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Preface 

In 1993, I started to study soil sciences at the Sultan Qaboos University, Oman. Since then, I 

have committed myself to participate in the scientific efforts for finding sustainable solutions for 

problems facing agricultural and natural ecosystems in my country. Years later, during my 

graduate studies, I realized the potential benefits of AM fungi on the fitness of plants living 

under extreme environmental conditions. I became convinced that for a better management of 

these fungi, there is a need for a deeper understanding of their biodiversity in such ecosystems. 

In 2003, I initiated a pioneering project: the exploration of AM fungal diversity in the 

ecosystems of Oman. 
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Summary 

The ubiquitous symbiosis between plants and arbuscular mycorrhizal (AM) fungi is 

multifunctional. In this symbiosis, plants exchange photosynthates for phosphorus (P) and other 

mineral nutrients, and they gain increased resistance to soil borne diseases, drought and extreme 

temperature. All of these benefits might be crucial for plants growing in extreme environments.   

The aim of this thesis was to shed light on the diversity and dynamics of AM fungal 

communities in Southern Arabia, known for its particularly arid conditions and low fertility of 

soils. 

AM fungal communities in two agricultural sites were compared with those in adjacent natural 

habitats. The agricultural sites were cultivated with date palms (Phoenix dactylifera) and 

managed according to “traditional” and “modern” farming systems. The natural sites contained 

native plant species (among those Zygophyllum hamiense, Salvadora persica, Prosopis cineraria 

and Heliotropium kotschyi). Soil was sampled from the rhizosphere of plants and from these 

samples, AM fungal spores were isolated and morphologically identified. Furthermore, “trap 

cultures” were established in the green house, using the soil samples from the field as AM fungal 

inocula. 

The results showed that the AM fungal community composition at the agricultural sites differed 

from that at the natural habitats. Agricultural sites had a much higher AM fungal spore 

abundance, species richness and inoculum potential supposedly due to the land-use change from 

natural to agricultural with irrigation and fertilizer application.  

A molecular approach was used to identify the AM fungi colonizing the roots of the date palms 

at the two agricultural sites. Nine phylogenetic taxa were revealed, eight of which could be 



Summary   

 

2 
 

attributed to the Glomus group A, the most diverse group in the Glomeromycota, and one to the 

Scutellospora group that occurred at the traditional agriculture site only. Two of the nine taxa 

could be associated to AM fungal species already described. These were Glomus sinuosum and 

Glomus proliferum. Three phylotype groups were associated with AM fungal sequences 

previously detected in environmental samples. The other 4 phylotype groups were not associated 

with any of the sequences in the GenBank nor in large database of the Botanical Institute and, 

therefore, we assume that they are new to science. The communities of these fungi were found to 

differ between the two agricultural sites and consisted of both site-specialist and site-generalist 

groups. This was in accordance with spore morphospecies differences found between the two 

sites. The composition of the detected phylotypes was quite unique because it lacked certain 

groups commonly occurring in most habitats around the world investigated so far. 

Trap cultures inoculated with rhizosphere soils of date palms growing on a modern agricultural 

plantation showed an AM fungal community consisting of Glomus aurantium, Glomus 

intraradices, Diversispora spurca, Acaulospora sp. and five different Glomus phylotypes which 

presumably new to science.  

Based on morphological identification of AM fungal spores, a total of 36 morphospecies were 

detected at the five sites investigated in Southern Arabia. Twenty two of them belonged to the 

genus Glomus, six to Scutellospora, four to Acaulospora, two to Archaeospora and one to each 

genus of Paraglomus and Ambispora. This is a quite high richness considering that so far only 

around 200 AM fungal species have been described worldwide in the phylum Glomeromycota. 

The composition of AM fungal communities detected in this study was compared with 

communities found in other habitats of the world to seek for biogeographical patterns. It was 

found that the agricultural sites in the present study have a composition most similar to those 
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found at sites with sandy soils around the world. The natural sites, however, seem to maintain a 

unique species composition, which might have emerged due to unique local biotic and abiotic 

environmental factors of Southern Arabia. 

To my knowledge, this is the first report on AM fungal communities in Arabian Peninsula and 

the first molecular investigation ever on AM fungi associated with date palm, a socio-

economically important plant in many dry lands of the world. On a global scale, I believe that 

this work is a significant contribution to the knowledge on diversity, phylogeny and ecology of 

AM fungi. 
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Chapter 1: General introduction  

 

1.1 The past and the present of AM fungi 

Spores and hyphae strongly resembling today’s arbuscular mycorrhizal (AM) fungi were found 

in 460-million-years old dolomite Ordovician rocks (Redecker et al., 2000a). This is the earliest 

known evidence for the existence of fungi. When plants first colonized the land, the most serious 

problem they faced was likely to have been acquiring phosphate ions which are known to be very 

poorly mobile in soils because they form insoluble compounds with most of the dominant cations 

in soils. Hence, plant roots in soil rapidly become surrounded by a depletion zone and uptake is 

then strongly limited by the rate of diffusion. Therefore, the symbiosis was a key factor in the 

colonization of land by plants (Nicolson, 1967; Pirozynski and Malloch, 1975).  

Now, AM fungi are associated with about two-thirds of modern plant species (Fitter and 

Moyersoen, 1996), making this symbiosis the most ubiquitous and abundant terrestrial 

symbiosis. Several mycorrhizal types have evolved more recently (for example, 

ectomycorrhizas, ericoid and orchid mycorrhizas) all involving different fungi and different plant 

species compared to the ancestral AM symbiosis.  

