAP) analysis indicates that HP1β 

becomes more stably bound to chromatin in later pre-implantation embryos compared to 

zygotes where it is freely mobile 304. 
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DNA replication is temporally regulated in mammals with PCH replicating during mid S-

phase in somatic cells 7. During pre-implantation development, replication timing of PCH 

switches from late replication at the 1-cell stage to replication during mid S-phase in blastocysts 
299. Heterochromatin organization in embryonic cells depends on the Chromatin assembly factor 

1 (Caf-1) 305. CAF-1 is known as a histone chaperone that promotes deposition of histones, 

specifically H3.1, onto newly synthesized DNA during S-phase 211. Deletion of Caf-1 in embryos 

results in a perturbed 3D organization of PCH and leads to embryonic arrest at the 16-cell 

stage, that is one to two cell divisions after loss of maternal Caf-1 protein. After knockdown of 

Caf-1 in ES cells, PCH of individual chromosomes appears isolated or less densely clustered 

and shows reduced H3K9me3 and H4K20me3 levels. In contrast, such severe alterations are 

not observed after knockdown of Caf-1 in fibroblast cells, suggesting that Caf-1 is specifically 

required for the organization of PCH in pluripotent cells. 

Notably, the most dramatic rearrangement of PCH from the zygotic ring shape into 

chromocenters takes place at the 2-cell stage, concurrent with zygotic genome activation. In 

bovine, where ZGA is initiated in 8-cell embryos, the formation of local HP1β accumulations at 

centromeres starts at the beginning of the 8-cell stage 299. This striking coincidence between 

chromocenter formation and zygotic genome activation suggests that these two processes may 

be functionally linked. 

1.3.9. Pluripotency and first lineage commitment 

The zygote and to some extent the blastomeres of early embryos are totipotent, as they can 

give rise to an entire new organism. After the third division, blastomeres of the 8-cell embryo 

undergo a morphological change known as compaction. Symmetric and asymmetric cell 

divisions at the 8-cell stage result in polarized blastomeres. Symmetric divisions give rise to two 

"outside" daughter cells whereas asymmetric divisions result in one polar "outside" and one 

apolar "inside" cell, leading to the formation of a 16-cell morula consisting of small inner cells 

enclosed with larger outer cells. Both compaction and polarization depend upon cell adhesion, 

involving the intercellular adhesion molecule E-cadherin 306. The polar cells remain outside and 

form the trophectoderm (TE) which will give rise to the majority of the embryonic portion of the 

placenta. In contrast, the inner cells generate the inner cell mass (ICM) that gives rise to the 

pluripotent cells of the epiblast (EPI) which are covered by a monolayer of the primitive 

endoderm (PE) on the blastocoelic surface, fated to form extraembryonic tissues. Thus, by the 

time of implantation the blastocyst has developed three distinct cell lineages which are no 

longer interconvertible. The TE and PE extraembryonic lineages are required to support the 

growth of the fetus in the uterine environment and provide a source of signals to the epiblast to 

direct differentiation and initiation of gastrulation 307-310.  

Differential expression of transcription factors during lineage commitment 

The zygote contains a number of transcription factors, some of which are essential for 

pluripotency, such as the homeodomain protein Oct4 (Pou5f1) and the SRY-box containing 

gene 2 (Sox2). Differentiation of the first cell lineages in mammalian embryos is accompanied 

by the restricted expression of specific sets of key transcription factors in the distinct cell 
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lineages (reviewed in 311,312). This lineage restriction is mimicked by the different cell types that 

can be derived from the mouse blastocyst, providing valuable tools for studying pluripotency 

and differentiation in the Petri dish. Embryonic stem (ES) cells, derived from the ICM of the 

blastocyst, are dependent on the expression of the pluripotency factors Oct4, Sox2 and Nanog, 

and on signaling through the leukemia inhibitory factor (LIF) and bone morphogenic protein 4 

(Bmp4) 311. In contrast, trophectodermal stem (TS) cells, derived from the TE, require 

expression of Cdx2, Eomes and other TS specific transcription factors and are dependent on 

fibroblast growth factor 4 (FGF4) 313. 

The POU transcription factor Oct4 is distinguished by its expression in all pluripotent cell 

types, including blastomeres of early embryos, ICM, early EPI and ES cells as well as germ 

cells, and is downregulated upon formation of extraembryonic and somatic lineages. Oct4-

deficient embryos develop to the blastocyst stage but cells within the ICM lack pluripotency and 

are instead restricted to differentiate along the TE lineage 314. Oct4 is, however, not sufficient to 

maintain pluripotency as forced Oct4 expression fails to render ES cells independent of gp130 

signaling through LIF. In contrast, forced expression of Nanog is sufficient to maintain mouse 

ES cells in the absence of LIF 315. Upon cell differentiation, Oct4 target genes are predominantly 

but not exclusively downregulated, consistent with Oct4 acting as a transcriptional activator or 

repressor, depending on different promoter contexts 311. Transcription of Oct4 itself needs to be 

tightly regulated to sustain the ES cell state, as reduction of expression by approximately half 

induces loss of pluripotency and differentiation to TE whereas a less than two-fold increase of 

Oct4 causes differentiation into PE and mesoderm 316. Oct4 expression is controlled through 

two enhancer regions: the distal enhancer is required for normal Oct4 levels in pre-implantation 

embryos and ES cells (but is inactive in the epiblast) and the proximal element directs epiblast-

specific expression patterns 317. Expression of Oct4 is positively regulated by the pluripotency 

transcription factors Nanog and Sox while in turn Oct4 is present at the promoter of these 

genes, resulting in a transcriptional network that establishes and maintains pluripotency 311. 

Downregulation of Oct4 during differentiation is accompanied by a loss of active chromatin 

marks, including deacetylation of H3K9/K14 and demethylation of H3K4 as well as an increase 

in G9a-mediated H3K9me and HP1 binding followed by de novo methylation of DNA 318. While 

H3K9me is slowing down Oct4 reactivation, DNA methylation of the Oct4 promoter seems to be 

the locking mechanism that serves to stably inhibit Oct4 re-expression. 

During pre-implantation development, the first differences in the distribution of key 

pluripotency factors have been described at the early morula stage. In 8-celll embryos, both 

Oct4 and Cdx2 are expressed in all nuclei of the embryo. Cdx2 expression starts to decrease in 

some inner cells of the morula while Oct4 is still detectable in all cells, suggesting that loss of 

Cdx2 in the inner cells of morula embryos might be the primary event in the segregation 

between ICM and TE 319. How differential expression of Cdx2 is achieved in pre-implantation 

embryos is still unclear. ES cells can be induced to differentiate into TE by forced repression of 

Oct4, independent of Cdx2, but Cdx2 is essential for the self-renewal capacity of TS cells 319. 

Segregation of the ICM into PE and EPI is preceded by the mutual exclusive expression of 

Nanog and Gata6 in ICM cells in a random "salt and pepper" pattern at E3.5 320. Lineage tracing 
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experiments have shown that single ICM cells are restricted to either the PE or EPI lineage at 

E3.5 – one day before morphological differences become apparent between these tissues. In 

embryos deficient for the adaptor molecule Grb2, which has important roles in signal 

transduction downstream of several different receptor tyrosine kinases, Gata6 expression is lost 

and all ICM cells are positive for Nanog. In such mutant embryos, no PE is formed, suggesting 

that the ICM develops as a mosaic of PE and EPI progenitors at E3.5, dependent on Grb2 

signaling, followed by later segregation of the progenitors into the appropriate cell layers. 

Differences in epigenetic modifications 

Epigenetic mechanisms are thought to be involved in maintaining pluripotency as well as 

directing cells towards distinct developmental programs 312. Global differences for chromatin 

modifications become first apparent at the morula to blastocyst transition in early mouse 

embryos. Following global DNA demethylation during pre-implantation development, de novo 

DNA methylation takes place specifically in the cells of the ICM whereas TE cells keep their 

hypomethylated state, resulting in epigenetic asymmetry between the first two cell lineages 
217,240. Asymmetry is also observed for Polycomb-mediated H3K27me3 with strongly increased 

levels in the ICM compared to TE 136. What is the role of this epigenetic asymmetry? Is it 

involved in directing the expression patterns of key transcriptional regulators? Very little is 

known towards this end, mainly due to technical difficulties in using high resolution ChIP 

analysis on small samples like early embryos. One pilot study has however succeeded in 

applying ChIP to as little as 100 cells, permitting the analysis of dissected ICM and TE cells of 

blastocyst embryos using Drosophila chromatin as carrier 256. They show that the pluripotency 

factors Oct4 and Nanog are enriched in active chromatin marks in the ICM but lack these 

modifications in TE cells whereas Cdx2 shows inverse enrichments. More studies are required 

to specifically follow chromatin modifications during early development to monitor their changes 

at the promoters of key developmental regulators during specification of the first cell lineages. 

Such analysis will allow us to draw conclusions with respect to the order of events and will be 

especially informative in embryos deficient for certain chromatin modifiers, a number of which 

became available during recent years. 

The long-standing view that blastomeres of the early mouse embryo are identical at least 

until the 8-cell stage, has been challenged by a number of recent studies. In several animal 

species, the polarity of the embryo is established from the very beginning, as a result of 

maternally inherited factors that are either asymmetrically localized in the egg or asymmetrically 

distributed following fertilization. Mammalian embryos have often been held as an exception 

from this rule and it is still controversial, when and how polarity is acquired (reviewed in 321,322). 

Some studies suggest that formation of the embryonic-abembryonic axis happens at random, 

thus independent of earlier developmental events 323-325. Another viewpoint is that the first 

cleavage in the mouse embryo could predict blastocyst polarity. Consequently, although each 2-

cell blastomere can give rise to both ICM and TE, one of the 2-cell blastomeres tends to 

contribute more to embryonic parts of the blastocyst and the other blastomere more to 

extraembryonic parts 326-328. In light of these findings it is interesting to note that while all 4-cell 
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blastomeres can have full developmental potential, they differ in their individual developmental 

properties according to their spatial origin 329. Especially blastomeres from embryos that result 

from one meridional (M) and later equatorial (E) division ("ME" embryos) differ in their fate and 

their developmental properties. Chimeras made entirely from the later E blastomeres are 

developmentally compromised. Such E blastomeres can however contribute to all embryonic 

cell lineages when they are surrounded by blastomeres from random positions 329. It has been 

suggested many times in the literature that epigenetic mechanisms may guide cell fate 

decisions during embryogenesis and a recent report by Torres-Padilla and colleagues 330 

provides the first indication that this hypothesis might actually be true. They show that levels of 

arginine methylation at H3R2, H3R17 and especially H3R26, mediated by CARM1, differ in 

individual blastomeres of EM and ME embryos, i.e. in the embryos that have been previously 

shown to have a developmental bias. Blastomeres with high levels of H3R26me preferentially 

contribute to ICM and polar TE whereas progeny of blastomeres with low H3R26me contribute 

more to mural TE. Most strikingly, overexpression of CARM1 in individual blastomeres directs 

the fate of their progeny towards the ICM lineage, resulting in upregulation of the pluripotency 

factors Nanog and Sox2. 

Taken together, histone arginine methylation has been identified as the earliest epigenetic 

mark that contributes to the segregation of the first cell lineages in the early embryo. It remains 

to be studied whether other epigenetic modifications play similar roles in guiding cell fate 

decisions in mouse embryos and other species. 

1.4. Scope of the thesis 

When I started my PhD, it was known that different types of histone methylation are initially 

asymmetrically distributed between maternal and paternal genomes. Except for Ezh2 which is 

required for H3K27me3, the histone methyltransferases promoting the de novo methylation 

reactions had not been identified. By RT-PCR expression profiling, we found that different 

HMTs specific for H3K4me that belong to the Trithorax group of proteins are expressed in 

oocytes and early embryos. Moreover, in addition to PRC2, several members of the PRC1 

complex were found to be expressed maternally and zygotically. Since the TrxG and PcG 

proteins are known to be part of a cellular memory system, we wanted to analyze their role in 

transmitting epigenetic information through the maternal germ line and in guiding major events 

occurring in the early embryo.  

Initially, it was thought that major zygotic genome activation at the 2-cell stage is global, but 

recent microarray profiling studies suggest that specific sets of genes are activated. The 

contribution of histone modifications to this process is largely unknown. Like observed later 

during development, it is possible that TrxG proteins are involved in promoting active gene 

transcription whereas PcG proteins might repress other genes during zygotic genome 

activation. Moreover, following induction of lineage commitment, the cells of the TE and ICM 

need to 'remember' their cellular fate, possibly involving the antagonistic action of TrxG and PcG 

proteins. The asymmetric distribution of H3K27me3 between TE and ICM 136 (our data) might 

point towards such a role. 
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Taken together, the players involved in setting up chromatin states in early embryos and 

their contribution to pre-implantation development was not well understood. In this PhD project, 

I initially aimed to analyze the antagonistic function of TrxG and PcG proteins. However, due to 

the high redundancy of H3K4 specific HMTs we decided to focus on PcG proteins. We aimed to 

dissect the contributions of PRC2 and PRC1 complexes to pre-implantation development using 

conditional knock-out approaches. 
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Abstract

One physiological function proposed for RNA interference (RNAi) is to constrain expression of repetitive elements and thereby
reduce the incidence of retrotransposition. Consistent with this model is that inhibiting the RNAi pathway results in an increase in
expression of repetitive elements in preimplantation mouse embryos. Mouse oocytes are essentially transcriptionally quiescent providing
a unique opportunity to assess the stability of repetitive element-derived transcripts in these cells. We compared the transcriptome of
freshly isolated fully grown germinal vesicle (GV)-intact oocytes to that of oocytes in which meiotic maturation in vitro was inhibited
for 48 h by milrinone. Consistent with the aforementioned function for RNAi is that the abundance of only a relatively small number
of transcripts decreased in the cultured oocytes, when compared to changes that occur during maturation or following fertilization, and
of those, several belonged to mobile elements.
� 2006 Elsevier Inc. All rights reserved.

Keywords: GV-oocyte; Meiosis; mRNA stability; mRNA degradation; Milrinone; L1; IAP; VL30; ETn
Approximately 40% of the human and mouse genomes
are composed of a diverse group of transposable elements
(TEs) [1–3], which differ in many aspects such as structure,
copy-number, expression pattern, and rate and mechanism
of mobility. Most of TEs are retroelements that transpose
through a ‘‘copy and paste’’ mechanism utilizing an
RNA intermediate. Although transcribed, these sequences
are typically not mobile because the vast majority bear
mutations, truncations, and deletions. For example, of
the �400,000 human L1 insertions (which occupy 17% of
the genome [2]), only 90 are intact and full-length, of which
40 are active in a cell-culture retrotransposition assay [4].
TEs have a capacity to cause deleterious mutations and
they are often viewed as harmful parasites [5]. Consistent
with this idea is that numerous mechanisms operate in ani-
0006-291X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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mals to silence TEs that include transcriptional silencing
mediated by DNA methylation [6–8] and chromatin chang-
es [9,10].

In invertebrates, repression of mobile elements occurs
post-transcriptionally by an RNA interference (RNAi)-like
mechanism. RNAi refers to the selective degradation of
mRNA induced by double-stranded RNA (dsRNA), and
is one of the mechanistically related RNA silencing path-
ways (reviewed in [11]). It is viewed as a form of defense
against viruses and other parasitic sequences and one of
the proposed roles for RNAi in the germ-line in metazoa
is to inhibit TEs [12–14]. Whether this role extends to mam-
mals is not clear.

RNAi operates in mammalian cells and appears to be a
major pathway responding to long dsRNA in germ cell
lineage-competent cells such as oocytes, early embryos,
and undifferentiated embryonic stem (ES) cells [15–17];
these cells lack an interferon response [15,18]. Because
mammalian TEs apparently can generate dsRNA [19–21]
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and expression of several retrotransposons occurs in mam-
malian oocytes and early embryos [21–23], a likely function
of RNAi in oocytes and early embryos would be to con-
strain expression of TEs, thereby limiting their activity in
germ-line cells. Indeed, inhibiting Dicer in preimplantation
mouse embryos or ES-cells results in an increased abun-
dance of mRNAs of retrotransposons L1, IAP, and
MuERV-L [20,24].

To address post-transcriptional silencing of TEs in
mammals, we analyzed the stability of TE-derived RNAs
in mouse oocytes using microarrays and RT-PCR. Oocyte
growth is accompanied by the cessation of transcription in
the fully grown oocyte [25]; transcription resumes by the
late 1-cell stage/2-cell stage [26]. In vitro, this window of
transcriptional quiescence can efficiently be extended by
treatment with the phosphodiesterase (PDE) inhibitor mil-
rinone, which blocks the resumption of meiosis. Thus, mil-
rinone treatment provides an opportunity to assess mRNA
stability without interfering with developmental processes
such as resumption of meiosis. The underlying assumption
is that, under these conditions, TEs would exhibit greater
instability due to RNAi-mediated degradation. Results of
the experiments described here indicate that the abundance
of transcripts of several (but not all) mobile elements is
markedly reduced in oocytes inhibited from undergoing
maturation in vitro. These elements include mVL30 and
IAP, retrotransposons exhibiting the highest transcript
abundance in the oocyte.

Materials and methods

Oocyte and embryo collection and culture. Oocytes for microarray and
RT-PCR analyses were isolated from superovulated 6- to 8-week-old CF1
or CD1 females, respectively. Fully grown germinal vesicle (GV)-intact
oocytes were collected 46 h after eCG injection (5 IU) from cumulus cell–
oocyte complexes. Metaphase II-arrested eggs were collected from eCG-
and hCG-primed mice. One-cell embryos were harvested from eCG- and
hCG-primed females that were mated.

Oocytes were pooled and one-half was immediately frozen in lysis
buffer for RNA isolation at a later time. The other portion was cultured
in CZB containing 1 mM glutamine and 2.5 lM milrinone for 48 h at
Table 1
Primers used for RT-PCR

Name Forward

Actb 50-TGGGAATGGGTCAGAAGGACT-30

Ezh2 50-AGCCTTGTGACAGTTCGTGC-30

Pou5f1 50-GGAGAAGTGGGTGGAGGAAG-3 0

Zp3 50-AAGCTCAACAAAGCCTGTTCG-3 0

Mos 50-CCATCAAGCAAGTAAACA-30

Plat 50-CATGGGCAAGAGTTACACAG-30

IAP 50-GCACCCTCAAAGCCTATCTTAT-30

mVL30 50-CCTTTGTTGCCCAGGTAAGTC-30

L1 50-TTTGGGACACAATGAAAGCA-30

RLTR1b 50-TCCTTCCCTTTGCCCTATTT-30

ETn 50-CAGGCTTTGGAGACAATAGGG-3 0

ORR1 50-CTTTAGTTGATGGCCCAGGA-3 0

MT 50-ATGTCTTGGGGAGGACTGTG-3 0

SINE B1 50-GTGGCGCACGCCTTTAATC-3 0

SINE B2 50-GAGATGGCTCAGTGGTTAAG-30
37 �C in a humidified atmosphere of 5% CO2 in air. MII eggs and 1-cell
embryos were collected in FHM/Hepes 20 and 21 h post-eCG injection,
respectively. For all stages, oocytes and embryos were pooled from
several mice and RNA was isolated from batches of 50 oocytes/
embryos.

RNA isolation and RT reaction. RNA was isolated using the ‘‘Abso-
lutely RNA Nanoprep Kit’’ (Stratagene). Briefly, cells were transferred to
lysis buffer and stored at �80 �C. After thawing, 100 ng of Escherichia coli

rRNA was added to each sample as carrier. RNA was purified according
to the manufacturer’s instructions. RNA was eluted using two separate
elution steps resulting in a total volume of 20 ll (i.e., 2.5 oocyte-equiv/ll).
Reverse transcription was performed from total RNA corresponding to 20
oocytes or embryos using random primers (200 ng) and SuperScript II
RNase H Reverse Transcriptase (Invitrogen) according to the manufac-
turer’s protocol.