The first described AM fungus was from the genus Glomus (Tulasne and Tulasne, 1844). Since 

then, the history of AM fungal taxonomy has shown continuous changes. Recently, one of the 

general gaps regarding knowledge about AM fungal taxonomy and phylogeny was closed. Based 

on comprehensive small subunite (SSU) rRNA analyses, Schüßler et al. (2001) showed that the 

AM fungi can be separated in a monophyletic clade, which  probably shares common ancestry 
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with the Ascomycota-Basidiomycota clade. They recognized a new fungal phylum, the 

Glomeromycota (Fig. 1.1), based on natural relationships for AM and related fungi. The phylum 

Glomeromycota currently consists of four orders, 10 families and 13 genera (Table 1.1). 

 

 
 

Fig. 1.1 The latest tree (updated 2008) of higher taxa within the Glomeromycota. Some model 
species are shown in blue.  

From A. Schüßler’s website: www.lrzmuenchen.de/~schuessler/amphylo/ 

Orders Families Genera 
Glomerales Glomeraceae Glomus 

Diversisporales Gigasporaceae Gigaspora & Scutellospora 
  Acaulosporaceae Acaulospora & Kuklospora 

  Entrophosporaceae Entrophospora 

  Pacisporaceae Pacispora 

  Diversisporaceae Diversispora 

Paraglomerales Paraglomeraceae Paraglomus 

Archaeosporales Geosiphonaceae Geosiphon 

  Ambisporaceae Ambispora 

  Archaeosporaceae Archaeospora & Intraspora 
 

Table 1.1 Orders, families and genera of Glomeromycota. Table was modified from A. 
Schüßler’s website. 
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1.2 The importance of AM fungi in natural and agricultural ecosystems  

Symbiosis between plants and AM fungi is multifunctional (Newsham et al., 1995). In this 

symbiosis, plants exchange photosynthates not only for P and other mineral nutrients, but also 

for increased resistance to disease, drought and extreme temperatures (Smith and Read, 1996).  

Plants associated with AM fungi often show higher stomatal conductance and transpiration 

(Augé, 2004). This suggests that AM root systems obtain water of low activity more effectively. 

The moisture characteristics of a soil depend on the size and distribution of its pores. Because 

mycorrhizal fungi are effective in stabilizing soil structure through the production of glomalin, 

AM fungal colonization of a soil might affect its moisture retention characteristics (Wright and 

Upadhyaya, 1998) and, hence, the behavior of plants, growing in the soil, particularly when it is 

dry.  

1.2.1 Roles of AM fungi in desert ecosystems 

The diversity of AM fungal communities was investigated in many deserts of the world. In desert 

environments, AM fungal colonization was found to vary with the availability of water (Staffeldt 

and Vogt, 1975) and with the composition of the plant community (Hirrell et al., 1978).  

In general, the species richness of AM fungi in deserts seems to be low. Stutz et al. (2000) 

reported a range of 7 to14 species at 13 sampling sites in two arid regions and semi-arid grass 

lands in North America and in the Namib Desert in Africa. Twelve AM fungal species were 

reported to be associated with 10 sites in the Namib Desert (Jacobson, 1997a). A similar number 

of species was reported from 3 sites in an arid region of Namibia (Uhlmann et al., 2006). (See 

Table A of the appendix for more detailed view about AM fungal diversity in desert habitats 
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around the world). Regardless of the generally low richness, AM fungal communities seem to 

play an important role in the survival of vegetation under the extreme environments of the 

deserts. Kiran Bala et al. (1989) reported >50% infection by AM fungi in 17 tree species of the 

Indian desert (Mathur and Vyas, 1995), suggesting an active AM fungal community. Cui and 

Nobel (1992) observed that due to AM fungi there was an improved hydraulic activity, an 

increase in CO2, water and nutrient uptake in the desert succulents Agave deserti, Ferocactus 

acanthodes and Opuntia ficus-indica. AM fungi are also known to restore soil productivity by 

enriching soil organic carbon, as observed in Prosopis juliflora inoculated with G. caledonium 

(Mathur and Vyas, 1995). Beneficial effects of certain AM fungal species on Moringa 

concanensis were reported in conservation studies of this endangered multipurpose tree species 

in the Indian desert (Panwar and Vyas, 2002). During the slow succession process, a 

characteristic of arid habitats, it was hypothesized that mycorrhizal plant species gradually 

replace the non mycorrhizal plants (Reeves et al., 1979) due to the competitive edge that the 

former possess. There might even be certain AM fungal species which are indigenous to desert 

habitats.  Glomus deserticola, for example, was found to be indigenous to many desert soils 

(Trappe, 1981). 

1.2.2 AM fungi in agricultural ecosystems 

The AM fungal functioning under agricultural systems might be influenced by many factors, 

including the levels of disturbance, fertilization and crop rotation. While these fungi were found 

to be an important part of sustainable agricultural systems (Bethlenfalvay and Schuepp, 1994; 

Jeffries and Barea, 1994), in regularly disturbed agricultural systems, delayed establishment of 

AM symbiosis was observed and thought to limit plant growth (Kuyper et al., 2004). Unless P 
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fertilization is  added at the start, such a disturbance could result in limited P uptake by 

seedlings, as demonstrated for maize (Miller, 2000) or low nodulation as demonstrated for 

soybean (Goss and De Varennes, 2002). Crop rotation effects on AM fungal functioning have 

been observed. Harinikumar and Bagyaraj (1988) reported a 13% reduction in AM fungal 

colonization after one year cropping with a non-mycorrhizal crop. Especially in climates with an 

extended dry vegetationless season, inoculum insufficiency after a long bare fallow may result in 

low uptake of P and Zn and in plants with nutrient deficiency symptoms that have been described 

as long-fallow disorder. Overcoming this disorder by using an AM fungal host as cover crop was 

observed to be possible (Thompson, 1996).  