PCR. For PCRs, cDNA corresponding to 0.2 embryos or oocytes was
used as a template. Primer sequences are listed in Table 1. Amplifications
were carried out using Taq DNA polymerase (Qiagen). Thermocycling
was performed in a Bio-Rad iCycler using the following PCR conditions: 1
cycle at 95 �C for 5 min; the indicated number of cycles at 95 �C for 45 s,
55 �C for 45 s, and 72 �C for 1 min; 72 �C for 10 min and a final hold at
4 �C. For MT 22 cycles were used, for ActB, Mos, Oct4, Plat, and Zp3 28
cycles, for Orr1 30 cycles, for IAP, L1, mVL30, RLTR1B, SINE B1,
SINEB2 32 cycles, for Ezh2 35 cycles and for Etn 38 cycles, respectively.
PCR products were resolved on a 2% agarose gel and afterwards the gels
were stained with SYBR green I (Molecular Probes, 1:10,000). Fluores-
cence was detected on a Typhoon 9400 scanner (Amersham Biosciences).

Affymetrix microarray hybridization and analysis. Total RNA from four
replicates of each treatment was used for linear, two-round amplification by
in vitro transcription and target cRNA preparation according to the
Affymetrix Small Sample Prep Technical Bulletin (www.affymetrix.com).
Total RNA from each replicate was reverse-transcribed using the
Affymetrix cDNA synthesis kit and cRNA was produced by in vitro tran-
scription (IVT) by T7 RNA polymerase using the Affymetrix IVT kit as per
the manufacturer’s instructions. Twenty micrograms of biotinylated cRNA
was fragmented by heating with magnesium (as per Affymetrix’s instruc-
tions) and 15 lg of fragmented cRNA was serially hybridized to MOE430
2.0 GeneChips and then processed according to the manufacturer’s
instructions (GeneChip Analysis Technical Manual, www.affymetrix.com)
at the FMI Microarray Facility. Microarray analysis was performed as
described in [27] and the resulting data from this study are available at the
Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo). Briefly, GC-
RMA algorithm from Bioconductor was used to estimate probe set
expression values. The expression values were then exported as a text file
and imported into GeneSpring 7 (Silicon Genetics) with default per-chip
normalization to the 50th percentile and per-gene normalization to the
median. The per-chip and per-gene normalized data are referred to as
Reverse References

50-GGGTCATCTTTTCACGGTTGGC-3 0

50-TTTAGAGCCCCGCTGAATG-30

50-GGGAAACCCTGTAGCCTCATAC-3 0

50-TATTGCGGAAGGGATAC AAGG-30

50-AGGGTGATTCCAAAAGAGTA-30 [16]
50-CAGAGAAGAATGGAGACGAT-30 [16]
50-TCCCTTGGTCAGTCTGGATTT-30 [20]
50-CACTGTAGCCAGTTGTGACCAG-3 0

50-CTGCCGTCTACTCCTCTTGG-30 [9]
50-GGCTGGAACTGGTGAGATGT-30 [21]
50-TCTCTCAGGGAACTCAGAAACG-3 0

50-CCAACTCTGCCCTCTGTAGC-3 0 [21]
50-AGCCCCAGCTAACCAGAACT-30 [21]
50-GACAGGGTTTCTCTGTGTAG-30 [9]
50-CTGTCTTCAGACACTCCAG-30 [9]

http://www.affymetrix.com
http://www.affymetrix.com
http://www.ncbi.nlm.nih.gov/geo
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‘‘raw’’ and ‘‘normalized’’ expression values, respectively. Because we
expected down-regulation of an unknown number of genes during the
milrinone treatment, we generated a list of 23,989 probe set for further
analysis from probe sets present in all four control replicates (GV-oocyte,
t = 0; raw signal value >50).

Results and discussion

General characterization of the microarray analysis

We first compared fully grown GV-intact oocytes freshly
isolated from the ovary, with oocytes cultured in the pres-
ence of 2.5 lM milrinone for 48 h (Fig. 1); additional infor-
mation can be found in the Supplemental Material. The
profile of raw signal from MOE430 2.0 arrays was uniform
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(Fig. 1A). The average number of probe sets with present
signal (raw signal value >50) per chip was 23,577 (±314).
It should be noted here that the number of probe sets on
the microarray is higher than the number of expressed
genes because the array is partially redundant.

We performed several clustering analyses of the micro-
array data using various gene lists. In each case replicates
of each experimental condition clustered together
(Fig. 1B). For most genes, raw signal and normalized val-
ues did not vary much between replicates. Of note is the
presence of many genes whose relative abundance was
decreased in oocytes following culture when compared to
their freshly isolated counterparts, as evidenced by the
appearance of blue bands.
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To address further the reliability of the microarray data,
we analyzed the relative abundance of six transcripts by
RT-PCR, which showed little, if any, changes in their mean
normalized expression values (Fig. 1C and D). These tran-
scripts included: the dormant maternal mRNAs Mos and
Plat, which are stored during oocyte growth and not trans-
lated until the resumption of meiosis and which are stable
following extended culture of fully grown GV-intact
oocytes [16]; the oocyte-specific gene Zp3; the ubiquitously
expressed housekeeping gene Actb; and genes with regula-
tory functions Pou5f1 (transcription factor Oct-4) and a
polycomb gene Ezh2. This analysis yielded a good correla-
tion between the microarray data and RT-PCR data, pro-
viding further support for the robustness of the microarray
results (Fig. 1C and D).

In the absence of transcription, the majority of probe
sets that display a change should show a decrease in rela-
tive abundance, and such was the case (Fig. 2A and B).
A scatter plot of 23,989 probe sets (raw value >50) where
per-gene normalized values of milrinone-treated oocytes
are plotted against control oocytes and using a 2-fold
cut-off revealed a population of transcripts whose relative
abundance decreased. There were 27 probe sets exhibiting
up-regulation above the 2-fold cut-off in the milrinone
treatment but the majority of probe sets showing more
than 2-fold-change were down-regulated (1091). The 2-fold
cut-off is a default for many microarray experiments. We
have addressed the problem of fold-change cut-off in more
detail because linear amplification likely introduced more
variability into the analysis resulting in a higher rate of
false positive changes. Fig. 2B shows relationship between
fold-change cut-off and numbers of up-regulated and
down-regulated transcripts. These results indicate that even
at the 2-fold cut-off, the number of up-regulated transcripts
is fairly small (27) and there are only three transcripts
found up-regulated at the 3-fold cut-off. Only six of the
2-fold up-regulated probe sets (none of 3-fold) pass the
t-test (p < 0.05).

As mentioned above, 1091 probe sets were found to be
down-regulated more than 2-fold, which represents 4.35%
of all transcripts; Fig. 2C shows the distribution of the fold
down-regulation across the 1091 probe sets down-regulated
more than 2-fold. Most of the probe sets detected a smaller
down-regulation but there were also transcripts showing a
strong reduction in abundance (up to �52-fold). The initial
fold-change filter reduces the number of genes considered
for statistical validation, which is an important step for
minimizing the false discovery rate. For the statistical anal-
ysis we applied a one-way ANOVA (p < 0.05) reducing the
2-fold list from 1091 to 424 probe sets, while most of the
removed probe sets showed lower fold-changes (see Sup-
plemental Material for gene lists). Although the number
of actual transcripts is somewhat smaller because the probe
sets are redundant, we estimate that the total number of
affected transcripts does not exceed a few percent of all
expressed genes. In particular, we rarely observed down-
regulation of abundant transcripts, i.e., transcripts whose
raw expression value was higher than several thousands.
Therefore, maternal mRNAs, which accumulate during
oocyte growth, are highly stable in the fully grown GV-
oocyte. This result is consistent with results of previous
experiments which indicated that oocyte mRNA is stable
during the growth phase [28,29].

The cause of the observed instability of down-regulated
mRNAs is unknown. Down-regulated transcripts are not
strongly enriched for AU-rich or other known mRNA-de-
stabilizing sequences (data not shown). It should be noted
that known mechanisms degrading maternal mRNAs in
the oocytes are associated with resumption of meiosis or
other developmental transitions [30], which do not occur
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in our model system. It is possible that a fraction of the
down-regulated mRNAs represents microRNA (miRNA)
targets. It has been recently shown that post-transcription-
al regulation by miRNAs may involve mRNA degradation
even in the absence of extensive base paring to their targets
[31,32], possibly as a consequence of relocalization of
repressed mRNAs to cytoplasmic domains known as P-bo-
dies (reviewed in [33,34]). There are hundreds of known
mammalian miRNAs [35]. Each mammalian cell studied
so far expressed numerous miRNAs and oocytes are likely
not an exception. Studies of miRNA targets estimate that
up to 30% of mammalian genes could be targeted by
miRNAs [36]. However, it is not known how many genes
are regulated by miRNAs in specific cell types. Given the
limited information about what makes a functional
miRNA target site, prediction algorithms generally estimate
that hundreds of mRNAs are targeted by individual
miRNAs [37–41]. A recent study of Drosophila cells depleted
of the miRNA pathway components indicates that miRNAs
may down-regulate up to several percent of cellular tran-
scripts [42]. If a similar fraction of transcripts would be tar-
geted in the mouse oocytes, a majority of down-regulated
mRNAs could be miRNA targets. However, this issue can-
not be directly addressed until technical problems with clon-
ing miRNAs from very small samples will be solved and
miRNA pathway-deficient oocytes will be available.

How the down-regulation of hundreds of transcripts
would affect developmental competence of mouse oocytes
is not known. It is interesting to note, however, that cultur-
ing porcine oocytes for 22 h in the presence of IBMX,
another phosphodiesterase inhibitor, which has a compara-
ble effect to milrinone in preventing resumption of meiosis,
does not negatively affect developmental competence as
measured by culturing in vitro matured and fertilized eggs
to the blastocyst stage [43]. Whether the developmental
competence to term is affected is not known.

Stability of mRNA of repetitive elements

As mentioned above, several mobile elements in inverte-
brates were described as endogenous targets for RNAi
[12,13,22,44] but there is presently little evidence supporting
this role for RNAi in mammals [20,24]. If RNAi-mediated
degradation of repetitive elements exists in the mouse oocyte,
the targeted transcripts should be found among the mRNAs
down-regulated after milrinone treatment.

To this end we conducted a systematic survey of the sta-
bility of transcripts derived from repetitive elements. We
generated a list of murine repetitive elements highly similar
to or perfectly matching MOE 430 2.0 probe sets (see Sup-
plemental Material). We then extracted and analyzed raw
and normalized data for these repetitive elements in Gene-
spring 7. Although the majority of the Affymetrix probes
for various repetitive elements appeared stable, several
probes (perfectly matching intracisternal A particle (IAP)
and mVL30 retrotransposons) showed a robust down-reg-
ulation (Fig. 3A). Instability of IAP and mVL30 transcripts
was further confirmed by RT-PCR with primers amplifying
a specific region upstream of the 3 0 long terminal repeats
(Fig. 3B). RT-PCR analysis of other repetitive elements
revealed down-regulation of L1 transcripts (which show a
low hybridization signal and a weak down-regulation on
microarrays (Fig. 3A)) and of the RLTR1b element (absent
on the microarrays).

No down-regulation was observed for ORR1, MT, and
SINE B1 and B2 elements (Fig. 3B). It should be noted that
a recent study reported that many gene transcripts
expressed in oocytes are chimeric, containing LTR class
III retrotransposon sequences fused to their 5 0 ends [21].
The function of these transcripts in preimplantation devel-
opment remains unresolved. The MOE430 2.0 chip does
not contain a perfectly matching probe set for MT-like ret-
rotransposons and our data do not discriminate between
these chimeric transcripts and their bona fide counterparts
because the array probes used are biased towards the 3 0

end of the transcript. In any case, RT-PCR with MT prim-
ers showed no change in their mRNA levels after milrinone
treatment (Fig. 3B).

Interestingly, RT-PCR analysis of repetitive transcripts
down-regulated during milrinone treatment revealed vari-
able behavior during normal development (Fig. 3B). The
RT-PCR analyses of unfertilized and fertilized eggs
(Fig. 3B) are consistent with previously reported expres-
sion data [21,23,27]. Fig. 3B illustrates differences between
regulation of individual mobile elements. For example,
IAP shows a strong down-regulation of mRNA during
meiotic maturation while mVL30 and RLTR1B tran-
scripts appear relatively stable. This latter observation
does not necessarily contradict the milrinone result as mil-
rinone treatment of GV-oocytes lasted for 48 h while the
MII and zygote samples where isolated about 20 h after
induction of meiotic maturation in vivo. Thus, mRNA
degradation may not be apparent within this shorter time
period and could explain why mVL30 and RLTR1B do
not show a clear down-regulation. Alternatively, the
mechanism degrading certain repetitive transcripts in the
fully grown GV-oocytes may not efficiently work during
meiotic maturation. The differential behavior of IAP illus-
trates however the diversity in post-transcriptional regula-
tion of repetitive elements. The strong down-regulation of
IAP mRNA levels in the MII eggs supports the idea that
meiotic maturation enhances the degradation process of
IAP mRNA possibly by incorporating one of the known
mechanisms degrading maternal mRNAs upon resump-
tion of meiosis [30].

The IAP retrotransposon is one of the most aggressive
parasitic sequences known in the mouse genome and pres-
ent in approximately 1000 copies per haploid [45,46]. IAP
is highly expressed in the oocyte and early embryos [23].
It is estimated that there are �13,000 transcripts in the
oocyte, which are reduced �10-fold in the ovulated egg
and then increased up to �150,000 transcripts between
the one-cell and the blastocyst stages [23]. Microarray data
also confirmed that IAP mRNA is an abundant transcript;
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IAP probe set raw signal reached 4133, which is more than
eight times higher than the average raw signal for tran-
scripts on the chip and places the IAP probe set among
the 7% of probe sets with the highest signal. Our previous
study of IAP expression in the early embryo found that the
knockdown of Dicer in the embryo results in approximate-
ly 50% increase in the steady-state level of IAP (from
�60,000 to 90,000 transcripts [20]); this increase would
likely be greater if maternal Dicer protein was depleted.

Our previous results indicate that �1000 molecules of
dsRNA are required to trigger RNAi-mediated mRNA
degradation [16]. Thus, endogenous RNAi likely requires
formation of sufficient amounts of dsRNA to elicit efficient
transcript targeting. Production of such dsRNA likely cor-
relates with the level of RNA expression. Retroelements
can produce dsRNA by a variety of mechanisms [47] that
generate complementary strands. New insertions in the
genome also increase the probability of generating anti-
sense transcripts. Indeed, expression of antisense RNA
has been demonstrated for MuERV-L [20,21] and IAP ret-
rotransposons in the 2-cell mouse embryo [20]. Although
there is no solid evidence for base-pairing of endogenous
transcripts, it has been shown experimentally that simulta-
neous expression of longer sense and antisense transcripts
can trigger sequence-specific mRNA degradation in mam-
malian cells [48]. Thus, high expression levels of a mobile
element may increase both the probability of successful ret-
rotransposition as well as the risk of pairing with antisense
transcripts. Activation of RNAi by forming these dsRNAs
would thereby constrain their expression. Repetitive
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elements expressed at low levels would have a lower prob-
ability to form enough dsRNA and thereby may escape
RNAi targeting. A consequence would be that RNAi-med-
iated targeting of mobile elements would be rather selec-
tive, i.e., it would constrain only those elements that
produce enough dsRNA to trigger RNAi. IAP is likely
the most abundant autonomous TE mRNA in the mouse
oocyte and it is likely a target for RNAi because depletion
of Dicer in early embryo cells lead to accumulation of IAP
transcripts [20,24]. In addition, IAP mRNA instability in
the GV-oocyte is also consistent with the hypothesis that
IAP is a natural RNAi target in mouse.
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PRC1 and Suv39h specify parental asymmetry at
constitutive heterochromatin in early mouse embryos
Mareike Puschendorf1, Rémi Terranova1, Erwin Boutsma2, Xiaohong Mao3,6, Kyo-ichi Isono4,
Urszula Brykczynska1, Carolin Kolb1, Arie P Otte5, Haruhiko Koseki4, Stuart H Orkin3,
Maarten van Lohuizen2 & Antoine H F M Peters1

In eukaryotes, Suv39h H3K9 trimethyltransferases are required for pericentric heterochromatin formation and function. In
early mouse preimplantation embryos, however, paternal pericentric heterochromatin lacks Suv39h-mediated H3K9me3 and
downstream marks. Here we demonstrate Ezh2-independent targeting of maternally provided polycomb repressive complex 1
(PRC1) components to paternal heterochromatin. In Suv39h2 maternally deficient zygotes, PRC1 also associates with maternal
heterochromatin lacking H3K9me3, thereby revealing hierarchy between repressive pathways. In Rnf2 maternally deficient
zygotes, the PRC1 complex is disrupted, and levels of pericentric major satellite transcripts are increased at the paternal
but not the maternal genome. We conclude that in early embryos, Suv39h-mediated H3K9me3 constitutes the dominant
maternal transgenerational signal for pericentric heterochromatin formation. In absence of this signal, PRC1 functions as
the default repressive back-up mechanism. Parental epigenetic asymmetry, also observed along cleavage chromosomes,
is resolved by the end of the 8-cell stage—concurrent with blastomere polarization—marking the end of the maternal-
to-embryonic transition.

In mammals, parental genomes are epigenetically distinct, despite their
genetic resemblance1. During early mouse preimplantation develop-
ment, parental genomes are highly asymmetric in epigenetic modifica-
tions of DNA and associated chromatin2–9. At gamete fusion, the
maternal genome exists in a nucleosomal configuration marked by
distinct types of histone lysine methylation inherited from the oocyte.
In contrast, following the histone-to-protamine exchange occurring
during spermiogenesis, the paternal genome incorporates maternally
provided histones and becomes de novo methylated at different lysine
residues in a highly spatially and temporally coordinated manner. The
function of parental epigenetic asymmetry for gene expression and
genome reorganization6,10 is largely enigmatic, as are the mechanisms
of establishment, maintenance and resolution. A key question is
whether parentally inherited epigenetic states affect de novo targeting
and function of (maternally provided) epigenetic modifiers in cis
and/or in trans in the early embryo, thereby directing gene expression
over shorter or longer developmental time windows. Notably, trans-
mission of the paternal genome in a nucleosomal state impairs
DNA methylation reprogramming in early embryos11. Here, we
study the transgenerational contribution of two distinct evolutionarily
conserved classes of epigenetic modifiers in defining parental

asymmetry at constitutive heterochromatin and euchromatin in
preimplantation embryos.

The first class consists of the Suv39h histone methyltransferases
(HMTs), which are essential for constitutive heterochromatin forma-
tion and function, gene repression and maintenance of genome
integrity12–15. Suv39h-mediated H3K9me3 directs chromatin binding
of the heterochromatic proteins HP1a, HPb and HPg (ref. 16), which
target the two H4K20 di- and trimethylation-specific Suv4-20h HMTs
and the Dnmt3a/3b DNA methyltransferases, to establish a transcrip-
tionally repressed state17–19.

The second class consists of Polycomb group (PcG) proteins, which
are repressive chromatin factors required for maintaining cell iden-
tity14,20. PcG proteins are classified into two groups of multimeric
protein complexes termed polycomb repressive complexes (PRCs). In
Drosophila melanogaster, PRC1 contains four core components for
which multiple paralogs exist in mammals21. In vitro, PRC1 mediates
repression by inhibiting chromatin remodeling, impairing the tran-
scription machinery and by mediating chromatin compaction22. The
mammalian and fly RING orthologs function as E3 ubiquitin ligases
that monoubiquitinate H2A at lysine 119, a modification associated
with gene repression23,24. PRC2 consists of Ezh2, Suz12 and Eed, which
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together mediate H3K27me2 and H3K27me3 (H3K27me2/3)21,25.
Genome-wide chromatin profiling has shown that components of
PRC1 and PRC2 co-occupy promoters of genes enriched in
H3K27me3 (ref. 26). At selected genes, PRC2 is required for binding
of PRC1 (ref. 26), suggesting that PRC1 can be targeted via mamma-
lian orthologs of Drosophila Polycomb that bind H3K27me3
(refs. 27,28). In Eed–/– embryonic stem cells, most joint targets of
PRC1 and PRC2 are transcriptionally activated26.