AM fungi were used as inocula in agricultural practices and despite of all the challenges that 

such a  biotechnology may face (Feldmann and Grotkass, 2002), cases of success have been 

reported in introducing these fungi under greenhouse conditions (Miller et al., 1986), in nurseries 

(Nemec, 1987) and in the field (Thompson, 1994). To benefit from AM associations in 

agriculture, emphasis has to be on practices that promote the occurrence and functioning of AM 

fungi. It has been shown that conventional agriculture, relying on tillage and external inputs, is 

often known to lead to a lower AM fungal species diversity compared to the natural lands 

(Helgason et al., 1998; Boddington and Dodd, 2000; Oehl et al., 2003).  

 

 1.3 The importance of the AM fungal community’s richness 

All the functions of AM fungi seem to be mutually incompatible (Fitter, 2005). Acquiring 

phosphate ions for example, requires an extensive extra radical mycelium, deployed far from the 
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root beyond the depletion zone, whereas binding roots to soil implies that the extra radical 

mycelium develops close to the root, and protection from pathogens involves the internal 

mycelium (Fig. 1.2). A fungus good at one of these functions might not be the best at another. 

Jakobson et al. (1992) and Smith et al. (2000) demonstrated differences in mycelial growth and 

phosphorus acquiring strategies among species of AM fungi. Variation in resource acquisition 

patterns should mean that an increased diversity of AM fungi will more efficiently extract 

resources from the soil. Furthermore, the fungal community has to respond to environmental 

biotic and abiotic factors and it is reasonable to assume that different fungal taxa respond 

distinctively to soil pH, temperature, soil moisture, disturbance and other factors and therefore, 

biotic and abiotic niche differentiation was suggested (Fitter, 2005). 

 

 

 

 

 

 

Fig. 1.2 An illustration of the suggested incompatible morphological requirements of different 
mycorrhizal functions. The extra radical mycelium remote from the root is necessary for the P 
transport. Improving water relations necessitates maintaining the root-soil bond and hence the 
water pathway as soil dries, and involves extra radical mycelial development in the rhizosphere. 
Protection from pathogens and P transfer both depend on the intra radical mycelium. Diagram 
from Fitter (2006). 
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The AM fungal community appears to extend its influence to the level of plant populations and 

communities. This influence was demonstrated by van der Heijden et al. (1998a) who, 

interestingly, found that increasing the number of introduced AM fungal species in an artificial 

system led to increases in both plant productivity and diversity. The proposed mechanism for this 

effect was based on other experiments of the same authors who demonstrated that AM fungal 

composition  have the potential to determine plant community structure through the differential 

effects of these fungi on plant growth (van der Heijden et al., 1998b). Read (1998), suggested 

that the relationship between fungal richness and plant diversity is due to a greater probability of 

“functionally compatible” plant-fungus combinations.  

 

 

1.4 Factors controlling AM fungal composition 

1.4.1 Effects of host plant  

Host specificity and the influence of plant species composition have also been demonstrated in 

natural ecosystems, using both spore production (Eom et al., 2000) and AM fungal DNA 

(Husband, 2002; S korová et al., 2007). Using an artificial system, Burrows and Pfleger (2002) 

found that richer plant communities supported greater AM fungal spore production and spore 

richness. Assessing AM fungal DNA, Johnson et al. (2003) found that the composition of 

artificial plant assemblages had a significant impact on AM genetic diversity. 

Such an influence of plant community on AM fungal composition might partially be due to the 

roots exudates. Plant roots exude not only carbohydrates, to be used as the energy source for AM 

fungi, but also a wide variety of other organic compounds including amino acids, nucleotides, 
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phenol aldehydes, and esters (Koske and Gemma, 1992). Root exudates from host plants have 

been shown to influence both spore germination and hyphal growth in some species of AM fungi 

(Gianinazzi-Pearson et al., 1989). It was suggested as well that infection with AM fungi is 

regulated by the anatomical features of the root (Bonfante-Fasolo and Vian, 1989). Recently, it 

was elegantly demonstrated that the host plant prepares and organizes AM infection of the root, 

and both a plant–fungal signaling mechanisms are involved in the process of colonization (Genre 

et al., 2005).  

1.4.2 Effects of abiotic conditions 

The distribution of some AM fungal species was demonstrated to be dependent on soil type, host 

species and some on specific plant–soil combinations (Johnson et al., 1992). Some AM fungal 

species were reported to be able to access organic phosphorus (Koide and Kabir, 2000) and 

organic nitrogen (Hawkins et al., 2000; Hodge et al., 2001) and therefore, the characteristics of 

soil organic matter may play a greater role in determining AM fungal species composition than 

previously thought.  Many of the abiotic influences on the AM fungal communities are indirect 

effects of the plant community, via organic matter deposition. Differences in pH, nutrient status 

and phenolic content of the soil organic horizon, which all may impact fungal growth, are mainly 

due to inputs from the plant community (Hobbie, 1992; Wardle, 2002). Disturbance was already 

mentioned to be a strong factor influencing AM fungal community (Helgason et al., 1998; 

Boddington and Dodd, 2000; Oehl et al., 2003).  More abiotic factors will be discussed in 

relationship to that of the Southern Arabia in the following four Chapters of this thesis. 
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1.5 Evaluating taxonomic diversity of AM fungal communities 

The taxonomy of AM fungi has traditionally been based on the morphology of the spores. 

Families and genera were mainly distinguished by the hyphal attachment and the mode of 

formation of the spore, whereas spores are identified mainly based on the substructure their walls 

(Gerdemann and Trappe, 1974; Morton, 1988; Schenck and Perez, 1990; Walker, 1992). Using 

the morphological taxonomy of AM fungi, numerous studies on ecology and composition of AM 

fungal communities in different parts of the world were conducted (Table A, Appendix). 

Morphological taxonomy was used in this thesis to explore the diversity of AM fungi in both 

natural and agricultural sites of Southern Arabia.   