In this study, we addressed the parental influence on constitutive
heterochromatin formation in early mouse embryos. In zygotes, only
maternal constitutive heterochromatin is labeled by HP1b and
H3K9me2/3 marks inherited from the oocyte2,6,7,9. We investigated
whether absence of the Suv39h-dependent chromatin signature at
paternal constitutive heterochromatin is compensated by targeting of
other repressive histone modifications and/or proteins. We show that
H3K27me2/3 and PRC1 components accumulate at paternal hetero-
chromatin. In contrast to promoters of certain developmental reg-
ulators26, PRC1 targeting to heterochromatin is independent of PRC2
function. PRC1 is required for transcriptional repression of hetero-
chromatic major satellite repeats. We further demonstrate that
parental-specific Suv39h and PRC1-defined states are inherited over
the first three cleavage divisions and that asymmetry is not limited
to constitutive heterochromatin only. Finally, we explain the
basic principle underlying parental origin–specific definition of

constitutive heterochromatin by Suv39h and Polycomb-based
repression mechanisms.

RESULTS
PRC1 components define paternal heterochromatin
In mouse somatic cells, pericentric heterochromatin of different
chromosomes cluster into chromocenters that can be visualized by
fluorochromes such as 4,6-diamidino-2-phenylindole (DAPI) that
preferentially bind to the underlying AT-rich major satellite
sequences29. In zygotes, DAPI-intense chromatin is organized into
ring structures around nucleolar-precursor bodies (NPBs)6. By DNA
FISH for major satellites, we show that pericentric heterochromatin
co-localizes with DAPI-intense rings around NPBs (Fig. 1a)30. Cen-
tromeric minor satellite foci are interspersed within major satellites
(Fig. 1a)30. We confirm that in zygotes, only maternal constitutive
heterochromatin is labeled by H3K9me3 and H4K20me3 (Fig. 1b and
Supplementary Fig. 1 online)2,6,7,9, two modifications that are inher-
ited from the oocyte. HP1b is loaded onto maternal heterochromatin
upon gamete fusion (Fig. 1b and Supplementary Fig. 1).

In embryonic stem cells, pericentric heterochromatin acquires
H3K27me3 in the absence of the Suv39h-mediated chromatin
configuration31. To determine whether such a compensatory mechan-
ism also operates in early embryos, we analyzed H3K27 methylation
states in late zygotes. Indeed, H3K27me2/3 modifications were
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Figure 1 Maternal and paternal heterochromatin are marked by distinct repressive complexes in preimplantation embryos. (a) DNA-FISH analysis showing

localization of major satellite and minor satellite sequences along DAPI-intense ring structures around NPBs in late mouse zygotes. (b) Immunofluorescence

analysis of late zygotes showing euchromatic localization of HP1b in the large paternal pronucleus (left) and genome-wide H3K9me3 and HP1b staining in

the maternal pronucleus (right). Constitutive heterochromatin (arrows) is only maternally labeled by H3K9me3 and HP1b. (c) Immunofluorescence analysis

of late zygotes showing euchromatic staining of H3K27me3 and Cbx2 in both pronuclei. Constitutive heterochromatin is only paternally labeled by

H3K27me3 and Cbx2 (arrows). (d) RT-PCR analysis of PRC2 and PRC1 components in oocytes and preimplantation embryos. RNA from embryonic stem

cells and NIH3T3 cells was used as control. –RT refers to analysis of M-II oocytes without reverse transcriptase. Ubiquitously expressed b-actin (Actb) and
oocyte-restricted zona pellucida 3 (Zp3) serve as controls. For mouse PRC1 genes, Drosophila orthologs are given on the right. (e) Immunofluorescence

analysis of late zygotes showing heterochromatic enrichment of Rnf2, Bmi1 and Phc2 paternally only. All three proteins label euchromatin of both pronuclei.

(f) Co-immuno-DNA-FISH analysis showing co-localization of major satellite sequences with Rnf2 in the paternal pronucleus (arrow). (g) Levels of enrichment

of H3K9me3, HP1b, H3K27me3 and PRC1 components at maternal (M) versus paternal (P) constitutive heterochromatin in late zygotes were scored as

follows: (–) no staining; (¼) equal hetero- and euchromatic staining; (4) enhanced and (c) strongly enhanced staining of heterochromatin versus

euchromatin. Scale bars, 10 mm.
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enriched at pericentric heterochromatin of paternal origin only
(Fig. 1c and Supplementary Fig. 1), whereas the remainder of both
parental genomes (referred to as ‘euchromatin’) was labeled by both
marks7. H3K27me1 labeled euchromatin and was enriched at
heterochromatin of both pronuclei (Supplementary Fig. 1). There-
fore, H3K27me states define constitutive heterochromatin depending
on parental descent.

To identify PcG complexes functioning in early embryos21,25,
we profiled RNA expression of PRC2 and PRC1 genes in oocytes
and preimplantation embryos. For PRC2 components, we observed
strong maternal and moderate zygotic expression (Fig. 1d). Similarly,
at least one mammalian paralog of each Drosophila PRC1
core member was maternally and zygotically expressed (Fig. 1d).
These data suggest that PRC2 and PRC1 have roles in preimplan-
tation development.

We next asked whether H3K27me3 could, in principle, target
PRC1 complexes to pericentric heterochromatin. We observed that,

analogous to the binding of HP1b to H3K9me316, H3K27me3
co-localized with Cbx2 (Fig. 1c), a Polycomb protein known to bind
to H3K27me3 via its chromodomain27. In addition, Rnf2 (Ring1b),
Bmi1 and Phc2 also selectively accumulated at paternal constitutive
heterochromatin (Fig. 1e), suggesting the presence of a functional
‘maternally provided PRC1’ complex (‘matPRC1’). Immuno-DNA-
FISH analysis confirmed co-localization of the matPRC1 complex with
major satellites in the paternal genome (Fig. 1f). Euchromatin of both
genomes was labeled by all four matPRC1 proteins as well as by Phc1
that was absent from paternal heterochromatin (data not shown).
These data convincingly support a parental origin–dependent defini-
tion of constitutive heterochromatin (Fig. 1g).

Parental-specific heterochromatic states are heritable
To investigate whether parental-specific heterochromatic states are
transmitted, we profiled successive cleavage-stage embryos (Fig. 2 and
Supplementary Fig. 2 online; n ¼ 15–25 per stage) in which
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Figure 2 Differential heterochromatic states are maintained up to the 8-cell stage in a parental origin–dependent manner. Immunofluorescence analyses of
Rnf2 and H3K9me3 in 2-cell, 4-cell, early 8-cell (before compaction), late 8-cell (after compaction), 16-cell and blastocyst embryos. In 2-cell embryos,

exclusive enrichment of either H3K9me3 or Rnf2 is detected at individual DAPI-intense heterochromatic chromocenters. Following the gradual intermingling

of parental genomes, chromocenters become progressively doubly labeled by H3K9me3 and Rnf2. From the late 8-cell stage onwards, Rnf2 is completely

replaced by H3K9me3 at heterochromatin. From the 16-cell stage onwards, Rnf2 is enriched at the presumptive inactive X chromosome (arrow) in female

embryos. Scale bars, 20 mm. In blastocysts, H3K9me3 marks DAPI-intense chromocenters, whereas H3K27me3 and Rnf2 are enriched at the presumptive

inactive X chromosome (arrows). Other matPRC1 components were not enriched (Phc2) or occasionally weakly enriched (Cbx2) at the inactive X (data

not shown). Scale bar, 10 mm.
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Figure 3 PRC1 components are targeted to chromatin upon gamete fusion. (a) Immunofluorescence analyses of germinal vesicle (GV) and M-II oocytes and

pronuclear stage 0 (PN0) zygotes show that Rnf2 starts to bind to the maternal genome shortly after gamete fusion. At PN0, the maternal genome is at

anaphase of the 2nd meiotic division. The strongly labeled genome complement will constitute the embryo proper (bottom; arrow). The top set will segregate

into the second polar body. Similar data were obtained for matPRC1 components Cbx2, Bmi1 and Phc2 (Supplementary Fig. 4). (b) Immunofluorescence

analyses of matPRC1 enrichment at constitutive heterochromatin in decondensed sperm nuclei shortly after gamete fusion (PN0 stage). Constitutive

heterochromatin is organized into one large chromocenter in most mature spermatozoa. (c) Numerical evaluation of data presented in b and c. Level of

enrichment was scored as described in Figure 1g. Scale bars, 10 mm.
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heterochromatin becomes progressively reorganized and clustered into
chromocenters6. In 2- and 4-cell embryos, individual DAPI-intense
areas were labeled with either H3K9me3 (and HP1b) or matPRC1
components. Besides HP1b, HP1a and HP1g were also associated to
maternal H3K9me3-positive heterochromatin from the 4-cell stage
onwards (data not shown). Following gradual intermingling of par-
ental genomes32, chromocenters became doubly labeled by H3K9me3
and Rnf2, particularly in early 8-cell embryos. Rnf2 association with

pericentric heterochromatin strongly declined during the 8-cell stage
and was completely replaced by H3K9me3 from the 16-cell stage on-
wards. At that point, Rnf2 started to accumulate at the presumptive Xi
chromosome. In blastocysts, constitutive heterochromatin was labeled
by H3K9me3 and HP1b (n ¼ 10), whereas H3K27me3 and Rnf2 were
enriched at facultative heterochromatin of the Xi (n ¼ 20–30)23.

To relate labeling of heterochromatin by Rnf2 versus H3K9me3 and
HP1b to parental origin, we studied 4-cell embryos that were hybrid
for the C57BL/6J and JF1 genetic backgrounds, which differ in DNA
sequence composition at pericentric heterochromatin. By carrying out
immuno-FISH using a probe specific for maternal C57BL/6J major
satellites, we connected differential labeling of pericentric heterochro-
matin to parental origin (Supplementary Fig. 3 online). We conclude
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Figure 5 Heterochromatic but not euchromatic

matPRC1 targeting is Ezh2 independent.

(a) Immunofluorescence analysis of germinal

vesicle and M-II oocytes and PN0 zygotes shows

that after gamete fusion (PN0), Ezh2

preferentially accumulates at the maternal

genome complement that will constitute the

embryo (bottom; arrow). The top chromosome set

will segregate into the second polar body. Similar
data were obtained for Eed and Suz12

(Supplementary Fig. 4). (b) Protein blot analysis

of Ezh2 in germinal vesicle and M-II oocytes, in

early (E) and late (L) zygotes, and in 8 cell and

blastocyst embryos show increasing Ezh2 protein

levels from M-II stage onwards. Analyses were

done on the same material as shown in

Figure 4b. (c) Immunofluorescence analysis fails

to show accumulation of Ezh2, Eed and

H3K27me3 at DAPI-intense constitutive

heterochromatin in decondensing sperm nuclei

(PN0 stage). (d) Immunofluorescence analysis of

wild-type and Ezh2m–z– late zygotes showing

absence of Ezh2 protein upon maternal Zp3-cre

mediated and paternal Prm1-cre mediated

deletion. (e) Accordingly, the establishment and

maintenance of H3K27me2 and H3K27me3 is

impaired at paternal and maternal genomes in
mutant zygotes, whereas H3K27me1 is

unaffected. (f) Nevertheless, Rnf2 and Cbx2 localization to paternal heterochromatin is unaltered in Ezh2m–z– zygotes, whereas levels of euchromatic

binding correlate with the level of H3K27me3. (g) Immunofluorescence analysis of a wild-type 3-cell embryo showing Rnf2 bound to interphase and mitotic

chromatin, whereas HP1b is only bound to interphase chromatin. Arrow marks Rnf2 binding to mitotic chromosomes in a banded pattern. Scale bars in a

and c–f, 10 mm. Scale bar in g, 20 mm.
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Figure 4 Maternally provided Rnf2 is targeted to paternal constitutive

heterochromatin and euchromatin. (a) Immunofluorescence analysis with

antibodies to GFP shows binding of Rnf2–YFP fusion protein to paternal

heterochromatin of decondensing spermatozoa and late zygotes only after

maternal (arrows in middle panels) but not paternal (left panels) transmission

of a functional Rnf2–YFP knock-in allele. Paternal and maternal euchromatin

is also bound by maternal fusion protein (bottom middle panel). Scale bars,

10 mm. (b) Protein blot analysis of Rnf2 and histone H3 in germinal vesicle

and M-II oocytes, in early (E) and late (L) zygotes, and in 8 cell and

blastocyst embryos. Rnf2 protein levels strongly increased during the

development of 1-cell embryos. We loaded 200 oocytes or embryos per lane.

(c) Immunofluorescence analysis of isolated caudal epididymal spermatozoa

shows labeling with H4K8ac and Protamine2 but not with PRC1

components. (d) Protein blot analysis of Rnf2 in isolated caudal epididymal

spermatozoa and mouse embryonic stem cells fails to detect Rnf2 protein in
1,000,000 spermatozoa that are estimated to contain about 1% histones

(U.B. and A.H.F.M.P., unpublished data), which is equivalent to the amount

of histones present in 5,000 diploid embryonic stem cells.
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that the matPRC1-defined state at paternal constitutive heterochro-
matin is heritable over three consecutive cleavages and is subsequently
replaced by the canonical Suv39h-mediated state.

Paternally bound PRC1 is maternally provided
Next, we analyzed the onset of matPRC1 targeting. In fully grown
germinal vesicle and metaphase-II oocytes, Rnf2, Bmi1, Cbx2 and
Phc2 seemed not to be chromatin bound (Fig. 3a and Supplementary
Fig. 4 online; n ¼ 25–35 per stage) although the maternal genome was
trimethylated at H3K27 (Supplementary Fig. 1; n ¼ 10 per stage).
Shortly after gamete fusion, however, all four matPRC1 components
rapidly accumulated at the maternal chromosomes that would con-
stitute the embryo (arrow, Fig. 3a), whereas lower protein levels built
up at chromosomes segregating into the second polar body. Concur-
rently, matPRC1 proteins were particularly enriched at DAPI-intense
heterochromatin of paternal decondensing chromosomes (Fig. 3b,c).

We further asked whether matPRC1 proteins at paternal chromatin
are transmitted through spermatozoa or maternally provided. We used
a functional Rnf2 and yellow fluorescent protein (Rnf2–YFP) fusion
knock-in allele (K.I. and H.K., unpublished data) to probe for YFP
signal in heterozygous embryos. The Rnf2–YFP signal was only detec-
table after maternal transmission of the knock-in allele (Fig. 4a), indi-
cating that most matPRC1 in zygotes is of maternal origin (n ¼ 10–15
per genetic condition). Accordingly, using protein blot analysis, we

found that Rnf2 protein levels increased upon gamete fusion (Fig. 4b),
likely as a result of translational activation of maternal message.

Finally, we determined Rnf2 protein levels in mature mouse
spermatozoa isolated from the caudal epididymus. By immunofluor-
escence, we did not detect any PRC1 signal in sperm (Fig. 4c). This
was not a result of antibody inaccessibility, as we were able to detect
chromatin markers, known to be present in mature sperm8. By protein
blot analysis, we also failed to detect Rnf2 protein in spermatozoa,
although we could detect the protein in low numbers of embryonic
stem cells (Fig. 4d). These data support our finding that PRC1 in
zygotes is primarily of maternal origin, although we cannot exclude
the possibility that paternal proteins may seed binding of maternally
provided PRC1.

matPRC1 targeting to heterochromatin is Ezh2 independent
At certain genes, PRC1 binding to chromatin depends on PRC2
function27,28. Therefore, we evaluated the role of PRC2 components
in oocytes and early embryos. Like matPRC1 components (Fig. 3a),
PRC2 components become enriched after gamete fusion at maternal
chromosomes that will be retained in the embryo (Fig. 5a and
Supplementary Fig. 4; n ¼ 25–30 per stage). Protein blots showed
increasing Ezh2 protein levels during oocyte meiosis and early
embryogenesis (Fig. 5b), suggesting translational activation of mater-
nal message. Nevertheless, in contrast to matPRC1 (Fig. 3b), PRC2
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Figure 6 Parent of origin–specific labeling of

constitutive heterochromatin and chromosome

arms by Rnf2 and H3K9me3. (a) Immuno-

fluorescence analysis of pericentric hetero-

chromatic regions of paternal prometaphase

chromosomes (green circles) over successive

cleavage divisions shows strong, moderate and

weak Rnf2 enrichment at the first, second and

third cleavage divisions, respectively. In contrast,

maternal chromosome ends (red circles) are

moderately enriched in H3K9me3 at all three

divisions. At the subsequent fourth cleavage, all

chromosomes ends (white circles) are strongly

enriched in H3K9me3. During the first three

cleavages, the arms of paternal and maternal
chromosomes are also more intensely labeled by

Rnf2 and H3K9me3 in a banded pattern,

respectively. This parental-specific labeling of

chromosome arms is lost at the fourth cleavage

division. Before syngamy at the first cleavage,

paternal and maternal chromosome sets are

detected as separate entities. At the second and

third cleavage divisions, parental chromosome

sets are often not yet intermingled and lie

adjacent to each other at the metaphase plate.

Parental identity was assigned on the basis of

levels of Rnf2 and H3K9me3 enrichment and

position on the metaphase plate. Scale bars,

10 mm. (b) Graphical representation of the

dynamics of asymmetric distribution of Rnf2 and

H3K9me3 along paternal (P) and maternal (M)

chromosomes at successive cleavage stages.

Relative levels of enrichment are represented by
color intensities. Stripes along chromosome arms

represent banding patterns. Note that Rnf2

enrichment at paternal pericentric hetero-

chromatin is progressively reduced at the second

and third cleavages, whereas labeling along

chromosome arms is not affected.
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members (n ¼ 27) or H3K27me3 (n ¼ 22) did not label paternal
chromatin shortly after gamete fusion (Fig. 5c and Supplementary
Fig. 1), suggesting that initial targeting of matPRC1 to paternal
heterochromatin is PRC2 independent.

To unequivocally determine the role of PRC2 in matPRC1 targeting
to paternal heterochromatin, we used a conditional deficiency allele
for Ezh2 in which exons 16 and 17, containing parts of the catalytic
SET domain, are flanked by loxP sites (Supplementary Fig. 5 online;
X.M. and S.H.O., unpublished data). Loss of Ezh2 function using this
allele leads to gastrulation defects and post-implantation embryonic
lethality (Supplementary Fig. 5), as described for a conventional
deletion allele33. We subsequently bred in Zp3-cre and Prm1-cre
transgenic lines that mediate gene deletion in primary oocytes and
elongating spermatids, respectively, in order to generate embryos that
were deficient for maternal and zygotic Ezh2 expression (Ezh2m–z–)
(Supplementary Fig. 5), and that lacked detectable Ezh2
protein (Fig. 5d; n ¼ 35). We did not detect de novo H3K27me2/3
in late-stage paternal pronuclei (Fig. 5e; n ¼ 75). In maternal pre-
replication pronuclei, H3K27me2/3 levels were similar in wild type
and Ezh2m–z– zygotes, indicating that after Zp3-cre–mediated
Ezh2 depletion, previously established H3K27me2/3 remains stably
present in maturing oocytes. After replication, however, H3K27me2/3
levels were strongly reduced in maternal pronuclei (Fig. 5e).
H3K27me3 was undetectable from late 2-cell to blastocyst
stage (data not shown), indicating that Ezh2 is required for the
establishment and maintenance of global H3K27me3 at both parental
genomes. H3K27me1 is, however, independent of Ezh2 (Fig. 5e;
n ¼ 10).

Through double-labeling experiments, we found that in zygotes
targeting of all four matPRC1 components to euchromatin correlated
with levels of H3K27me3 labeling. MatPRC1 staining was undetectable
on paternal euchromatin, whereas it was severely reduced on maternal
euchromatin (Fig. 5f and Supplementary Fig. 6 online; wild type,
n ¼ 43; Ezh2m–z–, n ¼ 42). In contrast, matPRC1 remained enriched
at paternal constitutive heterochromatin in Ezh2m–z– embryos up to
the 8-cell stage (Fig. 5f and Supplementary Fig. 6; data not shown),
indicating PRC2-independent targeting of matPRC1 to paternal con-
stitutive heterochromatin.

Parental-specific marking of cleavage chromosomes
We subsequently studied the mechanism of mitotic transmission.
Unlike HP1b, which dissociated from mitotic chromosomes
(Fig. 5g)34, Rnf2 remained bound along metaphase chromosomes in
a banded pattern (n ¼ 10). For higher-resolution analyses, we studied
prometaphase chromosomes of embryos at successive cleavage stages
(Fig. 6a). At the first cleavage division, Rnf2 was strongly enriched at
the proximal DAPI-intense heterochromatic chromosome ends of
paternal origin but not at maternal chromosome ends, which were
enriched in H3K9me3. At the second and third divisions, Rnf2
labeling of paternal pericentric heterochromatin was moderately and
strongly reduced, respectively (relative to euchromatin; see below). In
contrast, pericentric heterochromatin of maternal chromosomes was
moderately labeled by H3K9me3 during the first three cleavages. At
the fourth division, all chromosomes ends were highly enriched in
H3K9me3, indicating acquisition and consolidation of the canonical
Suv39h-mediated identity at paternal and maternal heterochromatin,
respectively, during the 8-cell stage. In summary, these analyses
demonstrate mitotically stable but transient marking of paternal
heterochromatin by matPRC1 components (Fig. 6b).

In addition to asymmetric heterochromatic labeling, we also
observed differential marking along chromosome arms over the first
three cleavage divisions (Fig. 6). Rnf2 showed clear banding patterns
along paternal chromosomes that were much less pronounced along
maternal chromosomes. Conversely, the maternal complement was
more strongly marked by H3K9me3 banding patterns. This dual
asymmetry was lost at the fourth cleavage.

Suv39h-pathway impairs PRC1 targeting to heterochromatin
We next addressed the mechanism of parental-specific matPRC1
targeting. We reasoned that matPRC1 targeting to paternal constitu-
tive heterochromatin could be due to a chromatin configuration
inherited from sperm4,8 and/or the absence of a functional Suv39h
pathway. Intrigued by the mutually exclusive labeling by matPRC1
versus H3K9me3 (Figs. 2 and 6), we first analyzed Suv39h1 and
Suv39h2 double null (Suv39h dn) embryonic stem cells that harbor
H3K27me3 at constitutive heterochromatin in the absence of
H3K9me3 (ref. 31; Supplementary Fig. 7 online). Nonetheless, we
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Suv39h dn embryonic stem cells, overexpressed Cbx2, Phc2 and Bmi1 (see Supplementary
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are lost from maternal heterochromatin (arrows) in many Suv39h2m–z– embryos. HP1b is unaffected

in euchromatin, despite reduction of underlying H3K9me3. (d) matPRC1 component Rnf2 localizes

to maternal heterochromatin in absence of H3K9me3 and HP1b (arrow). Scale bars,10 mm.
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failed to detect heterochromatic enrichment for Rnf2, Phc1 or Mel18
(Supplementary Fig. 7), expressed in embryonic stem cells
(Fig. 1d)35. Likewise, we failed to detect PRC1 members at constitutive
heterochromatin in quiescent B cells (data not shown), devoid of
Suv39h-mediated repressive modifications36. To test whether lack of
detection was a result of low expression levels of one or more
matPRC1 components, we reconstituted matPRC1 by co-overexpres-
sing Cbx2-Flag, GFP-Phc2 and 3Flag-Bmi1 in wild-type and Suv39h
dn embryonic stem cells and analyzed their nuclear localization
(Fig. 7a and Supplementary Fig. 7). All overexpressed PRC1 compo-
nents as well as endogenously expressed Rnf2 were targeted to
constitutive heterochromatin in Suv39h dn embryonic stem cells but
not in wild-type cells. These data show that PRC1 enrichment at
heterochromatin is not unique to early embryos, excluding the
necessity of a ‘paternal imprint’ for targeting, and that the Suv39h
pathway blocks matPRC1 loading to heterochromatin.

We subsequently investigated the interplay between Suv39h and
matPRC1 in vivo. As most Suv39h dn mice die during late gestation or
are postnatally growth retarded13, we studied whether maternal
deficiency for Suv39h2, the enzyme predominantly expressed in
oocytes (Fig. 7b), creates a hypomorphic condition in zygotic
embryos. Indeed, in 71% (n ¼ 34) of maternally (and zygotically)
deficient Suv39h2 zygotes, maternal heterochromatic labeling of

H3K9me3 and HP1b was lost, although euchromatic HP1b labeling
was unaffected (Fig. 7c). In such embryos, we observed strong
enrichment for matPRC1 components at maternal heterochromatin
and thus alleviation of parent of origin–specific labeling (Fig. 7d
and Supplementary Fig. 7). Through analysis of wild-type and
Suv39h2m–z– embryos, we found a highly significant inverse correla-
tion between levels of H3K9me3 and HP1b versus those of matPRC1
components at constitutive heterochromatin (P ¼ 8.47 � 10�10;
n ¼ 103; Fisher’s exact test for dependency). These data unequivocally
demonstrate that paternal heterochromatic enrichment of matPRC1 is
due to the lack of local Suv39h activity instead of germline transmis-
sion of a paternal-specific factor or chromatin state.

MatPRC1 represses major satellites in early embryos
Finally, we generated embryos lacking matPRC1 to determine the
functional significance of matPRC1 for transcriptional repression. We
used a conditional deficiency allele for Rnf2 in which major parts of
the Ring finger domain were flanked by loxP sites (E.B. and M.v.L.,
unpublished data). The same targeting strategy was used to generate a
conventional deletion allele that causes gastrulation defects in Rnf2 –/–

mice37. We crossed conditional Rnf2 mice with a Zp3-cre transgenic
line to generate embryos that were maternally deficient for Rnf2 and
that lacked detectable Rnf2 protein in zygotes (Fig. 8a). H3K27me3
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(a) Immunofluorescence characterization of

wild-type and Rnf2m–z+ zygotes showing

global loss of Rnf2, Cbx2 and Bmi1 upon

Zp3-cre–mediated deletion of maternal

Rnf2. The distribution of H3K27me3 is

unchanged. (b) RNA-FISH analysis of nascent

major satellite transcripts in wild-type and

Rnf2m–z+ zygotes showing close proximity

of satellite transcripts to DAPI-intense

heterochromatin (single planes). Maximal

projections visualize total number of transcription sites per pronucleus. Scale bars, 10 mm. (c) Average number and volume of major satellite transcription

sites for wild-type (n ¼ 20) and Rnf2m–z+ (n ¼ 25) pronuclei represented as boxplots (see Methods). In Rnf2m–z+ zygotes, the number and volume of

transcription sites are significantly increased in paternal but not maternal pronuclei compared to wild-type embryos. P values were calculated using a

paired t-test. (d) Average number and volume of major satellite transcription sites for wild-type (n ¼ 28) and Suv39h2m–z+ (n ¼ 10) pronuclei represented
as boxplots. Major satellite levels remain unchanged in maternal pronuclei of Suv39h2m–z+ zygotes. (e) Quantitative RT-PCR analysis of major satellite

transcription in late 2-cell embryos showing a threefold increased transcript level in Rnf2m–z+ versus wild-type embryos, whereas levels remain unaltered in

Suv39h2 maternal mutants compared to wild-type controls. Error bars represent s.d. of three PCR amplifications for each sample. Similar results were

obtained in two independent experiments. (f) Model for the establishment of distinct chromatin states at constitutive heterochromatin in the early embryo by

Suv39h and PRC1 pathways in a parent of origin–dependent manner.
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distribution was unchanged in Rnf2m–z+ zygotes (Fig. 8a). In contrast,
Cbx2 and Bmi1 were undetectable (Fig. 8a), indicating that Rnf2 is
required for the stability of matPRC1, as observed in Rnf2 –/–

embryonic stem cells35. To measure nascent transcript levels of
major satellites38, we carried out RNA-FISH in zygotes (Fig. 8b).
We observed foci adjacent to DAPI-intense heterochromatin. As
detection of foci was sensitive to treatment with the transcription
elongation inhibitor DRB (data not shown), our results show de novo
transcription in one-cell embryos, before genome-wide activation at
the 2-cell stage. In wild-type zygotes, major satellite transcript levels
were fivefold higher in paternal versus maternal pronuclei (Fig. 8c),
consistent with the higher transcriptional potential of the paternal
pronucleus39. Major satellite transcription was unchanged in maternal
pronuclei of wild-type versus Rnf2m–z+ zygotes, correlating with the
local presence of Suv39h-mediated repressive chromatin marks. In
paternal pronuclei of Rnf2m–z+ zygotes, however, the number of major
satellite transcription sites and the total level of nascent transcripts
were significantly increased compared to wild-type paternal pronuclei
(Fig. 8c). Consistently, in Rnf2m–z+ 2-cell embryos, major satellites
were threefold upregulated (Fig. 8e). Thus, these data unambiguously
demonstrate that matPRC1 is required for transcriptional repression
of underlying major satellites.

As reported before18, we measured a fourfold upregulation of major
satellite expression in Suv39h dn embryonic stem cells over wild-type
controls (Supplementary Fig. 7). Through RNA-FISH analysis of
Suv39h2m–z+ zygotes, however, we found no significant increase in
major satellite transcript levels in maternal pronuclei despite the lack
of H3K9me3 and HP1b at pericentric heterochromatin (Fig. 8d).
Similarly, we observed no change in transcript levels in Suv39h2m–z+

2-cell embryos (Fig. 8e). These results strongly suggest that matPRC1
recruited to maternal constitutive heterochromatin in Suv39h2 mutant
early embryos functions as a repressive back-up mechanism.

DISCUSSION
Parent of origin–dependent differential marking by active and repres-
sive epigenetic modifications is reminiscent of allelic specification
underlying imprinted X inactivation and genomic imprinting. Here
we show that two repressive pathways specify the ‘allelic’ states of
maternal and paternal constitutive heterochromatin, suggesting func-
tional compensation. Maternally, pericentric heterochromatin is
marked by H3K9me3 and H4K20me3, two modifications established
by the Suv39h and Suv4-20h HMTs in oocytes, and by HP1b loaded
onto chromatin upon gamete fusion. In contrast, maternally provided
PRC1 complexes that are required for transcriptional repression of
underlying major satellites associate with paternal heterochromatin
during sperm nuclear decondensation. Deficiency for Suv39h2 results
in targeting of matPRC1 to maternal heterochromatin only when it is
devoid of detectable H3K9me3 and/or HP1b. Absence of paternal
germ-line derived H3K9me3 therefore serves as the primary germ-line
imprint for targeting matPRC1 to major satellites of the paternal
genome (Fig. 8f). Consistently, major satellite expression was not
upregulated in Suv39h2m–z+ early embryos but was upregulated in
Suv39h dn embryonic stem cells lacking heterochromatic PRC1. In
absence of H3K9me3, PRC1 thus constitutes the default repressive
pathway for constitutive heterochromatin formation in early embryos.
The identity of maternal heterochromatin is inherited from the
oocyte, assigning a crucial role to Suv39h-mediated H3K9me3 in
trans-generational inheritance of maternal epigenetic states in mouse
and likely other mammals.

The fact that a matPRC1-like complex, when overexpressed, is
targeted to heterochromatin of Suv39h dn embryonic stem cells

underscores the absence of a ‘selective paternal imprint’ needed for
heterochromatic association. This result confirms the dominant role
of the Suv39h pathway in blocking matPRC1 binding to heterochro-
matin and emphasizes the dosage sensitivity of matPRC1 association
to chromatin. Notably, absence of H3K9me3 correlates with
H3K27me3 enrichment at pericentric heterochromatin in wild-type
early embryos and Suv39h dn embryonic stem cells, indicating that
Suv39h is also dominant over PRC2.

Given the dominance of Suv39h in defining heterochromatin, it is
of note that the paternal genome is initially refractory toward de novo
H3K9 trimethylation. It is possible that the maternal Suv39h2 protein,
if present, is enzymatically inhibited, as reported for a H3K9 dimethyl-
transferase5, or its activity is locally counteracted by a histone
demethylase. In analogy to heterochromatin maturation in fly
embryos40 or Schizosaccharomyces pombe17, conditions that enable
‘de novo’ targeting of Suv39h enzymes may first need to be established
in mammalian embryos.

In mature quiescent oocytes, PcG proteins are not detectable at
chromatin, although they are expressed. Only after germ cell fusion do
they associate to maternal anaphase II chromosomes. These dynamics
are reminiscent of those of other transcription and chromatin factors
in quiescent oocytes41 and M-II oocytes42, and may facilitate the
transition of the maternal-to-zygotic transcription program. At the
paternal genome, matPRC1 is loaded onto heterochromatin during
sperm decondensation, before repressive histone methylation marks
are acquired. Consistently, Ezh2-mediated H3K27me3 is not required
for matPRC1 targeting to paternal heterochromatin. This shows that
despite the binding affinity of Cbx2 toward H3K27me327, the inter-
action between Cbx2 and H3K27me3 is not the sole mechanism for
chromatin targeting of matPRC1. In analogy to X inactivation23,43,
genomic imprinting44 and constitutive heterochromatin formation in
somatic cells45, a noncoding RNA may be required for matPRC1
heterochromatic localization. Alternatively, matPRC1 recruitment
may depend on the repetitive nature and/or AT-richness of the
underlying sequences.

The kinetics of H3K9me3 and matPRC1 chromatin associ-
ation suggest two phases of epigenetic programming during
preimplantation development. The first phase, lasting until the 8-cell
stage, is characterized by parental asymmetry in histone modifica-
tions7,9, DNA methylation3 and PcG proteins. Besides pericentric
regions, paternal and maternal mitotic chromosome arms are also
differentially labeled by matPRC1 and H3K9me3, respectively. Given
the requirement of matPRC1 for transcriptional repression of major
satellites, matPRC1 likely represses other sequences in the paternal
genome, whereas H3K9me3 could contribute to repression in the
maternal genome. The Suv39h2 loss-of-function study demonstrates
that epigenetic programming is flexible in the early embryo, being
adaptable to variable chromatin states established during preceding
oogenesis (Fig. 7) and likely spermatogenesis46. This plasticity may
facilitate the maternal-to-zygotic transition in gene expression at both
genomes as well as the reacquisition of totipotency.

The resolution of parental epigenetic asymmetry during the 8-cell
stage marks the onset of the second phase of epigenetic programming.
Besides a possible gain in Suv39h1 function, the change in paternal
repressive identity is probably supported by reduced expression of
certain matPRC1 components. Accordingly, we did not detect Phc2,
and we found that Cbx2 was strongly downregulated in 16-cell and
later stage embryos (Supplementary Fig. 2). Of note, the resolution of
epigenetic asymmetry coincides with a number of key developmental
changes characteristic of the 8-cell stage that reflect preparation for the
successive cell determination decisions. For example, blastomeres start
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to compact and polarize, leading to the formation of precursors of the
embryonic and extra-embryonic cell lineages47. Concurrently, active
histone modifications start to be removed from the paternal X
chromosome undergoing imprinted inactivation48. We observed
Rnf2 accumulation at the presumptive Xi domain from the 16-cell
stage onwards, thus directly after Rnf2 displacement from constitutive
heterochromatin. On the basis of the overall kinetics, it is likely that
resolution of global parental epigenetic asymmetry is needed to enable
subsequent specification of cellular lineages.

In conclusion, our analyses establish the concept of epigenetic
asymmetry between parental genomes during preimplantation devel-
opment as a dynamic response to differential maturation of chromatin
states during oogenesis versus spermatogenesis. We anticipate
that PRC1 has a role in epigenetic gene regulation during pre-
implantation development49.

METHODS
Mice and cell lines. To produce maternally deficient Ezh2 oocytes, we

generated Ezh2F/F mice that carried the Zp3-cre (zona pellucida3–cre) recom-

binase transgene, mediating efficient deletion in dictyate-stage growing primary

oocytes. In addition, we used a Prm1-cre (protamine1-cre) line, which

expresses Cre recombinase during late spermatogenesis, to generate sperm

carrying the mutant Ezh2 allele. Maternal and paternal Ezh2-deficient embryos

were obtained from matings between Ezh2F/F; Zp3-cre/+ females and Ezh2F/F;

Prm1-cre/+ males. Control embryos designated as wild-type were Ezh2F/F.

Maternally deficient Rnf2 zygotes were generated by crossing Rnf2F/F; Zp3-cre/+

females with Rnf2F/F males. Wild-type control embryos were generated by

Rnf2F/F, Rnf2F/+ or Rnf2F/– females and Rnf2F/F males. The generation of

Suv39h2 mutant mice has been described previously13. Wild-type control

embryos were generated by Suv39h2+/– females and Suv39h2+/+ males. Embryos

polymorphic for pericentromeric heterochromatin were obtained from matings

of C57BL6 females with JF1 males. For further information on mouse lines,

embryo isolation and description of cell lines, see Supplementary Methods

online. Housing and handling of mice conformed to the Swiss Animal

Protection Ordinance, chapter 1.

Immunofluorescence and FISH. Immunofluorescence7 and FISH48 of

embryos were carried out as previously described, with some modifications

described in the Supplementary Methods.

Microscopy and image analysis. Immunofluorescence stainings of embryonic

stem cells and embryos were analyzed using a laser scanning confocal micro-

scope LSM510 META (Zeiss) and LSM510 software. For embryos, we recorded

a z series of either 0.3 mm or 0.5-mm slices or scanned one confocal slice

through the maximal radius of each (pro)nucleus; we then exported the slices

as 8-bit TIFF files, later projected using Photoshop 9.0. For numerical

evaluation, all images of embryos taken for a given modification were analyzed

individually and scored as follows: (–) no staining; (¼) equal staining at hetero-

and euchromatin; (4) enhanced and (c) strongly enhanced staining at

heterochromatin versus euchromatin. Cleavage-stage embryos were scanned

in three dimensions, recording a z series of 0.5-mm slices. Only long prome-

taphase chromosomes were evaluated for scoring heterochromatin labeling and

banding patterns along chromosome arms. Embryos processed by Immuno-

FISH were analyzed with a spinning disk confocal microscope (Yokogawa CSU-

22). For RNA-FISH analysis of major satellite expression in zygotes, a z series of

0.3 mm was recorded for each zygote using the confocal microscope LSM510

META (Zeiss). The number of major satellite transcription sites and the volume

of each spot were calculated for paternal and maternal pronuclei using 3D

Spotfinder software in Imaris 5.9.0. alpha. Sites of major satellite transcription

with a minimum volume of 0.01 mm3 were identified, and the volume of each

spot was summed up to represent the total volume of major satellite

transcription per pronucleus.

Statistical analysis. We investigated a possible functional association between

PRC1 and HP1b using wild-type (n ¼ 69) and Suv39h2 maternally and

zygotically deficient embryos (n ¼ 34). For each embryo, PRC1 and HP1

complexes were stained and classified according to staining intensity into four

categories. We summarized the data in a four-by-four contingency table

and tested the significance of the association between PRC1 and HP1 using

Fisher’s exact test.

Results of major satellite transcription levels measured by RNA-FISH are

presented as boxplots with the thick line representing the median, the top and

bottom boundaries of the boxes corresponding to the 75 and 25 percentiles,

respectively, and the top and bottom whiskers presenting maximum and

minimum values, respectively. Values that deviate more than the 1.5-fold

distance between quartiles from the median are drawn as black circles and

represent outliers. P values were calculated using a paired t-test.

RT-PCR and protein blot. Gene expression analysis of oocytes and embryos

was carried out as described in the Supplementary Methods. Protein blot

analysis was carried out using standard procedures. Preparation of oocytes,

embryos and sperm samples for protein blot analysis is described in the

Supplementary Methods.

Note: Supplementary information is available on the Nature Genetics website.
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Supplementary information: Methods 
 

Collection, in vitro fertilization and culture of mouse oocytes and embryos 
Mouse oocytes and embryos were derived from superovulated 5-10 week old females according to 

standard procedures 50. Fully-grown germinal vesicle (GV)-intact oocytes were collected 46 h after PMSG 

injection (5 U, Intervet) in M2 medium (Sigma) containing 2.5 μM milrinone (Sigma). Metaphase II-arrested 

eggs were collected from PMSG- and hCG-primed (5 U each, Intervet) mice 14 h after hCG injection.  