Based on morphological taxonomy, the Glomeromycota was viewed as a species-poor group, 

with around 150 species recognized (Morton and Benny 1990). With other new species identified 

since then, the number raised to around 200 species (A. Schüßler’s website: www.lrz-

muenchen.de/~schuessler/amphylo/). Since a small number of AM fungal species can associate 

with around 250 000 plant species, it is self-evident that these fungi are not host specific. Indeed, 

it has been suggested that theoretically, mutualists, in contrast to species in antagonistic 

relationships, should have broad host ranges, because there is a benefit in being able to acquire 

carbon from as many hosts as possible (Law and Lewis, 1983). However, molecular evidence 

has now started to challenge that view.  

Several molecular approaches have been used to develop tools that would allow identification of 

AM fungi colonizing plant roots, independent from spore formation. Most authors used 

approaches based on the existing variabilities within ribosomal DNA to identify AM fungi. 

Provided a sufficient database of sequences and knowledge of phylogeny, this approach allows 
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designing specific PCR primers to target species, genera or any other level of taxonomy. Simon 

et al. (1992) conducted the first pioneering studies of molecular phylogeny and detection of AM 

fungi. The authors designed the primer VANS1, based on only three 18S subunit sequences from 

the Glomeromycota, and a set of other primers specific for subgroups. As more sequences 

became available from the Glomeromycotan taxa, it became clear that the VANS1 primer did not 

amplify all AM fungi (Clapp et al., 1999; Schüßler et al., 2001). Using the group specific PCR 

primers for a portion of the 18S rDNA designed by Simon et al. (1993b), Clapp et al. (1995) 

performed the first molecular study of a field population of AM fungi. While their PCR results 

for Acaulospora and Scutellospora species were in agreement with the spores present, there was 

a difference between strong root colonization by Glomus and absence of sporulation. Moreover, 

concurrent colonization of the same five cm root length by all three genera was demonstrated. 

These results underlined the need to apply molecular methods in order to obtain data on AM 

fungal populations in roots. 

Other authors targeted different parts of the ribosomal genes, e.g. the large subunit (Kjøller and 

Rosendahl, 2000; Van Tuinen et al., 1998) or the Internal Transcribed Spacers (Redecker, 2000). 

van Tuinen et al. (1998) employed a nested PCR procedure to avoid the problem of PCR 

inhibitors present in many root samples. These authors also found that root fragments of one cm 

length were colonized by more than one fungus. In this study, a complex pattern of fungal 

species interactions was detected. The colonization by the two species from the Gigasporaceae 

was significantly enhanced in combination with certain others, suggesting interactions among 

species.  

Helgason et al. (1998, 1999) used a variable portion of the 18S small subunit that was amplified 

in a single step from roots with the PCR primer AM1. This primer discriminates most AM fungal 
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and plant DNAs. The initial screening of the PCR products was performed by a RFLP analysis, 

before they were sequenced. Using the primer AM1 in combination with NS31 (a universal 

eukaryotic primer), Helgason et al. (1998) reported that the AM fungal species diversity in 

cultivated soils was strikingly lower than a seminatural woodland. The authors attributed the 

differences in AM fungal species composition to soil disturbance by ploughing in the cultivated 

field sites. Helgason et al., (1999) demonstrated by using the same combination of primers that 

AM fungal communities in roots of bluebell (Hyacynthoides non-scripta) in the woodland site 

was characterized by complex seasonal patterns and a significant influence of the plant type. A 

similar approach was used here to investigate the AM fungal community associated with 

agricultural and natural plants in Southern Arabia (Chapter 2 of this thesis). 

A set of five primers targeted at major phylogenetic groups within the Glomeromycota (Fig. 1.3) 

was designed to amplify parts of the 18S ribosomal subunit, the ITS and the 5.8S subunit 

(Redecker, 2000; Redecker et al., 2003). The advantage of these primers is that they amplify 

Archaeospora and Paraglomus which had not been detectable with previously designed primers. 

This approach was successfully used to study the AM fungal communities in dry habitats of 

Namibia (Uhlmann et al., 2005), to investigate the AM fungal communities in different land uses 

in Central Europe (Hijri et al., 2006) and to demonstrate pattern of host specificity in cooccurring 

plants in Swiss upper mountains (S korová et al., 2007). It was also used in the present thesis 

(Chapters 2 and 4) because of its amplification efficiency especially from field roots.  
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Fig. 1.3 The main Glomeromycotan groups which were targeted by the primers designed by 

Redecker (2000) and Redecker et al., (2003). Phylogenetic tree by Dirk Redecker. 

 

Some of the diversity encountered in these studies maybe within rather than among individuals 

(Rosendahl and Stukenbrock, 2004). What might be described as single morphospecies, can 

contain extensive genetic variation (Lanfranco et al., 1999). There is no easy correlation between 

sequence identity and species identity, as each spore harbours many sequence types. There is no 

phylogenetic species concept for the Glomeromycotan members and several aspects of their 

genetics continue to be a mystery (Redecker, 2002).  

Nevertheless, the existing molecular tools described above were and still very useful. They 

brought a solution for a major problem of ecological studies on AM fungal communities which 

was the inability to directly identify AM fungi colonizing plant’s roots. Molecular studies 

concluded that many phylotypes of AM fungi occur in any community and even on the roots of 

one species, with sometimes as many as 20 associated with a single plant (see Öpik et al. 2006 
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for review). Interestingly, these studies concluded as well that many of those types are not ones 

known from the culture collections and might represent new taxa which are specialized on 

certain ecosystem, while others are clearly widespread taxa that are found almost ubiquitously in 

other habitats.  

 

1.6 Environmental settings of Southern Arabia and the relevance of AM fungi  

Natural vegetation in Southern Arabia (Fig.1.4) faces various environmental challenges. Despite 

occasional heavy rain, most of the area is characterized as hyper-arid today (Fisher and 

Membery, 1998).  The annual rainfall generally occurs during the winter. The precipitation is 

≈100 mm per year (Jones et al., 1988). More than half of the region has maximum summer 

temperatures which exceed 50°C (Glennie and Singhvi, 2002). Natural vegetation that survives 

these conditions is described in Ghazanfar and Fisher (1998). 

Agriculture in Southern Arabia as well faces environmental challenges. These are the infertile 

nature of the soils, in addition to soil salinity, drought, light soil structure (MAF. 1989, 1991).  

High P fixation where phosphorus fertilization is not available to plants is another problem 

(Cookson, 1996). It is known that inorganic P added to the soil may undergo complex exchanges 

between various soil P pools (Stevenson, 1986), making most of the applied P unavailable for 

plant uptake. This is a common problem in arid lands where many soils have extremely high P 

fixation capacities. Cookson (1996) found that in some agricultural areas of Southern Arabia, 23-

76% of phosphorus fertilization was fixed and was not available to the plants.  
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As already discussed, AM fungi were found to play an important role in the survival of natural 

vegetation in desert ecosystems. They are also an important part of sustainable agricultural 

systems. In a situation where soil P is limiting, the AM fungal community may be especially 

beneficial for the plant (Smith and Read, 1997). Thus, in the environmental conditions of Arabia 

with the low soil fertility and where P is limiting, AM fungal communities might be of great 

relevance. Nevertheless, Arabia is paradoxically still one of the least studied areas with respect to 

AM fungal communities. There are just two known AM fungal morphospecies reported so far 

(Malibari et al, 1988; Khaliel, 1989). Therefore, some basic background knowledge on the native 

biodiversity of these fungi in the target habitat is crucial and a pre-requisite for agriculture and 

ecosystem planning. In addition, knowing the diversity of these fungi in such a unique habitat 

would contribute significantly to the understanding of the global ecology and biogeography of 

such an important symbiosis. 

 

Fig. 1.4 Map of the area in Southern Arabia where the present study was conducted 

(frame B). Map from Preusser et al. (2002). 



Chapter 1  General introduction 
 

18 
 

1.6.1 AM fungi associated with date palms 

AM fungi associated with date palm (Phoenix dactylifera), were a main focal point of this thesis. 

It is the main food crop in Southern Arabia and some other dry areas of the world, cultivated 

since prehistoric times. Date palm is widely believed to be indigenous to the countries around the 

Arabic Gulf. According to Food and Agriculture Organization of the United Nations (FAO), the 

world harvested area with date palms has increased 4.3 fold from 263,665 ha in 1970 to 

1,130,803 ha in 2005. This increase in the harvested area led to a yield increase of only 3.7 fold 

from 1,881,730 to 6,924,975 million tons (FAO statistics, 2006).   

AM fungi were found to promote the growth of date palm seedlings, especially on nutrient poor 

soils (Al-Whaibi and Khaliel, 1994). However, the AM fungal communities associated with date 

palm in the whole world have not been well investigated. To our knowledge, the only study 

which addressed the composition of AM fungal communities associated with this tree in field 

conditions was conducted in North Africa (Bouamri et al., 2006). Based on the classical 

identification method by spore morphology, this study reported 10 AM fungal morphospecies.  

1.6.2 Land-use change impact on native AM fungi 

In Southern Arabia, date palms were traditionally cultivated in oases with a natural source of 

water. However, the dramatic growth of the economy in Arabia in the last few decades has 

revolutionized the status of agriculture in that arid area. Applying new technologies to trace the 

sources of underground water has led to discoveries of new water sources. Electrical pumps were 

used in a large scale to extract underground water for agricultural purposes. Due to the partial 

overcoming of the lack of water which is the main natural obstacle for agriculture in many arid 

lands, there was and still a tendency to a large scale introduction of agriculture in many desert 
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habitats under modern irrigation systems and conventional agricultural practices. Consequently, 

the areas cultivated with date palm had increased in the GCC countries (Arabia Peninsula 

without Yemen) from 56,340 ha in 1970 to 390,300 ha in 2005 (FAO Statistics, 2006), an 

increase of 693%.  

In Southern Arabia in the Sultanate of Oman, date production increased by 93% in the years 

between 1991 and 2001, making it the world’s highest increase for that period (FAO, 2002). This 

dramatic rise in production is paralleled with an expansion in land-use change from natural to 

agricultural.  The effect of such a dramatic land-use change on native AM fungal communities of 

the converted lands is not known. Furthermore, in the face of such a dramatic land-use change, 

one crucial issue to be understood is the response of the native AM fungal communities to the 

alterations in their habitats.  

 

 1.7 Objectives of the thesis 

The general aim of this thesis was to shed light on the diversity and dynamics of the AM fungi in 

Southern Arabia, one of the globally least known areas in this respect. This investigation was 

focused on a natural and an agricultural ecosystem. The work specifically is divided into three 

parts (Fig. 1.5) as follows: 

1. Evaluation of the taxonomic diversity of AM fungal communities associated with natural 

vegetation (Zygophyllum hamiense, Salvadora persica, Prosopis cineraria and 

Heliotropium kotschyi) and agricultural crops (Phoenix dactylifera and Mangifera 

indica) using both morphological and molecular approaches (Chapter 2). 
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2. Evaluation of the impact of a change from natural sites to agricultural land-use on the 

composition, abundance, species richness and inoculum potential of the native AM 

fungal communities (Chapter 3). 

3. Molecular identification and comparison of the AM fungal communities associated with 

Phoenix dactylifera grown under two different management systems (Chapter 4). 

 

Natural ecosystem

Land-use 
change

Different sites, different AMF communities?

What is here?