Embryos were harvested from superovulated females mated to appropriate males in FHM medium 

(Chemicon) at indicated time points after hCG injection: late zygotes (26 h), 1/2 cleavage (30 h), early 2-

cell (36 h), late 2-cell (46 h), 2/4-cell cleavage (48-50 h), 4-cell (54 h), 4/8 cleavage (58-60 h), early 8-cell 

(62 h), late 8-cell (68 h), 8/16 cleavage (69-71 h), 16-cell (73 h) and blastocyst stage embryos (94 h). 

Where precise timing of progression of zygote stages was required, oocytes were fertilized in vitro. Sperm 

was obtained from 10-16 week old CD1 males, and M-II oocytes used for IVF were collected from CD1 

females 14 h after hCG injection. Sperm capacitation was carried out in HTF containing 9 mg/ml BSA for 

2h. IVF was performed in capacitation medium for 2 h and thereafter the embryos were cultured in KSOM 

medium plus amino acids (Chemicon) in a humidified atmosphere of 5% CO2 in air until required. Zygotes 

were substaged according to morphology of pronuclei using criteria as defined previously 51,52. In brief, 

PN0 refers to oocytes immediately after fertilization, PN1 pronuclei are small and reside at the periphery of 

the embryo, PN2 pronuclei have an increased size and have started to migrate towards the center of the 

embryo, PN3 pronuclei have migrated towards the center, large PN4 pronuclei were close to each other in 

the center of the embryo and PN5 refers to large central pronuclei. 

 

Mice and cell lines  
Ezh2 conditional mice were genotyped by PCR on genomic tail tip DNA to identify wild-type, conditionally 

floxed and deleted Ezh2 alleles (Supplementary Fig. 5). Wild-type and floxed alleles were discriminated 

using 5’-TGACATGGGCCTCATAGTGAC forward and 5’-ACCATGTGCTGAAACCAACAG reverse 

primers resulting in  315 bp (wild-type) or 280 bp (floxed) products respectively. The mutated Ezh2 allele 

was detected with 5’-CCCATGTTTAAGGGCATAGTG forward and 5’-

TACTTCCTCAGGATTCGACTTAAGG reverse primers. Ezh2F/F; Zp3-cre 53 and Ezh2F/F; Prm1-cre 54 mice 

were maintained on a mixed background of 129/Sv and C57BL/6J. All experimental Ezh2F/F Prm1-Cre/+ 

males were tested for deletion efficiency by crossing them to C57BL/6J females and genotyping their 

offspring for the Ezh2 deletion allele, revealing a deletion efficiency of >96% (n=25 males). For genotyping 

of Rnf2 conditional mice, 5’-GTCTCATTTCCCAGTGTGTCCTC forward and 5’-

ACTGACCCATGGCTCTTGATG reverse primers were used to discriminate wild-type (418bp) and floxed 

(488bp) alleles. The deletion allele was detected with 5’-GTCTCATTTCCCAGTGTGTCCTC forward and 

5’-GATGCACTGTCCTGATGGC reverse primers. Mice were maintained on a mixed background of 

129/Sv and C57BL/6J. Suv39h2 mice were genotyped with 5’-TTTGAGGGGACGACGACAGTATCG, 5’-

CTTATTGTAGCCTGGTGTGTGCC and 5’-GCAAACAGTCAAGAGTTGGATGC primers resulting in a 377 

bp and 490 bp band for wild-type and targeted alleles, respectively. Suv29h2 mice were maintained on a 

C57BL/6J and 129/Sv background. Wild-type and Suv39h dn ES cells 13,18, C57BL/6J/JF1 hybrid ES cells 

and CCE ES cells 55,56  were cultured in DMEM medium with 4.5 g/l glucose (Gibco) containing 15% FCS 
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(foetal calf serum, Chemicon), penicillin, streptomycin, 2 mM L-glutamine, 0.1 mM 2β−mercaptoethanol, 

non-essential amino acids and 1 mM sodium pyruvat (Gibco). NIH3T3 fibroblasts were cultured in DMEM 

medium containing 10% FCS (BioConcept). Wild-type and Suv39h dn ES cells 13,18 were triple transfected 

with Cbx2-Flag (pCAG-Puro), 3Flag-Bmi1 (pCAG-Puro) and GFP-Phc2 (pEGFP-C2) using Lipofectamine 

2000 (Invitrogen) and after 12h were seeded on poly-L-lysine coated coverslips, fixed with PFA and 

processed for immunofluorescence. 

 

Antibodies 
For immunofluorescence analyses of Polycomb group proteins, the following antibodies were used : 

polyclonal anti-Rnf2 (van Lohuizen, 1:50), monoclonal anti-Rnf2 (57, 1:400), polyclonal and monoclonal 

anti-Bmi1 (van Lohuizen, 1:400 and 1:50 respectively), anti-Rnf110 (Mel18, 10744, Santa Cruz, 1:50), 

polyclonal anti-Phc1 (van Lohuizen, 1:500), monoclonal anti-Phc1 (58, 1:2), monoclonal anti-Phc2 (59, 1:50), 

polyclonal anti-Cbx2 (Otte, 1:500), monoclonal anti-Ezh2 (M5 and M18 60, undiluted), monoclonal anti-Eed 

(M26, 60, undiluted) and polyclonal anti-Suz12 (07-379, Upstate, 1:500). 

Antibodies against histone modifications and associated proteins: anti-HP1β (MCA1946, Serotec, 1:500), 

polyclonal anti-H3K9me3, anti-H3K27me1, anti-H3K27me2, anti-H3K27me3 and anti-H4K20me3 (31, all 

1:500). For detection of Rnf2-YFP, a cross-reacting polyclonal anti-GFP antibody (Clontech, 1:200) was 

used.  

 

Immunofluorescence  
Before fixation of oocytes and embryos, the zona pellucida was removed by incubation in acidic tyrode for 

30 seconds. Embryos were washed twice in FHM, fixed for 15 min in cold 4% paraformaldehyde in PBS 

(pH 7.4) and permeabilized with 0.2% Triton-X 100 in PBS for 15 min at room temperature (RT). Fixed 

embryos were blocked overnight at 4ºC in 0.1% Tween-20 in PBS containing 2% BSA and 5% normal 

donkey serum, and were then incubated with primary antibodies in blocking solution overnight at 4ºC. 

Double antibody stainings were accomplished by mixing appropriate different primary and different 

secondary antibodies for simultaneous incubation. Embryos were washed three times for 20 min in 0.1% 

Tween-20 in PBS containing 2% BSA before application of secondary antibodies. For detection, anti-rabbit 

IgG-Alexa 488, anti-rat IgG-Cy3, anti-mouse IgG-Alexa 488 and anti-mouse IgG-Alexa 555 (Molecular 

Probes) secondary antibodies were diluted 1:500 in blocking solution and embryos were incubated for 1 h 

at RT followed by three washing steps a 20 min in 0.1% Tween-20 in PBS containing 2% BSA in the dark. 

Embryos were mounted in Vectashield containing DAPI (Vector) 7. 

ES cells were trypsinized and placed on poly-L-lysine coated coverslips for 10 min to attach. Cells were 

fixed with 2% paraformaldehyde in PBS (pH 7.4), permeabilized in 0.1% Triton-X100 in 0.1% sodium 

citrate and blocked for 30 min in 0.1% Tween-20 in PBS containing 2% BSA and 5% normal donkey 

serum at RT. Incubation with primary and secondary antibodies as well as mounting was performed as 

described above. 

To open up the condensed chromatin structure of mature sperm, sperm from caudal epididymis was 

treated with a de-condensing solution containing 25 mM DTT, 0.2% Triton X-100 and 200 U heparin/ml 8 , 

and subsequently IF was performed as described above for ES cells. 
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Immuno-DNA-FISH and RNA-FISH 
Following removal of the zona pellucida with acid tyrode solution, zygotes and 4-cell embryos were rinsed 

twice in FHM, incubated for 5 minutes in PBS containing 6 mg/ml BSA and transferred onto Denhardt’s 

solution-coated coverslips 48. After removal of excess solution, embryos were dried down for 30 min at RT. 

Samples were fixed in 3% paraformaldehyde in PBS (pH 7.2) for 10 min at RT. After 3 washes in PBS, 

embryos were permeabilized in PBS containing 0.5% Triton X-100 for 3 min on ice. Fixed embryos were 

blocked for 20 min in PBS containing 1 % BSA, incubated with primary antibody (90 min) followed by 

secondary antibody (45 min). All immunostaining steps were performed at RT and excess antibodies were 

washed in PBS three times for 5 min. Preparations were post-fixed in 3% paraformaldehyde for 10 min at 

RT, rinsed in PBS and mounted in Vectashield with 1 μg/ml DAPI (Vector) prior to analyses of 

immunofluorescence stainings. For subsequent DNA fluorescence in situ hybridization (FISH), coverslips 

were washed extensively in PBS to remove mounting solution and incubated in a permeabilization solution 

(0.7% Triton X-100, 0.1 M HCl) for 10 min on ice. Preparations were washed in 2x SSC and DNA was 

denatured for 30 min at 80°C. Hybridization was performed overnight at 42°C in a humid chamber and 

excess probe was eliminated through two washes in 2x SSC (37°C for 30 min), followed by one wash in 

1x SSC (RT for 30 min) and one wash in 0.5x SSC (RT for 30 min). Slides were mounted in Vectashield 

containing DAPI prior to analyses. The mouse major-satellite probe 61 was directly labeled with Spectrum-

RED (Vysis).  

For RNA-FISH, zygotes were prepared and fixed as described above. Embryos were permeabilized in 

PBS containing 0.5% Triton X-100 for 2 min on ice and washed in 2xSSC. Hybridization with the mouse 

major-satellite probe 61 was performed overnight at 37°C in a humid chamber. Subsequent washing and 

mounting was done as described for DNA-FISH. 

 

RT-PCR 
For RNA isolation, oocytes and embryos were pooled from several mice and RNA was isolated from 

batches of 50 oocytes or embryos. Embryos were transferred into Trizol and 100 ng of E. coli rRNA was 

added to each sample as carrier. RNA was isolated according to the manufacturer’s instructions. Reverse 

transcription and PCR reaction were performed as previously described 62. Briefly, reverse transcription 

was performed from total RNA corresponding to 20 oocytes or embryos using random primers (200 ng) 

and SuperScript II RNase H Reverse Transcriptase (Invitrogen) according to the manufacturer’s protocol. 

For PCR reactions, cDNA corresponding to 0.2 oocytes or embryos was used as a template.  

Amplifications were carried out using Taq DNA polymerase (Qiagen), PCR products were resolved on a 

2% agarose gel and subsequently detected via SYBR green I staining (Molecular Probes, 1:10,000). 

Fluorescence was detected on a Typhoon 9400 scanner (Amersham Biosciences). The following primers 

and cycle numbers were used:  

Ezh2 (F: 5’-AGCCTTGTGACAGTTCGTGC, R: 5’-TTTAGAGCCCCGCTGAATG, 33 cycles),  

Eed (F: 5’-ACCAGCCATTGTTTGGAGTTC, R: 5’-ACCTCCGAATATTGCCACAAG, 32 cycles),  

Suz12 (F: 5’-CTTCGATGGACAGGAGAAACC, R: 5’-AGGTCGTCTCTGGCTTCTGTC, 32 cycles),  

Cbx2 (F: 5’-GTAGTCCCAAAGCCCAGTCAG, R: 5’-CAAGTGCCTACATCAGCTTGC, 38 cycles),  

Cbx4 (F: 5’-GTGGAGCCCTTGAGTGAGTTC, R: 5’-CCGGAGTAGAGTCAGCACTTG, 40 cycles),  

Cbx6 (F: 5’-AGTGGAGAAGGAGCTGAATGC, R: 5’-CCCTTGTAGTCCAGGAGATGC, 40 cycles),  
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Cbx7 (F: 5’-GTCCTGGGCCCACTCG, R: 5’-CATTGGTCAGGTCTGCTTCTG, 40 cycles),  

Cbx8 (F: 5’-CGGCGAGTCAACATGGAG, R: 5’-CCTGGAAGTAGACGCCAAATC, 40 cycles),  

Ring1 (F: 5’-GCCATCATGGATGGTACAGAG, R: 5’-TATTCCTCCCGGCTAGGGTAG, 38 cycles),  

Rnf2 (F: 5’-AGGCAATAACAGATGGCTTGG, R: 5’-GAGAGCCTGCTGATTGTTGTG, 33 cycles),  

Bmi1 (F: 5’-AAGACCGAGGAGAAGTTGCAG, R: 5’-CCCAGAGTCACTTTCCAGCTC, 32 cycles),  

Rnf110 (F: 5’-GGTGACACTTCCCAAATCTCC, R: 5’-ATCTGATGCTCAGCAGTGGTC, 33 cycles),  

Rnf134 (F: 5’-GAGCGCCTGATAAACCTTGTC, R: 5’-TCTCCTGAAACACGCACAAAC, 32 cycles),  

Phc1 (F: 5’-GCCTTCTTCAGGATTGACTGG, R: 5’-GATCACCACTTGCTTCTGCTG, 32 cycles),  

Phc2 (F: 5’-CAGTGCTCTACCACGCATGTC, R: 5’-GCTGGATGTTGGGACTCTTG, 32 cycles),  

Phc3 (F: 5’-GTACCTGCAGCAGATGTACGC, R: 5’-CTGCAGACTGACAGGAAGGTG, 32 cycles),  

Suv39h1 (F: 5’-CGCATCGCATTCTTTGCC, R: 5’-AAGCCGTTGTCCCACATTTG, 35 cycles), 

Suv39h2 (F: 5’-AAATCCAACCAGGCACTCCC, R: 5’-CTCGTAGTCCAGGTCAAAGAGGTAG, 32 cycles), 

Actb (F: 5’-TCGCCATGGATGACGATA, R: 5’-AGGTGTGGTGCCAGATCTTC, 33 cycles), 

Gapdh (F: 5’-AACAACCCCTTCATTGACCTC, R: 5’-TTCTGAGTGGCAGTGATGGC), and  

Zp3 (F: 5’-AAGCTCAACAAAGCCTGTTCG, R: 5’-TATTGCGGAAGGGATACAAGG, 32 cycles). 

For analysis of major satellite transcription in late 2-cell embryos, RNA was isolated using the Absolutely 

RNA Nanoprep kit (Stratagene). cDNA was prepared using random primers as described above. For 

semi-quantitative RT-PCR in ES cells, 5’-GACGACTTGAAAAATGACGAAATC forward and 5’-

CATATTCCAGGTCCTTCAGTGTGC reverse primers 63 were used (25 cycles). Quantitative RT-PCR of 

ES cells and 2-cell embryos was carried out using the same primers and qPRC MasterMix plus SYBR 

Green I w/o UNG (Eurogentec) on an ABI Prism 7000 light cycler. Error bars represent the standard 

deviation. 

 

Western blot analyses of oocytes and embryos 
For western blot analysis, 200 oocytes or embryos per stage were pooled from several mice, washed 

through three drops of MEM containing 0.1% PVP (Polyvinyl pyrrolidone K90) and were then directly 

pipetted into 15 μl of 5x SDS loading buffer. Samples were denatured for 3 min at 95ºC, proteins were 

separated on a 10% SDS gel and blotted onto Hybond-P membranes (Amersham). Membranes were 

probed for Ezh2 (M18 60, undiluted), Rnf2 (polyclonal, van Lohuizen, 1:500) and histone H3 (1791, Abcam, 

1:20,000). Primary antibodies were detected with anti-rabbit HRP or anti-mouse HRP followed by ECL 

detection (Amersham). 

 

Western blot analyses of mature spermatozoa 
Mature sperm was obtained from caudal epididymi of adult CD1 males. Motile mature spermatozoa were 

recovered by a swim up method. Sample purity was verified by microscopy. Sperm proteins were isolated 

as described in 64 with minor modifications. Proteins were extracted under reducing conditions (6 M 

guanidine-HCl, 10 mM dithiothreitol), precipitated by 0.9 M HCl and 20 % trichloroacetic acid treatment 

and separated by SDS-PAGE. Western blot was performed as described in 64. Protein extracts from CCE 

ES cells were used as a control and were prepared using the same procedure as described for the sperm 

extract. 
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2.3.1. Introduction 

The Polycomb group proteins are best known for their role in maintaining the silent state of Hox 

genes during development. More recently, PcG proteins have been found to target many other 

developmental regulators in a wide range of cell types 75,108. Moreover, PcG proteins and 

H3K27me3 are enriched at facultative heterochromatin of the inactive X chromosome in female 

mammals 331. We identified a novel role for PRC1 proteins at pericentric heterochromatin in 

early mouse pre-implantation embryos (Chapter 2.2). We showed that PRC1 proteins are 

required to repress pericentric major satellite transcripts. 

It is not well understood, especially in mammals, how PcG proteins are recruited to their 

target genes. We showed that PRC1 binding to paternal pericentric heterochromatin in early 

embryos is independent of Ezh2 function and H3K27me3. Moreover, PRC1 recruitment to 

maternal pericentric heterochromatin in blocked by Suv39h-mediated marks but does occur in 

Suv39h2 mutant zygotes. We speculated that in analogy to X inactivation 65,80, genomic 

imprinting 332 and constitutive heterochromatin formation in somatic cells 333, a non-coding RNA 

may be required for matPRC1 heterochromatic localization. Alternatively, the repetitive nature 

and/or AT-richness of the underlying sequences might drive PRC1 recruitment. Here, we 

explore PRC1 targeting mechanisms to pericentric heterochromatin.  

The Cbx2 AT hook has been suggested to serve as a nucleic acid binding module 62 and 

therefore might be involved in the targeting of PRC1 to AT-rich major satellite DNA, either by 

direct binding to the underlying DNA or to transcripts generated from satellite regions. AT hook 

motifs are also encoded by high mobility group (HMG) proteins 334, which are, after histones, the 

most abundant chromatin proteins and are involved in a variety of nuclear processes 335. HMG 

proteins are viewed as architectural factors that organize chromatin by appropriate bending of 

DNA, while their interactions with chromatin remain highly dynamic in vivo 335,336. HMG proteins 

are divided into three families: HMGA, HMGB and HMGN. 

The HMGA family consists of four members, each containing several AT hooks which are 

nine amino acids motifs that bind to AT-rich stretches of DNA in the minor groove 335,337. 

HMGAs are abundant in undifferentiated and proliferating embryonic cells, but are expressed at 

low levels in most adult cells. In vivo, HMGA proteins preferentially, but not exclusively, localize 

to heterochromatin and are associated with condensed chromosomes during mitosis 336. As key 

components of the enhanceosome, a complex of transcription factors and cofactors that binds 

on nucleosome-free control regions of genes, HMGA proteins are involved in the regulation of 

specific genes 338,339. In mouse embryos, HMGA1 is involved in the activation of zygotic 

transcription and micro-injection of purified HMGA1 leads to precocious transcriptional 

activation at the 1-cell stage 340. HMGA1a exerts its function by distorting DNA slightly which 

increases the affinity of other proteins for their binding sites 338,339. Extensive post-translational 

modifications are involved in regulating the stability or disassembly of the enhanceosome 

(acetylation of K64 and K70, respectively) and in modulating the DNA binding affinity of 

HMGA1a (phosphorylation of T20, S43 and S63; methylation) 335,338,341. Deletion of Hmga1 or 

Hmga2 in mouse results in a number of diverse phenotypes, indicating that the two proteins 

regulate distinct processes (reviewed in 337). Hmga1-/- mice suffer from cardiac hypertrophy and 
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hematological disorders and develop type 2 diabetes. In contrast, Hmga2-/- mice are small and 

their spermatogenesis is deficient leading to male sterility. 