 

Fig. 1.5 A representation of the aims of the thesis. It is organized through different levels from 

the bottom to the top of the graph. At the basic level, it was important to survey the AM fungi 

present. A more sophisticated experimental design was applied to obtain preliminary data on 

how the introduction of agriculture can influence the already existing AM fungal community. A 

molecular approach was then applied to check whether the two introduced agricultural sites have 

the same or different AM fungal communities. 
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Chapter 2: AM fungi of Southern Arabia: a glimpse 

on their diversity 

 

2.1 Abstract 

The AM fungi associated with the rhizospheres of some plants in Southern Arabia were 

investigated. Phoenix dactylifera and Mangifera indica both cultivated at the same site in 

addition to naturally growing Zygophyllum hamiense and Salvadora persica in nearby sand 

dunes were chosen. The first step in this work was to view the presence of AM fungi in the roots 

of studied plants through staining with cotton blue and observing under light microscope. Spores 

were isolated and the AM fungal species present were identified. Soil and roots from the 

rhizospheres were used as inocula for a trap culture system. A molecular approach was used to 

analyse the AM fungal community in the roots of the trap culture plants. Morphologically, 15 

AM fungal species were found to be associated with the studied plants.  Sequences associated 

with Glomus aurantium, Glomus intraradices, Diversispora spurca and Acaulospora sp. and five 

different unknown Glomus entities were detected.  
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2.2 Introduction 

This introductory chapter presents the first step in our progress to study the biodiversity of AM 

fungi of Southern Arabia. A project road map for the work of this chapter is shown in Fig. 2.1. It 

includes the use of both morphological and molecular approaches. Four plant species were 

selected. Among them were date palm (Phoenix dactylifera) and mango (Mangifera indica) 

(Fig.2.2). These two have an important agricultural and socio-economical value in Southern 

Arabia. The other two plants were Zygophyllum hamiense and Salvadora persica (Fig. 2.3) 

representing a part of the natural growing vegetation at the margin of a sand dune habitat, known 

as Wahiba Sands. The name of the habitat has been recently changed to Al-Sharquia Sands. 

However, the former name is still used here because all the previous scientific work referred to 

this habitat as Wahiba Sands.  

Since the occurrence of PCR inhibiting compounds in the field roots has often been reported, a 

trap culture technique (Fig. 2.4) was used in this study to explore the molecular diversity of AM 

fungi. Using molecular tools, the trapped taxa are in general easier to identify than those which 

occur in the field roots.  
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Soil and root sampling  
January 2004

Microscopial observation of 
the  field roots

DNA extraction

Molecular identification of
AM fungi colonizing the 

trap culture roots

PCR

Cloning
Clones were screened

RFLP patterns were 
detected

Bioinformatics and 
phylogeny

Restriction digestion 

Field samples

Spore
extraction

and 
identification

Initiating 
trap 

cultures

Microscopial 
observation 
of the trap 

culture roots

Representative clones 
were sequenced

Plants studied :

Phoenix dactylifera
Mangifera indica
Zygophyllum hamiense
Salvadora persica

Molecular identification of  
AMF in the field roots

(Chapter 3)

 

Fig. 2.1 The roadmap of the work presented in this chapter. It includes the morphological and 

molecular approaches used to explore the diversity of AM fungi in the target habitat. Soils 

sampled in 2004 were used as inocula for trap culture system. The identity of the AM fungi 

colonizing the roots of the trap plants was identified by molecular methods. One part of the 

sampled soils was used to extract the AM fungal spores and identify them morphologically. The 

field roots were stained and observed under a light microscope. The AM fungi colonizing the 

roots of Phoenix dactylifera in the field were also identified by molecular methods (see Chapter 

4). 
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Fig. 2.2 The agricultural station where samples were collected. (A) Phoenix dactylifera and (B) 

Mangifera indica. Photos were taken during the sampling trip in January 2004 
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Fig. 2.3 Natural habitats where the soil samples were collected. (A) Part of the natural vegetation 
growing on the edge of the Wahiba Sands. (B) Trees of Prosopis cineraria, as part of the natural 
vegetation. In the back of the vegetation, the mega sand dunes rise. (C) Both Salvadora persica 
(S) and Zygophyllum hamiense (Z). (D) Salvadora persica (E) Zygophyllum hamiense  (F) Part 
of the natural vegetation growing on the top of the sand dunes. Photos were taken during the 
sampling trip January 2004. 
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Soil and roots inoculum

AM fungi 

colonizing the rootsEcologically active  AMF species

AMF rare in field roots

Old unidentifiable AMF spores

AMF “present” but not detectable 
from field roots or spores (hyphae in 
the soil?)

Field conditions Trap culture 
conditions

Rhizosphere

 

Fig. 2.4 AM fungal communities are present in different forms in the rhizosphere and in trap 

culture systems. Only AM fungal entities colonizing the trap culture roots were identified in the 

work of this chapter. Trap culture systems are often used in the studies of mycorrhizal diversity. 

They are based on the use of field soils as inocula for “trap plants” under green house conditions.   

The aims of this chapter were: 

1. To check the mycorrhization status of the field roots of the studied plants by staining and 

observing them under light microscope. 

2. To morphologically identify the AM fungal spores isolated directly from the field soils. 

3. To use molecular methods to characterise the AM fungi colonising the trap culture roots.  
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2.3 Materials and methods 

2.3.1 Sampling sites 

The natural site 

 The natural site is located about 10 km west of the agricultural site. It is on the eastern margin of 

the Wahiba Sands which are spectacular sand dunes in the South-Eastern Arabia Peninsula, 

(approximately 20’ 45” and 22’ 30” north and 58’ 30” and 59’ 10” east). This habitat is 

characterized by a low level of biodiversity due to the extreme environmental conditions where 

shortage of water is a key factor (Munton, 1988). Beside some of the vegetation which appears 

after the rare rainy season, the two sampled plants in the present study are among the few plant 

species permanently growing in the area.    

The agricultural site 

The management of this site has followed the modern way of farming since the establishments of 

the farm in 1990, i.e., synthetic pesticides were used rarely and chemical fertilizers (mainly 

NPK) have been added annually in reasonable amounts. For more details about this site, see the 

modern site description in materials and methods section of Chapter 3.  