HMGB proteins contain the 80 amino acid HMG Boxes as functional motifs that bind to the 

minor groove of DNA with limited sequence specificity and sharply bend DNA, which might be 

their main function 335,337. While AT hook proteins cause modest distortions of DNA, HMG boxes 

can bend DNA to right angles or even more sharply. The third family of HMG proteins binds to 

nucleosomes, therefore called HMGN, through their positively charged domain 335,337. Like the 

other HMG families, HMGNs contain a C-terminal acidic domain that is involved in chromatin 

unfolding. Taken together, the HMG proteins have been known for several decades and their 

chromatin binding properties have been well studied 339,342. In contrast, nothing is known about 

the function and properties of the Cbx2 AT hooks, but some analogies might be drawn from our 

understanding of HMGA proteins. 

In this study, we use a heterologous ES cell system to show that PRC1 binding to 

pericentric heterochromatin is dependent on Cbx2. Heterochromatin binding is mediated by a 

dual module consisting of the Cbx2 chromodomain and AT hook. Micro-injection experiments in 

mouse zygotes suggest that PRC1 heterochromatin binding in early embryos is RNA-

independent but requires the Cbx2 AT hook. We discuss implications of our findings for PRC1 

recruitment to target genes and provide first bioinformatics analysis. 

2.3.2. Methods 

Generation of constructs 

Constructs for C-terminal enhanced GFP (EGFP) fusion proteins of Cbx2, Cbx4, Cbx6, Cbx7 

and Cbx8 in the EGFP-N1 backbone (BD Biosciences) were obtained from E. Bernstein 62. We 

also received Cbx7-GFP with point mutations in the caging aromatic residues (F11A and W35A) 

and a swap of the Cbx4 CD into Cbx7-GFP. Point mutations of the Cbx2 CD and AT hooks 

were generated using a "Self-made Quickchange" protocol for site-directed mutagenesis. 

Constructs were amplified using Pfu Polymerase (Promega) and approximately 25 bp long 

primers containing the mutation in the centre. The PCR reaction was digested with the 

methylation sensitive restriction enzyme Dpn1 (New England BioLabs) to remove the original 

construct and subsequently used for transformation. Successful mutagenesis was confirmed by 

sequencing. The Cbx2 truncation constructs were generated by PCR from the Cbx2-EGFP 

construct and cloned with BglII/SalI into EGFP-N1. Hmga1 was cloned by PCR from NIH3T3 

cDNA. All constructs were verified by sequencing throughout the entire coding region. The Cbx2 

clone chart and a complete list of all constructs generated are attached in the Appendix. 

Transfection of ES cells and analysis of heterochromatin enrichment 

Wild-type and Suv39h dn ES cells 1,9  were cultured in DMEM medium with 4.5 g/l glucose 

(Gibco) containing 15% FCS (fetal calf serum, Chemicon), penicillin, streptomycin, 2 mM L-

glutamine, 0.1 mM 2β−mercaptoethanol, non-essential amino acids and 1 mM sodium pyruvate 

(Gibco). ES cells were transfected with GFP fusion constructs using Lipofectamine 2000 

(Invitrogen) and after approximately 16h were seeded on poly-L-lysine coated coverslips, fixed 
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with PFA and mounted in Vectashield containing DAPI (Vector). For more detailed information 

on the analysis of ES cells, see also Chapter 2.2. 

Microinjection of RNase into zygotes 

Mouse zygotes were isolated as previously described (Chapter 2.2.2). For micro-injection of 

RNase, zygotes were isolated 20h after hCG injection from CD1 mice and further cultured in M2 

medium until the late pronuclear stage (PN4/5, 26h after hCG). RNase A (Roche, #109169) 333 

was dissolved in TE buffer (pH 8.0) at 2 mg/ml. Approximately 5 pl of RNase were micro-

injected directly into either the maternal or paternal pronucleus. Control zygotes were either not 

injected or injected with TE buffer into the maternal or paternal pronucleus. Following micro-

injection, zygotes were cultured for further 15 min. Per condition, 15 zygotes were transferred to 

lysis buffer for later RNA isolation (Chapter 2.1.1) and RT-PCR (Chapter 2.2.2) to monitor 

efficiency of RNase treatment. The remaining zygotes were fixed and processed for 

immunofluorescence (Chapter 2.2.2). 

Distamycin treatment during in vitro fertilization 

In vitro fertilization (IVF) was carried out as previously described using CD1 mice (Chapter 

2.2.2). The fertilization reaction was performed in HTF (Chemicon) supplemented with 20 µM or 

50 µM Distamycin (SIMGA, #D6135) for 2h. Control oocytes were fertilized in HTF without 

Distamycin. Following IVF, zygotes were fixed and processed for immunofluorescence as 

previously described (Chapter 2.2). 

Microinjection of polyadenylated messages into zygotes 

For in vitro transcription, full length and mutated Cbx2-GFP was cut from the EGFP-N1 

backbone with BglII/NotI and cloned into BamHI/NotI sites of pBSSK+. Plasmids were linearized 

with NotI and gel purified. Cbx2-GFP fusions were in vitro transcribed from a T7 promoter using 

the mMESSAGE mMACHINE High Yield Capped RNA Transcription Kit (Ambion, #1344) and 

messages were polyadenylated with the mMESSAGE mMASCHINE Poly(A) Tailing Kit 

(Ambion, #1350). mRNAs were diluted in nuclease-free water (not DEPC treated, Ambion) to 

yield a final concentration of 200 ng/µl. Maternal and paternal Ezh2-deficient embryos were 

obtained from matings between Ezh2F/F; Zp3-cre/+ females and Ezh2F/F; Prm1-cre/+ males. 

Control embryos designated as wild-type were Ezh2F/F (Chapter 2.2). Zygotes were isolated 

14h after hCG injection and cultured in M2 medium until 19h after hCG. Approximately 5 pl of 

polyadenylated messages (200 ng/µl) were micro-injected into the cytoplasm and zygotes were 

cultured for further 5h to allow production of Cbx2-GFP fusion proteins in vivo. Subsequently, 

zygotes were fixed for immunofluorescence at the late pronuclear stage (PN5). The direct GFP 

signal was detected by confocal microscopy (Chapter 2.2). 

Author contributions 

M.P. and A.H.F.M.P. conceived and designed the experiments. M.P. and C. Kolb designed the 

Cbx constructs. C. Kolb performed the cloning of Cbx constructs. M.P. performed and analyzed 

Cbx localization experiments in ES cells. C. Kolb prepared in vitro transcribed and 
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polyadenylated Cbx mRNAs. J.-F. Spetz performed micro-injections of RNase and Cbx mRNAs 

into zygotes. M.P. analyzed the micro-injected zygotes. M.P. performed the distamycin 

experiments. M. Stadler, M.P. and A.H.F.M.P. conceived the bioinformatics analysis. M. Stadler 

performed the bioinformatics tests. 

2.3.3. Results 

Cbx2 mediates heterochromatin binding of PRC1 in Suv39h dn ES cells 

Suv39h1/Suv39h2 double null (Suv39h dn) ES cells resemble paternal pronuclei as their 

pericentric heterochromatin is devoid of H3K9me3, H4K20me3 and HP1β 343. Remarkably, 

Suv39h dn ES cells gain H3K27me3 at pericentric heterochromatin. In contrast to early 

embryos, however, PRC1 components that are expressed in ES cells, are not detectable at 

PCH in Suv39h dn ES cells (Chapter 2.2). PRC1 components expressed in ES cells include 

Rnf2, Mel18 (Rnf110) and Phc1 but we were unable to detect Cbx2, Bmi1 and Phc2, indicating 

that PRC1 complex constitution varies during development and between cells types 60. We have 

previously shown that reconstitution of a matPRC1 complex in ES cells by overexpression of 

Cbx2-Flag, GFP-Phc2 and 3Flag-Bmi1 leads to targeting of these three PRC1 components as 

well as of endogenously expressed Rnf2 to PCH in Suv39h dn but not wild-type ES cells 

(Chapter 2.2). We concluded that enrichment at PCH in not unique to early embryos, but can in 

principle occur in other cell types, if a certain set of PRC1 components is expressed in the 

absence of Suv39h-mediated blocking activity. 

To identify whether a single component of PRC1 is sufficient to mediate heterochromatin 

binding, we overexpressed matPRC1 proteins separately in wild-type and Suv39h dn ES cells. 

Of the four matPRC1 components, only overexpressed Cbx2 (C-terminally FLAG-tagged) is 

strongly enriched at PCH specifically in Suv39h dn ES cells (Fig. 5A). Cbx2-Flag is able to 

recruit endogenously expressed Rnf2, Mel18 and Phc1 to heterochromatin, likely through its C-

terminal Polycomb box (Pc box) 61,63, whereas recruitment of other PRC1 is impaired when a 

Cbx2 construct with a C-terminal GFP tag is used (data not shown), probably due to steric 

hindrance. In vitro binding assays have shown that the Cbx2 chromodomain (CD) binds with 

similar affinities to peptides tri-methylated at H3K9 and H3K27 62. In contrast, overexpressed 

Cbx2 in ES cells and endogenous matPRC1 in early embryos do not bind to PCH in the 

presence of H3K9me3. In mouse, five different chromodomain-containing homologs of the fly 

Pc protein exist, of which Cbx4 and Cbx7 also bind to H3K9me3 in vitro and in addition Cbx7 

binds to H3K27me3 62. In our ES cell overexpression system, none of the other Cbx homologs 

accumulates at PCH, neither in wild-type nor in Suv39h dn ES cells (Fig. 5B). Thus, although 

Cbx2 and Cbx7 have comparable affinities towards methylated lysine residues in vitro, only 

Cbx2 in targeted to PCH in Suv39h dn ES cells. 
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In Fig. 5C, an alignment of the first hundred amino acids of the five mouse Cbx homologs 

is shown, including the N-terminal chromodomain. The CD with the caging aromatic amino acids 

that mediate the histone methyl-lysine interaction is highly conserved 61, suggesting that distinct 

binding properties are modulated by a few amino acid changes. Interestingly, in addition Cbx2 

encodes three AT hook motifs immediately downstream of its CD that are not present in any of 

the other Cbx proteins but are conserved in several species including human, dog, chicken, 

zebrafish and Xenopus (excluding Drosophila) 61. AT hooks are nine amino acid motifs that bind 

AT-rich stretches of DNA in the minor groove and have been extensively studied, especially in 

the high mobility group proteins (HMGs) 337. HMGAs are architectural components that remodel 

the structure of chromatin and bind to AT-rich DNA without major preferences for the underlying 

DNA sequence. An alignment of the Cbx2 AT hooks with the ones from Hmga1 is shown in Fig. 

5D. The solution structure of Hmga1 revealed that the central Arg-Gly-Arg (RGR) motif inserts 

into the minor groove of DNA, with neighboring residues at either side of the core mediating 

electrostatic and electrophobic interactions with the DNA backbone 342. The second AT hook of 

Hmga1 is designated a "strong" AT hook as additional six amino acids C-terminal to the core 

form a more extensive interaction network with the DNA, resulting in significantly increased 

affinity 342. The three Cbx2 AT hooks all have the central RGR core (Fig. 5D) but lack additional 

C-terminal stabilizing residues found in Hmga1 AT2. As mouse major satellites are strongly AT-

rich, Cbx2 binding to PCH could be mediated by the Cbx2 AT hooks. It is interesting to note, 

that AT hook motifs are also found in the H3K4-specific histone methyltransferases Mll, Mll3 

and Mll4 (Fig. 5D) 334,344 that belong to the trithorax group (TrxG) of proteins and function 

antagonistically to PcG proteins. 

The Cbx2 chromodomain and AT hook confer heterochromatin binding 

To test the possibility that the Cbx2 AT hooks contribute to PCH targeting, we mutated three 

central amino acids of the Cbx2 AT hook 1 (AT1) to alanines (Cbx2_AT1AAA, Fig. 6A) and 

overexpressed the GFP-tagged protein in Suv39h dn ES cells (Fig. 6C). In transfected cells, 

PCH enrichment was scored as follows: (-) GFP signal excluded from DAPI-dense 

heterochromatin domains; (=) equal GFP signal at hetero- and euchromatin; (>) enhanced and 

(>>) strongly enhanced GFP signal at heterochromatin versus euchromatin. Indeed, 

Cbx2_AT1AAA shows strongly reduced enrichment at PCH compared to Cbx2 and in more than 

60% of cells PCH accumulation is completely lost (Fig. 6D). To rule out the possibility that the 

Figure 5: The PRC1 component Cbx2 is recruited to constitutive heterochromatin in
Suv39h dn ES cells. (A) Separate overexpression of matPRC1 components in wild-type and 
Suv39h dn ES cells reveals that only Cbx2 is recruited to PCH specifically in Suv39h dn ES 
cells (arrows). (B) Overexpression of other Cbx homologs does not result in PCH enrichment in
wild-type or Suv39h dn ES cells. Scale bars, 5 μm. (C) ClustalX alignment of the first hundred
amino acids of the five mouse Pc homologs. The blue line highlights the N-terminal 
chromodomain that is highly conserved between homologs. Blue arrows indicate the aromatic
caging residues required for methyl-lysine binding. The Cbx2 AT hook 1 is marked by a green
line, and green arrows indicate the central RGR core. (D) Alignment of the AT hook motifs found
in the High mobility group protein Hmga1, the PRC1 protein Cbx2 and the Trithorax HMTs Mll, 
Mll3 and Mll4. 
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Cbx2 structure is perturbed by the three amino acid changes, we also introduced single point 

mutations in the core of AT1. Mutation of the central small glycine residue to a large amino acid, 

either arginine (Cbx2_AT1G78R) or leucine (Cbx2_AT1G78L), results in a reduction in PCH 

enrichment to a similar extent as observed for Cbx2_AT1AAA (Fig. 6C+D). PCH enrichment is 

also impaired by swapping the Cbx2 AT1 with amino acids found at the same position in Cbx7 

(Cbx2_AT1Cbx7). Moreover, exchanging one amino acid N-terminal of the core and two amino 

acids C-terminal of Cbx2 AT1 to match the Hmga1 AT1 (Fig. 6A) affects PCH enrichment (Fig. 

6C+D), albeit less strongly than the other mutations, suggesting that the Cbx2 AT1 may confer 

some specificity that may not necessarily be mediated by all AT hooks. 

 Mutation of the first Cbx2 AT hook strongly impairs PCH binding but does not 

completely abrogate it. One possible explanation is that the second and third AT hook also 

contribute to heterochromatin targeting. Therefore, we introduced a point mutation in the central 

core of AT2 (Cbx2_AT2G137R) in analogy to the glycine to arginine mutation of AT1 

(Cbx2_AT1G78R). In contrast to AT1, mutation of AT2 does not affect accumulation of Cbx2 at 

PCH (Fig. 6C+D). Likewise, mutation of both the first and second AT hook of Cbx2 does not 

further reduce PCH enrichment compared to a single AT1 mutation, suggesting that the second 

Cbx2 AT hook does not significantly contribute to targeting of Cbx2 to heterochromatin. Since 

H3K27me3 is enriched at PCH in approximately 30% of cells (data not shown), the 

chromodomain of Cbx2 might recognize this modification resulting in PCH targeting 

independent of a functional AT hook. Mutation of one of the caging residues known to be 

required for methyl-lysine binding (Cbx2_CDF12A) results in reduced PCH enrichment (Fig. 

6C+D), though less strongly than mutation of AT1. Strikingly, PCH is completely abolished when 

both the chromodomain and AT1 contain a point mutation. 

In agreement with this, a truncated version of Cbx2 only containing the chromodomain and 

AT1 (Fig. 6B) strongly binds to PCH in Suv39h dn ES cells (Fig. 6C+D). Addition of the second 

and third AT hook does only slightly enhance heterochromatin enrichment. In contrast, a protein 

containing only the three AT hooks binds very weekly to PCH and instead accumulates within 

nucleoli. It is unclear whether this is a specific effect or presents an artifact caused by the large 

GFP-tag in relation to the short AT hook stretch. We will further test this using a construct in 

which the CD is deleted but which contains the C-terminus in addition to the AT hooks. 

To sum up, both the mutation analyses as well as the truncation experiments suggest that 

heterochromatin binding of Cbx2 is mediated by a dual binding module consisting of the 

Figure 6: Cbx2 targeting to heterochromatin depends on its chromodomain and AT hook
motif. (A) Representation of the mutations introduced into the Cbx2 chromodomain and AT
hooks. The blue arrow indicates the caging residue at position 12 of the chromodomain and
green arrows highlight the central RGR core of AT hooks 1 and 2. (B) Schematic representation
of Cbx2 truncation constructs. (C) Overexpression of Cbx2 mutation and truncation constructs in
Suv39h dn ES cells. DAPI and direct GFP signals are shown for one representative cell per
construct. Scale bar, 5 μm. (D) Quantification of PCH enrichment for each construct, scored as
follows: (-) GFP signal excluded from DAPI-dense heterochromatin domains; (=) equal GFP 
signal at hetero- and euchromatin; (>) enhanced and (>>) strongly enhanced GFP signal at
heterochromatin versus euchromatin. CD, chromodomain; AT1, AT hook 1; PcBox, Polycomb
box; FL, full length. 
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chromodomain and the first AT hook. 

Mutation of the Cbx2 chromodomain allows binding in the presence of H3K9me3 

Another question is, why does Cbx2 or matPRC1 only bind to heterochromatin in the absence 

of a functional Suv39h pathway? Possibly, access to the minor groove of the DNA is limited due 

to H3K9me3 and HP1β mediated compaction. We tested this hypothesis by overexpressing the 

AT hook protein Hmga1 in wild-type and Suv39h dn ES cells. Hmga1 is highly enriched at PCH, 

irrespective of the H3K9me3 status (Fig. 7A+B), arguing that inaccessibility alone is not 

prohibiting Cbx2 binding in wild-type cells. Alternatively, due to its strong second AT hook, 

Hmga1 may have a higher affinity towards pericentric major satellite sequences, allowing it to 

compete better with heterochromatin components. 

Surprisingly, Cbx2 carrying a point mutation in the CD (Cbx2_CDF12A) is able to bind PCH 

in wild-type ES cells with similar affinity as the same construct expressed in Suv39h dn ES cells 

(Fig. 7A+B). This is not caused by a change in the methyl-lysine affinity of the mutated CD 

toward H3K9me3 as Cbx7_CDF11A does not accumulate at PCH in wild-type ES cells (data not 

shown). Instead, enrichment of Cbx2_CDF12A to PCH in wild-type ES cells depends on the 

function of the first AT hook and is lost in a double CD and AT1 mutant construct 

(Cbx2_CDF12A_AT1AAA, Fig. 7A+B). Further experiments are needed to address the role of the 

Cbx2 chromodomain in "recognizing" the Suv39h-mediated blocking activity. For example, 

inserting an intact or mutated Cbx2 CD in front of the Hmga1 AT hook motifs would address 

whether the CD effect can be overruled by a high affinity AT hook. Further insights may also be 

gained by exchanging the Cbx2 CD with the CD of other Cbx proteins, thereby making use of 

the naturally provided variation between homologs. In case these constructs do not block PCH 

enrichment, we will make constructs of chimeric CDs to map the site required to recognize the 

blocking Suv39h activity. 
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In summary, our current data suggest that enrichment of Cbx2 at heterochromatin in 

Suv39h dn ES cells is mediated by the chromodomain, likely via binding to H3K27me3, and the 

first AT hook motif whereas AT hooks 2 and 3 seem to play minor roles (see model in Fig. 7C). 

Other PRC1 members are probably recruited to PCH through the C-terminal Pc Box of Cbx2. 

Figure 7: Mutation of the Cbx2 chromodomain allows targeting to heterochromatin in 
wild-type ES cells. (A) Overexpression of Cxb2 and Hmg1a constructs in wild-type and 
Suv39h dn ES cells. Whereas Cbx2 is only enriched at PCH in Suv39h dn ES, targeting of 
Hmga1 to PCH occurs irrespective of H3K9me3. Mutation of the Cbx2 CD allows binding to 
PCH also in wild-type ES cells, which is dependent on AT1. Scale bar, 5 μm. (B) Quantification 
of PCH enrichments for each construct. (C) Model for the recruitment of PRC1 to constitutive 
heterochromatin via the Cbx2 chromodomain and AT hook. 
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How exactly the Suv39h pathway is blocking Cbx2 from PCH remains to be determined, but 

may involve the recognition of H3K9me3 by the Cbx2 chromodomain. 

PRC1 binding to heterochromatin is RNA-independent in zygotes 

In addition to marking of PCH by repressive histone methylation, it has been proposed that the 

methylated histone tails are arranged in a specific configuration dependent on a structural RNA 

which is required for the accumulation of HP1 proteins at chromocenters, as detected by 

immunofluorescence 333. In analogy to this, we wondered whether targeting of matPRC1 

proteins to paternal PCH in early embryos is also dependent on an RNA component. To test for 

a role of RNAs in PCH organization in early embryos, we adopted the RNase treatment 

previously used on cell lines 333 to early embryos. Unfortunately, the embryos did not survive the 

permeabilization procedure required before RNase digestion. Therefore, we decided to directly 

microinject RNase A either into the maternal or paternal pronucleus of the zygote (Fig. 8A). 

Figure 8: Binding of matPCR1 and HP1β to PCH is RNA-independent in zygotes. (A) 
Schematic representation of the microinjection approach. (B) RT-PCR analysis of maternally 
provided housekeeping messages in control and RNase microinjected zygotes. Actb and Gapdh
levels are decreased following RNase treatment, whereas a spike control (Dap) is unchanged. 
(C) Immunofluorescence analyses of H3K9me3/HP1β and Bmi1/Rnf2 reveals no difference 
between PCH localization in control versus RNase treated zygotes, suggesting that HP1β and
PRC1 binding to PCH does not require RNA in zygotes. Scale bars, 10 μm. 
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Efficiency of the treatment was confirmed by the isolation of total RNA from RNase and control 

injected zygotes. RT-PCR analysis shows that maternally provided mRNAs for house keeping 

genes are readily detected in control embryos, but are strongly reduced after RNase 

microinjection into both the maternal or paternal pronucleus (Fig. 8B). This was not due to 

inefficient RNA isolation or cDNA synthesis as an RNA spike control (Dap) added to the lysis 

buffer before RNA isolation is equally amplified in all samples. Following microinjection of 

RNase, zygotes were cultured for 15 minutes before fixation. IF for maternal PCH marks reveals 

no change in the distribution of H3K9me3 or HP1β at PCH rings (Fig. 8C). Similarly, PCH 

enrichment of matPRC1 components Bmi1 and Rnf2 is unaffected after RNase microinjection 

into the paternal pronucleus. 

These results suggest that maternal PCH rings may be organized differently from PCH 

clusters found in somatic cells with HP1β accumulating independent of an RNA-mediated 

structure. Moreover, matPRC1 enrichment at paternal PCH seems to be RNA-independent 

although we cannot exclude that an RNA component may be involved in initial matPRC1 

targeting. 

The Cbx2 AT hook contributes to chromatin binding in zygotes 

Alternatively, matPRC1 proteins may be recruited to paternal PCH by direct binding to the 

underlying AT-rich DNA via the AT hook motifs present in Cbx2. This hypothesis can be 

approached by using natural or synthetic molecules that bind specifically to the minor groove of 

AT-rich DNA and therefore will compete with endogenous proteins for major satellite binding. 

One such molecule is the naturally occurring antibiotic distamycin that has been isolated from 

Streptomyces distallicus 345. This oligo-peptide interacts reversibly with the DNA minor groove, 

recognizing sequences containing at least four AT base pairs, and shows limited cytotoxicity. 

We incubated oocytes with distamycin during in vitro fertilization (IVF) to see whether matPRC1 

proteins are initially targeted to PCH via satellite DNA. Indeed, treatment with distamycin results 

in a dose-dependent decrease in matPRC1 enrichment (Fig. 9A). In control zygotes, Cbx2 is 

highly enriched at the central DAPI-dense heterochromatin domain in more than 80% of 

decondensing sperm heads (Fig. 9B). After IVF in 20μM distamycin, less than 40% of 

decondensing sperm show high enrichment for Cbx2 at PCH and incubation with 50μM 

distamycin almost completely abolishes high affinity binding to PCH. Enrichment of Rnf2 at 

paternal PCH is similarly compromised. Note that in addition to paternal heterochromatin, 

matPRC1 levels are also decreased in the surrounding euchromatic regions, suggesting that 

the AT dependent binding mode may not be exclusively required for heterochromatin only. 
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Drug treatment may have unspecific side affects and therefore we wished to address PCH 

targeting mechanisms more directly. Making use of the Cbx2 constructs tested for PCH 

enrichment in ES cells, we in vitro transcribed Cbx2-GFP and microinjected the polyadenylated 

message into the cytoplasm of early zygotes. Following microinjection, the zygotes were further 

cultured for five hours to allow translation and targeting of the overexpressed protein to occur. 

The zygotes were then fixed and processed for IF. Overexpressed Cbx2-GFP accumulates 

specifically at paternal PCH and is excluded from maternal PCH (Fig. 9C). Like endogenous 

Figure 9: matPRC1 binding to paternal constitutive heterochromatin involves the Cbx2 
AT hook in zygotes. (A) Immunofluorescence analyses of PN0 zygotes reveals enrichment of
Cbx2 and Rnf2 at PCH of decondensing sperm. PCH enrichment is strongly reduced following
treatment with the DNA minor groove binder distamycin. (B) Quantification of PCH binding in 
decondensing sperm, using the follow criteria: (-) no staining; (=) weak staining at 
heterochromatin; (>) strong and (>>) very strong enrichment at heterochromatin. (C)
Immunofluorescence analyses of late zygotes microinjected with mRNA of GFP-tagges Cbx2 or 
Cbx2_AT1AAA. Cbx2-GFP is enriched at paternal PCH in wild-type and Ezh2m-z- zygotes, like 
endogenous Cbx2. Mutation of Cbx2 AT1 leads to reduced binding to PCH and euchromatin.
(D) Quantification of binding to paternal PCH in late zygotes. Scale bars, 10 μm. 
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Cbx2, it is also present in both maternal and paternal euchromatin. Additional highly fluorescent 

Cbx2-GFP foci are detected around the NPBs of both maternal and paternal pronuclei that we 

have not noticed during IF of endogenous Cbx2. They may represent minor satellites or rDNA, 

however, this is purely speculative and the nature of these foci remains to be determined. 

Microinjection of Cbx2-GFP into Ezh2m-z- zygotes results in paternal PCH enrichment 

independent of H3K27me3. In contrast, like endogenous matPRC1, targeting of Cbx2-GFP to 

euchromatin regions correlates with H3K27me3 levels. Thus, overexpressed Cbx2-GFP mimics 

the localization of endogenous Cbx2 at PCH and within euchromatin in both wild-type and 

Ezh2m-z- zygotes, although interaction with other PRC1 members is probably inhibited through 

the C-terminal GFP-tag (see experiments in ES cells), suggesting independent recruitment. 

To address the role of the Cbx2 AT hook in H3K27me3-independent targeting to paternal 

PCH, we microinjected Cbx2 message with a mutation in the first AT hook (Cbx2_AT1AAA) into 

zygotes. Like in Suv39h dn ES cells, PCH enrichment of Cbx2_AT1AAA is reduced, both in wild-

type and Ezh2m-z- zygotes (Fig. 9B). Unexpectedly, Cbx2_AT1AAA accumulation was also lost 

within euchromatin. As the bright foci around NPBs were still detected, loss of PCH and 

euchromatin accumulation is probably not due to protein degradation, although should be 

confirmed using an independent method. Further microinjection experiment using additional 

mutation and truncation constructs are required to dissect the functional contributions of the 

Cbx2 CD and AT hook to chromatin binding. 

Together our preliminary distamycin and microinjection experiments suggest that the Cbx2 

AT hook may also be involved in PCH targeting of the matPRC1 complex in early embryos. The 

observation that binding of Cbx2 is also affected within euchromatin upon distamycin treatment 

or mutation of the AT hook suggested to us that the dual CD-AT-module may play a role also in 

targeting of PRC1 proteins to regions outside of constitutive heterochromatin.  

Does the Cbx2 AT hook contribute to the recognition of PRC1 target genes? 

So far no Polycomb response elements (PREs) have been identified in mammals, 

suggesting that they are possibly not characterized by specific, well defined sequence motifs 

like in Drosophila 108. If our hypothesis is true, PRC1 proteins may be recruited to their target 

genes specifically by H3K27me3 via the CD of Cbx2 and additional affinity could be contributed 

by AT-rich sequence stretches recognized by the Cbx2 AT hooks. To further test this idea, we 

used a bioinformatics approach based on our results and the published data on AT hook 

proteins to analyze sequence characteristics of Polycomb target genes. 

A number of biochemical and structural studies have analyzed AT hook binding properties 

and addressed the question whether AT hooks bind sequence specific or recognize any random 

stretch of AT-rich DNA. Early qualitative HMGA footprinting studies observed AT hook binding 

to any run of 5-6 AT bp with similar affinity, suggesting that HMGAs only recognize the minor 

groove of AT-rich DNA rather than a specific sequence 346,347. More recent studies suggest that 

high affinity binding of TAF1 or HMGA requires two to three appropriately spaced AT-rich 

sequences to allow multivalent binding by neighboring AT hooks 342,347,348. Examples of well 

characterized AT hook binding sites include the interferon-β (IFN-β) enhancer, the promoter of 
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interleukin-2 and interleukin-15, and the heat shock protein 70 (Hsp70) transcription start site 
347-350. Each of these regulatory sequences contains at least one 5 bp AT stretch, required for 

AT hook binding. One study used a SELEX (systematic evolution of ligands by exponential 

enrichment) approach to identify sequences bound by HMGA2. Common features included two 

5-6 bp AT-stretches separated by a 4-5 bp GC-rich linker, and surprisingly an AT consensus 

sequence (ATATT) was identified 347. 

Taken together, the consensus from the literature seems to be that high affinity binding by 

AT hook proteins requires appropriately spaced AT stretches to allow multivalent binding. 

Although there are a few examples hinting towards some sequence specificity, in general any 

AT-stretch seems to be sufficient. If Cbx2 is recruited to heterochromatin directly by DNA, these 

features should also be found within major satellites. The sequence of the 234 bp repeat unit of 

mouse major satellites, divided into four sub-repeats 1, is shown in Fig. 10A. The sequence 

contains a number of different 5-7 bp AT motifs with the spacers varying in length from 3 to 14 

bp, providing a range of options for AT hook binding. The required spacing may vary between 

AT hook proteins depending on their amino acid (aa) sequence and 3D structure. In Hmga1, 

AT1 and AT2 are separated by 22 aa, and a 10 aa linker is present between AT2 and AT3. The 

linkers are much longer in Cbx2 with 50 aa separating AT1 and AT2 (including long serine 

stretches), and a 20 aa linker between AT2 and AT3. However, our mutagenesis study in 

Suv39h dn ES cells does not support a major functional contribution of Cbx2 AT hooks 2 and 3. 

Therefore, our current knowledge does not allow us to define a specific sequence motif 

recognized by Cbx2, but rather suggests including all possible AT motifs with a minimum 

lengths of 5 bp into a bioinformatics search. 

Next, we wanted to analyze whether AT motifs would be enriched in PcG target genes. 

Using the PRC1 and PRC2 ChIP on Chip data generated by Boyer and colleagues in mouse ES 

cells 2, we defined a number of positive data sets containing Polycomb target genes (Table in 

Fig. 10B). The data set Pos 6 contains all sequences enriched in PRC1 (Phc1 and/or Rnf2) and 

PRC2 (Suz12 and/or Eed) within 10 kb (peaks only). The set Pos 8 contains sequences 

enriched in PRC2 that do not have any PRC1 peak within 10 kb, whereas Pos 4 contains 

sequences enriched in PRC1 without a PRC2 peak within 10 kb. For statistical analysis 

especially sets Pos 8 (PRC2 only) and Pos 4 (PRC1 only) are interesting as they contain a 

similar number of regions (580 and 516, respectively) spanning approximately 400,000 bp each. 

In addition, we defined a set Pos 2 that includes 2 kb around the transcription start sites (TSS) 

of all genes enriched in PRC1 (Phc1 and/or Rnf2) that lack PRC2 (Suz12, Eed and 

H3K27me3). Finally, we generated a negative data set (Neg 1) that includes 2 kb around the 

TSS of genes that are not targeted by Polycomb in ES cells (negative for PRC1, PRC2 and 

H3K27me3 based on the ChIP data by Boyer 2 and Mikkelsen 3). It is important to note that the 

genes included in the negative set, may however be targeted by Polycomb proteins in other cell 

types and therefore may have the 'sequence characteristics' of a Polycomb gene. Moreover, AT 

hook motifs are present in a variety of DNA binding proteins with a wide range of functions 334, 

suggesting that genes other than those targeted by Polycomb are expected to contain AT-rich 

sequences.
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We used an unbiased bioinformatics approach to test whether any 5mer sequence motif is 

enriched in the defined positive data sets either relative to a randomly 'shuffled' sequence 

(taking GC-richness into account) or relative to the negative set. This approach yielded a 

number of motifs that were significantly enriched in our data sets, including AT 5mers (data not 

shown). To test whether all possible AT 5mers are specifically enriched in any of the positive 

sets, we calculate the ratios between observed occurrences of AT 5mers versus occurrence of 

AT 5mers expected from a shuffled background or from the negative set. The 

observed/expected ratios for all AT 5mer motifs (n=32) are presented in Fig. 10C. Comparison 

of Pos 2 (PRC1) with Neg 1, which both include 2 kb around the TSS, indicates enrichment of 

AT 5mers in both sets relative to a shuffled background (no enrichment = 1.0), suggesting that 

AT-richness may be a general feature of TSS regions. Direct comparison of Pos 2 (PRC1) with 

Neg 1 shows that AT 5mers, although enriched in both sets, are more abundant within PRC1 

target genes. As comparison of PRC1 peaks (Pos 4) and PRC2 peaks (Pos 8) yielded similar 

observed/expected ratios, we wanted to know whether the same or different 5mer motifs were 

enriched in these sets. Therefore, the P-values of all possible 5mers were visualized in a scatter 

blot between Pos 4 (PRC1) with Pos 8 (PRC2) (Fig. 10D), showing low correlation between 

both sets (R=0.37). Blotting the enrichments for all AT 5mers in Pos 4 (PRC1) versus Pos 8 

(PRC2) (Fig. 10E) reveals that some AT motifs are significantly enriched in PRC1 target regions 

but none in PRC2 regions. The motifs enriched in PRC1 include TTAAA, AAAAA and TTTTT. 

Furthermore, we were interested in the distribution of the AT 5mers in relation the TSS. For 

the PRC1 positive set (Pos 2), AT 5mers (WWWWW, according to IUPAC code for A or T) are 

present upstream and downstream of the TSS, but seem to be excluded from the TSS itself 

(Fig. 10F). In contrast, CpG containing 5mers are specifically enriched around the TSS. These 

motif distributions do however not seem to be specific for PRC1 genes as similar distributions 

are also found for the negative set (Fig. 10G), suggesting that they may instead represent 

general features of promoter regions. A few examples of AT motifs around the TSS of randomly 

selected PRC1 genes (Pos 2) are presented in Fig. 10H, with highly AT-rich genes at the top. 

To sum up, our preliminary bioinformatics analysis indicates that AT motifs may indeed be 

enriched in a number of PRC1 target genes. Our current analysis is hampered by the fact that 

no specific ChIP data for Cbx2 itself is available yet. We are currently generating antibodies that 

will hopefully allow us to do such analysis. Meanwhile, we are planning to use the generated 

bioinformatics tools and data to select a number of candidate genes to test our hypothesis. 

Figure 10: Bioinformatics analysis of AT binding motifs within PRC1 and PRC2 target
genes. (A) Sequence of mouse major satellite repeats, divided into sub-repeats 1. AT stretches 
of more than 5 bp are highlighted in green. (B) List of data sets generated from the ChIP on 
Chip analysis by Boyer 2 and Mikkelsen 3. (C) Observed/expected ratios of AT 5mers motifs for 
each data set, either relative to a 'shuffled' background or relative to the negative set (Neg 1). 
(D) Scatter blot comparing enrichments (P-values) of all possible 5mer motifs between sets Pos 
4 (PRC1) and Pos 8 (PRC2), showing a low overall correlation. (E) Scatter blot comparing
enrichments (P-values) of all AT 5mer motifs between sets Pos 4 (PRC1) and Pos 8 (PRC2),
revealing significant enrichment of three AT motifs in PRC1 target genes. (F+G) Distribution of
motifs around the transcription start site (TSS) in Pos 2 (F) and Neg 1 (G). (H) Distribution of AT 
motifs around the TSS in five randomly selected PRC1 target genes (Pos 2). The number of AT
5mer motifs present within 2 kb around the TSS is indicated on the right. 
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These genes will be selected from each of the three positive sets (PRC1 pos, PRC2 pos, and 

PRC1+PRC2 pos) based on their H3K27me3 and H3K9me3 status and the frequency of AT 

5mers around the TSS. In addition, we will take into account possible conservation of AT-

richness between species in which the Cbx2 AT hook is conserved (e.g. human, dog, chicken, 

zebrafish, Xenopus and C. elegans) 61. This is based on the assumption that if the dual 

targeting mechanism is conserved in other species we would expect homologues genes to be 

enriched in AT motifs. Depending on the outcome of our candidate gene study, we may expand 

our analysis to look genome-wide for PRC1 target genes that rely on either the Cbx2 CD or AT 

hook or both.  

2.3.4. Discussion 

Using a heterologous ES cell system, we could show that matPRC1 binding to constitutive 

heterochromatin is not limited to early embryos. We used this in vitro system to dissect which 

PRC1 members and domains contribute to heterochromatin recruitment. Separate 

overexpression of PRC1 members revealed that Cbx2 is sufficient for PCH targeting. 

Interestingly, in early embryos Cbx2 is maternally contributed but barely expressed following 

zygotic genome activation (Chapter 2.2, Fig. 1d). Consequently, Cbx2 levels gradually decline 

during pre-implantation development and at the 8-cell stage, once Suv39h-mediated marks 

have been acquired at paternal PCH, Cbx2 is hardly detectable any more (Chapter 2.2, Suppl. 

Fig. 2). This is in agreement with expression data available from the Genomics Institute of the 

Novartis Research Foundation (GNF), San Diego, detecting high levels of Cbx2 only in oocytes 

and 1-cell embryos and low expression in post-implantation embryos (E6.5 to E10.5) (Fig. 11). 

Thus, it seems that resolution of parental epigenetic asymmetry at heterochromatin and 

euchromatin at the 8-cell stage coincides with downregulation of Cbx2, the major determinant 

for matPRC1 binding to heterochromatin. During early pre-implantation development none of 

the other Cbx members are detectable, suggesting that Cbx2 could be involved in the 

recruitment of PRC1 to genes that are regulated by PcG during this developmental stage. Other 

Cbx members may take over during later development (Fig. 11), possibly targeting different sets 

of genes. 

Site directed mutagenesis and truncation experiments of Cbx2 in ES cells identified the 

Cbx2 chromodomain and the AT hook 1 as important modules required for PCH targeting. The 

CD likely recognizes H3K27me3 present at PCH in a percentage of Suv39h dn ES cells and at 

paternal PCH in early embryos, although H3K27me3 is not essential for PCH recruitment in 

early embryos (Chapter 2.2). H3K27me3 and PRC2 independent targeting has also been 

observed for Cbx8 at some genes in embryonic bodies 81. Similarly, Rnf2 binds independent of 

H3K27me3 to the inactive X chromosome during ES cell differentiation in Eed mutant cells 80. In 

both cases, the mechanism of recruitment remains to be determined. Noticeably, Phc1 and 

Phc2 are not recruited to the inactive X in Eed mutant cells, suggesting that they may be part of 

a different complex. The general consensus from the literature seems to be that H3K27me3 can 

promote binding of PC/Cbx but other mechanisms contribute to the targeting of PRC1 

complexes in vivo (Chapter 1.2). In Drosophila, it has been proposed that PC binding to 
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H3K27me3 peaks at putative PREs involves the recruitment by sequence specific binding 

proteins 45. In contrast, weaker PC binding in regions surrounding PREs may be mediated by 

the CD alone, recognizing the H3K27me3 mark. We have identified one additional module in 

mammals, namely the Cbx2 AT hook 1, which is essential for heterochromatin recruitment of 

PRC1 in ES cells and likely early embryos. 