2.3.2 Sampling 

Sampling took place on January 2004. Each of the four plants was sampled in five replicates. At 

the agricultural site, soil cores were sampled in the depth of 0-30 cm whereas for the natural 

plants, soils around to the plant root systems were collected. Roots were washed with tap water 

and kept cool inside microcentrifuge tubes during the whole period of transportation. Soils were 

air dried and packed in plastic bags. Subsamples were used as inoculum for the trap culture 

system and for the spore extraction. 
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2.3.3 AM fungal trap culture 

For each of the five replicate samples of each studied plant, one trap culture pot was established. 

In total there were 20 pots, all equipped with drainage mat and filled with 3 kg of autoclaved 

commercial sand. The mycorrhizal inocula which consisted of soil and roots were placed on the 

surface of the substrate in the pots. Each pot received 100 g of inoculum. The inoculum was then 

covered with a layer of autoclaved commercial sand. Trifolium pratense seeds were randomly 

planted in every pot. This trap plant species was chosen because it is well known as AM fungal 

host plant and frequently used for trap culture systems. The trap cultures were kept in a 

greenhouse for 8 months from May until December 2004.  

2.3.4 Microscopy and mycorrhizal parameters evaluation 

Morphological characteristics of the colonizing AM fungi where recorded in both the roots 

coming from the field and from the trap culture system. Roots were incubated overnight in room 

temperature in 0.1% cotton blue (w: v) in lactic acid. Segments then were destained in lactic acid 

and observed under a light microscope. The morphology and anatomy of the AM fungi in the 

colonized roots were recorded. 

2.3.5 AM fungal spores isolation and identification 

AM fungal spores occurring in the field soil samples were extracted by wet sieving and sucrose 

density gradient centrifugation (Daniels and Skipper, 1982). Spores were extracted from three 

soil samples (25g each) from the rhizosphere of each Phoenix dactylifera, and Mangifera indica, 

and two samples from each Zygophyllum hamiense and Salvadora persica. For details about this 

extraction method, see the materials and methods section of Chapter 3. Identification was based 

on current species morphological descriptions and an identification manual (Schenck and Perez, 
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1990; International Culture Collection of Arbuscular and Vesicular-Arbuscular Endomycorrhizal 

Fungi [http://invam.caf.wvu.edu/Myc_Info/Taxonomy/species.htm]).  

2.3.6 DNA extraction from roots colonized by AM fungi 

DNA was extracted from approximately 5cm of fresh root fragments of each trap culture plant 

using DNeasy Plant Mini Kit (QIAGEN) according to the manufacturer’s instructions. 

2.3.7 PCR amplification 

Partial SSU DNA fragments were amplified (550 bp) using a universal eukaryotic primer NS31 

(Simon et al. 1992) and an AM fungal specific primer AM1 (Helgason et al. 1998). The PCR 

reaction was performed in the presence of 0.2mM dNTPs, 10 pmols of each primer and the 

manufacturer’s reaction buffer. PCR was carried out for 30 cycles on a GeneAmp PCR system 

2700 (Applied Biosystems). Checking the PCR product in gel electrophoresis confirmed the 

success of the amplification from some of the sampled roots. The PCR product was purified 

using QIAquick purification kit (QIAGEN) according to the manufacturer’s instructions and was 

then checked in a 2% agarose gel using a low DNA low mass ladder (Invitrogen) as a marker. 

The band intensity (Fig.2.8) was used to estimate the concentrations of the purified PCR 

products to optimize the vector/PCR product ratio for cloning as recommended by the pGEM-T 

Vector system I (Promega). 

The AM1 primer became known to exclude a number of fungal types from previously 

unrecognized groups, the Archaeosporaceae and Paraglomaceae which were discovered by 

Morton and Redecker (2001). Therefore, primer combinations of ARCH1311A/B-ITS4i and 

PARA1313-ITS4i (Redecker, 2000), which were designed to target Archaeosporaceae and 
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Paraglomaceae respectively, were used on the roots of 3 different trap cultures of Phoenix 

dactylifera. The full approach of the nested PCR is described in the methodology of Chapter 4.  

2.3.8 Cloning 

The resulting product was cloned into a pGEM-T Vector system I (Promega) and transformed 

into Escherichia coli (strain: XL10-StrataGen). To obtain PCR products for restriction fragment 

length polymorphism (RFLP) analysis, positive transformants were selected by picking the 

bacterial colonies with a toothpick into 10µl of H2O and then 15µl of the PCR mix was added to 

each sample tube. Amplification was performed with the vector primers SP6 and T7. 

2.3.9 Restriction analysis 

The positive clones products were digested with restrictions enzymes Hinf I and HSP 92 II. 4ul 

of each PCR product was mixed with 16ul of digestion mix (2.0ul buffer 10x, 0.2ul BSA, 13.3ul 

H2O and 0.5ul restriction enzyme) for 3 h at 37oC.  Fragment patterns were analyzed on agarose 

gels containing 1.5 % agarose (BDH Laboratory Supplies, England) and 1.5% high resolution 

agarose (Sigma)  

2.3.10 Sequencing 

Clones were selected for sequencing on the basis of the HSP 92II and HinfI RFLP types. One 

clone from each RFLP type found in each root sample was sequenced.   

2.3.11 Phylogenetic analysis 

The Glomeromycotan origin of the sequences was initially tested by BLAST. Those sequences in 

GenBank which show high similarity to the blasted sequences were obtained. Using PAUP*4b10 



Chapter 2  Arbuscular mycorrhizal fungi of Southern Arabia: a glimpse on their diversity 

 

31 
 

(Swofford, 2001), sequences from the present study were aligned to previously published ones 

(Fig. 2.9 and Fig. 2.10). Phylogenetic trees were obtained by distance analysis using the neighbor 

joining algorithm in PAUP*4b10 using the Kimura two-parameter model and a gamma shape 

parameter=0.5. In the phylogenetic trees, sequence phylotypes were defined in a conservative 

manner as consistently separated monophyletic groups.  
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2.4 Results  

2.4.1 The mycorrhizal structures in field roots 

 AM fungal structures were observed in the original roots coming from the field (Fig. 2.5) mainly 

in the roots from agricultural plants Phoenix dactylifera and Mangifera indica which were found 

to be colonized. Estimation of the mycorrhization levels was not possible due to the difficulty in 

assessing the mycorrhizal structures, especially the arbuscules.  