In contrast to HP1 detection at chromocenters in somatic cells which depends on a 

structural RNA 333, PRC1 binding to heterochromatin in early embryos seems to be RNA 

independent. This is agreement with in vitro studies showing that the Cbx4, Cbx6, Cbx7 and 

Cbx8 chromodomains all bind to RNA but not the one of Cbx2 62.  Instead the Cbx2 AT hook 

might mediate direct binding to the underlying AT-rich major satellite DNA. The involvement of a 

structural RNA has also been assessed for higher order chromosome organization of the 

Drosophila bithorax complex 121. Similar to our studies of PRC1 binding to PCH, RNase 

treatment did not affect PRE–PRE or PRE–promoter interactions. 

In both early embryos and ES cells, recruitment of PRC1 proteins to PCH is blocked by 

Suv39h-mediated marks. Mutation of the Cbx2 CD, however, allows binding to PCH also in wild-

type ES cells. One possibility is that Cbx2 binding is blocked directly by H3K9 methylation, 

supported by fact that the mutation of one of the caging residues in the Cbx2 CD, which is 

involved in methyl-lysine binding, abrogates Suv39h-mediated blocking activity. Alternatively, 

inhibition of binding might be mediated by HP1 proteins bound to H3K9me3 or by downstream 

chromatin marks like H4K20me2/3 or DNA methylation. However, DNA demethylation of the 

paternal genome in early embryos takes place after the initial targeting of PRC1 proteins to 

PCH, suggesting that DNA methylation is probably not blocking binding of PRC1. Further 

studies will be aimed at dissecting Suv39h-mediated inhibition of PCH recruitment. 

The current literature on other AT hook containing proteins indicates that this motif 

recognizes AT-rich DNA with relatively little sequence specificity. In addition to heterochromatin 

recruitment, the Cbx2 AT hook could also be envisioned as a motif contributing additional 

Figure 11: Expression patterns of the mouse Cbx genes. Expression data available from the 
Genomics Institute of the Novartis Research Foundation (GNF), San Diego, shows that high
Cbx2 expression is restricted to oocytes and early embryos. In contrast, Cbx4, Cbx6 and Cbx7
are not expressed during that time but are present in various different adult cell types. The
expression profile of Cbx8 was not available. 
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affinity for PRC1 binding at target genes. The close vicinity of the Cbx2 CD and AT hook may 

allow Cbx2 to simultaneously scan the DNA sequence and the methylation marks on the 

nucleosome around which the DNA is wrapped (Model in Fig. 7C). Our preliminary 

bioinformatics study suggests that AT 5mer motifs may indeed by enriched in regions bound by 

PRC1 proteins in ES cells. AT-rich stretches per se might be sufficient, instead of a well-defined 

consensus sequence, which could explain why no such consensus sequences have been found 

so far in mammals. Interestingly, the H3K4me specific demethylase RBP2, known to interact 

with PRC2 88, also contains a DNA binding domain, the AT-rich interaction domain (ARID), 

which however prefers binding to GC-rich sequences 351. 

Such DNA binding modules could be more commonly used for targeting of chromatin 

proteins than so far appreciated, which is supported by the presence of AT hook motifs in the 

H3K4me specific HMTs of the Trithorax group (Fig. 12). Mll and Mll4 encode three to four AT 

hook motifs at their N-terminus which in contrast to Cbx2 are distant from any other functional 

domain. Both Mll and Mll4 are huge proteins that contain a number of different functional 

modules in addition to the C-terminal SET domain. The CXXC motif is involved in the 

recognition of non-methylated CpG dinucleotides and PHD fingers promote protein-protein 

interactions but also have been recently found to be capable of binding to methylated H3K4 

residues 352,353. In addition, a bromodomain, specific for acetylated histones, is present in Mll. 

The combination of these different motifs might allow the Trithorax HMTs to select their target 

genes and to control for their transcriptional status. In the case of the Trithorax HMTs, the AT 

hook motifs might be an evolutionary old invention as they are also found in the Drosophila SET 

domain protein ASH1 334. Interestingly, Mll2 and Mll3, which have no or just one AT hook, 

instead encode a HMG box, also found in HMGB proteins where this domain penetrates into the 

minor groove of DNA and sharply bends it 335,337. While the TrxG HMTs and the PcG protein 

Cbx2 combine several functional motifs in one protein, HMGA1 only contains the three AT 

hooks, suggesting that HMGA1 mediates its various functions through interactions with other 

proteins. Interestingly, HMGA1 is involved in the activation of zygotic transcription in the early 

embryo 340, suggesting that AT hook proteins may play a role during that developmental stage. 

Figure 12: Domain structure of chromatin associated AT hook proteins. The mammalian 
Trithorax group HMTs Mll, Mll2 and Mll4 contain one to four AT hook motifs at their N-terminus. 
The three AT hook motifs of Cbx2 are located immediately C-terminal of the chromodomain. 
Hmga1 encodes three AT hook motifs, of which the second one (dark green) is designated a 
strong AT hook due to additional stabilizing residues. Not drawn to scale. 
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It is worth noticing that the AT hook is not conserved in the Drosophila Cbx homolog (PC) 
61, suggesting that the Cbx2 AT hook might be a recent addition during evolution. Unlike in 

mammals, a number of DNA binding proteins have been identified to interact with PcG 

complexes in Drosophila and are involved in the recruitment of PcG to their target genes 108. 

One of them, DSP1, is an ortholog of the mammalian HMGB proteins and contains two HMG 

boxes. Taken together, both fly and mammalian TrxG and PcG proteins encode DNA binding 

domains like the AT hook or HMG box, which might be involved in the targeting of TrxG/PcG 

proteins and in the case of the AT hook might provide additional specificity towards AT-rich 

sequence stretches.  

So far, we have focused on PRC1 targeting mechanisms. But it is also unclear how PRC2 

mediated H3K27me3 becomes enriched at heterochromatin in early embryos. Strikingly, PRC1 

proteins are present at heterochromatin before H3K27me3 becomes detectable. Is it possible 

that PRC1 proteins recruit the PRC2 complex? Transient interactions between PRC2 (ESC) and 

PRC1 (PC) are required for the establishment of PcG silencing in early Drosophila embryos 107. 

Moreover, it has been speculated in the literature that a dimer of PRC1 may function during 

replication to tether the PRC2 complex to the daughter strand in order to propagate the 

H3K27me3 mark 354. Does a similar mechanism lead to H3K27me3 enrichment at paternal 

heterochromatin in early embryos? Analysis of maternal Rnf2 deficient zygotes argues against 

such a strategy, as H3K27me3 is enriched at paternal PCH in late zygotes lacking the 

matPRC1 complex (Chapter 2.2). Thus, it seems that at heterochromatin PRC2 and PRC1 are 

targeted independently, which however ultimately leads to the co-localization of both 

complexes, possibly reinforcing efficient binding. 

To sum up, we have identified the Cbx2 AT hook as novel motif contributing to PRC1 

targeting to constitutive heterochromatin. We speculate that the Cbx2 chromodomain and AT 

hook could function as a dual module for PRC1 recruitment also at target genes. Further studies 

will be aimed at the identification of Cbx2 targets in vivo, followed by the dissection of 

mechanisms contributing to target gene recognition. 
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3. General conclusions 

In this study, we aimed at dissecting role of Polycomb group complexes during pre-implantation 

mouse development, in particular during zygotic genome activation and first lineage 

commitment. We uncovered an unanticipated role of PRC1 proteins in pericentric 

heterochromatin formation of the paternal genome following fertilization. While the maternal 

genome is characterized by canonical heterochromatin marks of the Suv39h-pathway, paternal 

chromatin is initially devoid of these modifications. Studies in S. pombe, Drosophila and 

mammals have shown that Suv39h-mediated pericentric heterochromatin labeling is essential 

for repression of centromeric repeats, for proper chromosome segregation and genome stability 
9,12,26,355-357. How then is it possible that the paternal genome can do apparently fine for several 

cleavage divisions in the absence of these essential modifications? 

Our studies suggest that maternally provided PRC1 functions as the default repressive 

back-up mechanism in the absence of Suv39h-mediated marks up to the 8-cell stage. Zygotes 

deficient for the Suv39h2 HMT lack repressive H3K9me3 and HP1β at pericentric 

heterochromatin, and consequently PRC1 is also targeted to maternal heterochromatin in these 

zygotes. In zygotes maternally deficient for Rnf2, an essential component of PRC1, major 

satellite transcription is upregulated in the paternal but not maternal pronucleus, suggesting that 

PRC1 functions to repress centromeric repeat sequences. It remains to be determined whether 

PRC1 is also required for proper segregation of chromosomes during the first embryonic 

divisions. Interestingly, severe defects in sister chromatid segregation have been observed in 

Drosophila embryos from Polycomb, Posterior sex combs and Additional sex combs 

heterozygous mutant females 358. 

PcG proteins have been identified as part of a cellular memory system that maintains the 

expression pattern of key developmental regulators. In Drosophila, Polycomb proteins bind to 

Polycomb response elements (PREs) which contain consensus sequences for several known 

DNA binding proteins. In mammals, no such sequences have been identified to date and PcG 

targeting mechanisms remain poorly understood. Our analysis of early embryos revealed that 

targeting of PRC1 to heterochromatin can occur in the absence of Ezh2 and H3K27me3, and is 

blocked by the presence of Suv39h-mediated marks. We used a heterologous ES cell system to 

dissect recruitment mechanisms of PRC1 to pericentric heterochromatin. We show that the 

PRC1 protein Cbx2 is essential for PCH recruitment, which is mediated by a dual module 

consisting of the Cbx2 chromodomain specific for H3K27me3 and an AT hook motif, 

recognizing AT-rich sequence stretches. Competition and mutation experiments in zygotes 

suggest that the Cbx2 AT hook is also functioning in heterochromatin targeting of Cbx2 in early 

embryos. It is tempting to speculate that the dual module of Cbx2 chromodomain and AT hook 

could, in addition, be involved in the recruitment of PRC1 to target genes. 

Interestingly, asymmetric labeling of maternal chromatin by H3K9me3 and HP1β versus 

labeling of paternal chromatin by PRC1 is not restricted to pericentric regions. Analysis of 

cleavage embryos revealed that paternal chromosome arms are strongly labeled by Rnf2 in a 

banded fashion, whereas maternal chromosomes are enriched in H3K9me3 along the arms. 
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Similar to asymmetric labeling observed at heterochromatin, differential marking of the 

chromosome arms is resolved after the 8-cell stage. What are the implications of the transient 

epigenetic asymmetry for gene regulation during pre-implantation development? Does it affect 

the expression of genes during zygotic genome activation in the early embryo? It is interesting 

to note that asymmetry is resolved at the 8-cell stage, concomitant with a number of 

developmental changes including blastomere compaction and immediately prior to initiation of 

first asymmetric cell divisions, giving rise to the precursors of the embryonic and extra-

embryonic lineages. The dynamics might imply that resolution of epigenetic asymmetry between 

parental genomes is a prerequisite to allow first lineage choices to occur.  

Embryos maternally and zygotically deficient for Ezh2 are morphologically normal during 

pre-implantation stages. Ezh2-deficient blastocyst embryos contain both cell lineages, the inner 

cell mass (ICM) and the trophectoderm (TE), which are correctly labeled by the lineage markers 

Oct4 and Cdx2, respectively (data not shown). However, expression profiling of Ezh2 mutant 

blastocysts identified approximately 400 genes that are more than 1.5-fold changed (data not 

shown), of which some might have important roles during further development leading to the 

arrest at E6.5. These results suggest that asymmetric labeling of H3K27me3 in the ICM versus 

TE 136 might not be instructive for lineage segregation, but rather fine tunes gene expression in 

the respective lineages. This is in agreement with several studies of PcG mutant cells that often 

result in small expression changes 2,125, even so such small changes in the expression of key 

developmental regulators may significantly affect developmental outcomes 280,281. Possibly, the 

role of H3K27me3 only becomes apparent during later stages of development, when cell fate 

decisions need to be “remembered”. As part of an epigenetic memory system, H3K27me3 may 

not be required for the initial choices themselves. 

Similarly, maternally and zygotically Rnf2 mutant embryos appear morphologically normal 

during pre-implantation development (data not shown). It remains to be analyzed whether such 

mutants display defects in chromatid segregation during cleavage divisions, which in humans is 

remarkable irregular 303, and which could lead to aneuploidy. Rnf2 function during pre-

implantation development might be compensated by its homolog Ring1a. Strikingly, maternal 

double deficiency for Ring1a and Rnf2 leads to developmental arrest at the 2- to 4-cell stage 

(M.P. and E. Posfai, unpublished). The causes of this developmental failure remain to be 

dissected, but could be due to a maternal effect, possibly resulting from misregulation of gene 

expression during oocyte growth. Further studies are needed to dissect the roles of PcG 

proteins in the maternal germ line and during pre-implantation development. 

Recent research showing that somatic cells can be reprogrammed into embryonic stem 

cell-like cells, so called induced pluripotent stem (iPS) cells, has challenged our view on the role 

of the epigenetic system. A number of groups have now demonstrated that adding just a 

handful of transcription factors can turn both mouse and human somatic cells into iPS cells 359-

364. Does this mean that chromatin states characteristic of a differentiated cell type can be easily 

overruled, or are not important at all? Yet, similar to nuclear transfer and cloning experiments, 

reprogramming of somatic cells into iPS cells is not a very efficient process 365. While 

transcription factors might be able to induce reprogramming, the complete resetting of the 
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epigenetic state might hold the key to successful reprogramming. Interestingly, several of the 

genes that are targeted by the transcription factors used to induce pluripotency (including Oct4, 

Sox2 and Nanog) are also bound by PcG proteins 127. 

Taken together the emerging view seems that the epigenetic system has evolved to fine 

tune gene expression rather than being instructive for lineage choices. Our studies have added 

to our understanding of epigenetic ‘programming’ of mouse pre-implantation embryos, 

particularly with respected to the de novo establishment of chromatin states on the paternal 

genome following fertilization. Clearly, a lot remains to be learned and future research 

dissecting the role of different flavors of chromatin at paternal and maternal genomes will be 

very exciting. 
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Appendix 

 
Features   bp  aa  
promoter (CMV)          1..589 

mRNA (Cbx2)             618..2174 1..519  

 CD   618..791 1..58 

 AT1   837..863 74..82 

 AT2   1014..1040 133..141 

 AT3   1101..1127 162..170 

mRNA (EGFP)        2217..2936 534..773 

polyA_signal (SV40)  3090..3140 

promoter (Bac)   3704..3732 

promoter (SV40 early)  3816..4045 

SV40\ORI   3983..4118 

mRNA (Kanamycin)  4167..4961 

polyA_signal (HSV)  5197..5215 

pUC\Ori   5546..6189 
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Cbx2_GFP (EGFP-N1) 



List of Cbx, PRC1 and Hmga contructs

No. Cloned by Insert (systematic name) Construct (tube label) Backbone Conc

1 E.Bernstein Cbx2 Cbx2_GFP EGFP-N1 1.23

2 E.Bernstein Cbx4 Cbx4_GFP EGFP-N1 1.34

3 E.Bernstein Cbx6 Cbx6_GFP EGFP-N1 1.10

4 E.Bernstein Cbx7 Cbx7_GFP EGFP-N1 1.37

5 E.Bernstein Cbx7_CD
F11A Cbx7_F11A EGFP-N1 0.98

6 E.Bernstein Cbx7_CD
W35A Cbx7_W35A EGFP-N1 0.72

7 E.Bernstein Cbx7_CD4
SWAP Cbx7_CD4_SWAP EGFP-N1 1.17

8 E.Bernstein Cbx8 Cbx8_GFP EGFP-N1 1.09

9 C.Kolb Cbx2 Cbx2_GFP pBSSK+ (T7) 0.54

10 C. Kolb Cbx2_AT1
AAA Cbx2_mAT_GFP pBSSK+ (T7) 0.68

11 C. Kolb Cbx4 Cbx4_GFP pBSSK+ (T7) 0.05

12 C. Kolb Cbx6 Cbx6_GFP pBSSK+ (T7) 0.44

13 C. Kolb Cbx7 Cbx7_GFP pBSSK+ (T7) 0.53

14 C. Kolb Cbx7_CD
F11A Cbx7_F11A_GFP pBSSK+ (T7) 0.06

15 C. Kolb Cbx7_CD
W35A Cbx7_W35A_GFP pBSSK+ (T7) 0.03

16 C. Kolb Cbx7_CD4
SWAP Cbx7_CD4_SWAP pBSSK+ (T7)

17 C. Kolb Cbx8 Cbx8_GFP pBSSK+ (T7) 0.11

35 M.Endoh (Koseki) Ring1B  Myc-Ring1B (WT) pCAGIPuro 1.30

41 M.Endoh (Koseki) Cbx2  Cbx2-Flag pCAGIPuro 1.20

44 M.Endoh (Koseki) Bmi1  3 Flag-Bmi1 pCAGIPuro 1.04

45 K.Isono (Koseki) Ring1B  GFP-Ring1B pEGFP-C2 0.89

46 K.Isono (Koseki) Phc2  GFP-Phc2 pEGFP-C2 1.01

47 K.Isono (Koseki) Cbx2  GFP-Cbx2 (M33) pEGFP-C2 1.12

48 K.Isono (Koseki) Ring1A  GFP-Ring1A pEGFP-C2 0.98

51 C. Kolb Cbx2_AT1
AAA Cbx2_mAT1_GFP (PRG-->AAA) pEGFP-N1 2.07

52 C. Kolb Cbx2_AT1
G78R Cbx2_mAT2_GFP (G77R) pEGFP_N1 1.05

53 C. Kolb Cbx2_AT1
G78L Cbx2_mAT3_GFP (G77L) pEGFP_N1 1.28

54 C. Kolb Cbx2_AT1
Cbx7 Cbx2_mAT4_GFP (GRPRK-->RLLLQ) pEGFP_N1 0.71

57 C. Kolb Cbx2_AT1
Hmga1 Cbx2_mAT6_GFP (AT_Hmga1) pEGFP_N1 0.90

121 C. Kolb Cbx2_AT2
G137R Cbx2_m2AT2 pEGFP_N1 1.02

122 C. Kolb Cbx2_AT1
AAA
_AT2

G137R Cbx2_mAT1_m2AT2 pEGFP-N1 0.88

123 C. Kolb Cbx2_AT1
G78R

_AT2
G137R Cbx2_mAT2_m2AT2 pEGFP_N1 1.13

131 C. Kolb Hmga1a Hmga1a (full length, + 11aa linker) pEGFP_N1 1.04

132 C. Kolb Hmga1b Hmga1b (- 11aa linker AT1-AT2) pEGFP_N1 1.13

59 C. Kolb Cbx2_CD
F12A Cbx2_mCD (F12A) pEGFP_N1 0.86

119 C. Kolb Cbx2_CD
F12A

_AT1
AAA Cbx2_mCD_mAT1 pEGFP_N1 1.07

120 C. Kolb Cbx2_CD
F12A

_AT1
G78R Cbx2_mCD_mAT2 pEGFP_N1 mini

133 C. Kolb Cbx2_CD Cbx2_CD (1-58aa) pEGFP_N1 1.11

127 C. Kolb Cbx2_CD+AT1 Cbx2_CD_AT1 (1-88aa) pEGFP_N1 1.0/1.10

128 C. Kolb Cbx2_CD+AT1-3 Cbx2_CD_AT1-3 (1-184aa) pEGFP_N1 1.07

129 C. Kolb Cbx2_dCD Cbx2_dCD (67-519aa) pEGFP_N1 1.09

130 C. Kolb Cbx2_AT1-3 Cbx2_AT 1-3 (67-184aa) pEGFP_N1 1.07
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