 

Fig. 2.5 Some of the morphological structure of AM fungi in the field roots as recorded using the 

light microscope.  
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2.4.2 The mycorrhizal structures in trap culture roots 

The AM fungal structures in the roots of the trap plants were easier to observe than the field 

roots (Fig. 2.6). All the trap plants without any exception were found to be colonized by AM 

fungi.  

 

 

Fig. 2.6 Infection patterns of the AM fungi in the roots of the trap cultures as recorded using the 

light microscope.  
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2.4.3 Morphological diversity 

Spores extracted from the field were identified morphologically. Fifteen morpho-species were 

recorded in the rhizospheres of the four studied plant species (Table 2.1). Eight of the species 

belonged to the genus Glomus, three to Acaulospora two to Scutellospora and two to 

Archaeospora. The morphologies of some of the identified spores are shown in Fig. 2.7.  Many 

of the extracted spores were difficult to be identified morphologically, due to their degraded wall 

layers which are their main identification key. The global distribution of the detected species and the 

available information on the host plant and/or the type of land use are given in Table A of the appendix 

with all the other detected species in this thesis. 

Plant’s rhizosphere
Agricultural plants Natural plants

P.dactylifera M. indica Z. hamiense S  persica

Glomus eburneum X

Glomus aureum X X

Glomus intraradices ? ?

Glomus hoi X
Glomus constrictum X ? X
Glomus macrocarpum X
Glomus invermaium ?

Glomus sinuosum X

Acaulospora sp. X X

Acaulospora scrobiculata X

Acaulospora morrowiae X

Scutellospora biornata X

Scutellospora persica X X

Archaeospora trappei X

Archaeospora sp. X

 

Table 2.1 Fifteen morphospecies detected in the field soils of the 4 studied plants. The question mark 

indicates uncertainty in the species identification.  
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Fig. 2.7 (A) Old spore of Acaulospora morrowiae with ‘beaded’ inner wall; innermost sublayer 

staining in Melzer’s reagent (mel). (B) Glomus constrictum spore isolated from the rhizosphere 

of Phoenix dactylifera L and Salvadora persica L. (C-D) Old spore of Scutellospora sp. closely 

resembling S. persica with one inner wall group (iw) and a fine ornament (orn) on the outer 

surface of the spore wall (sw). This species was isolated from the rhizosphere of both Phoenix 

dactylifera and Mangifera indica. (E-G) Sporocarp and spores of Glomus sinuosum found in the 

rhizosphere of Phoenix dactylifera. 
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2.4.4 Molecular diversity  

The molecular approach used in this analysis was based on an AM fungal-specific PCR strategy 

targeting the 18S rDNA (Helgason et al., 1998). In addition, two pair of primers designed 

specifically to target Archaeosporaceae and Paraglomaceae, which are most likely to be missed 

by AM1 primer, were used. BLAST search results indicated that the obtained sequences belong 

to Glomeromycota. The phylogenetic analysis based on the sequences and the closest matches 

among sequences found by a BLAST search of GenBank indicate that the sequences which were 

amplified by the AM1-NS31 primer combination, belonged to different 18S rDNA phylotype 

groups of the genera Glomus, Diversispora and Acaulospora.  

The study was performed using roots from trap-culture plants. Four originated from four trap 

culture samples of Phoenix dactylifera, two from Zygophyllum hamiense and one from 

Mangifera indica yielded clonable PCR products (Fig. 2.8). The obtained sequences were 

aligned with related sequences from the public database (Fig. 2.9 and Fig. 2.10). The trap culture 

samples of Phoenix dactylifera showed the presence of 9 phylogenetic groups (Fig. 2.11 and Fig. 

2.12). Among them 7, belonged to the genus Glomus (the most diverse group in the 

Glomeromycota), one belonged to the genus Diversispora (DIVE 1) and another one to the 

genus Acaulospora (ACA 1). Only one root sample from the trap culture of Mangifera indica 

yielded a clonable PCR product, which resulted in one sequence cluster with another sequence of 

Phoenix dactylifera (GLOM-1). A root sample from the Zygophyllum hamiense trap culture 

yielded a sequence associated with Glomus genus (GLOM-3) and another root sample for the 

same plant yielded another sequence associated with the genus Diversispora (DIVE1) which also 

contained a sequence related to Phoenix dactylifera. In the case of Salvadora persica, the PCR 

product was not clonable despite two attempts. 
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The analysis of three different trap culture roots from Phoenix dactylifera using the additional 

primers targeting Archaeosporaceae and Paraglomaceae yielded only one band which was 

obtained through the ARCH1311A/B-ITS4i primer combination. The resulting sequence was 

associated with Glomus aurantium (Fig. 2.12) 

 

 

 

 

Fig. 2.8 PCR products from trap culture roots colonized by AM fungi present in the rhizosphere 

of Phoenix dactylifera (2-3) Zygophyllum hamiense (4 and 6) Salvadora persica. The product in 

in lane 5 could not be cloned. Lane 1 shows the low DNA mass ladder marker used to estimate 

the size of the amplified fragments and the concentration of the PCR amplification product in 

order to determine the best vector/product ratio for the cloning step. Lane 7 represents the 

negative control PCR where water was added instead of any DNA. The primers combination 

used was AM1 and NS31. 

1     2     3     4     5    6      7 
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Fig. 2.9 The most variable part of the alignment (using PAUP*4b10) of the sequences used to 

calculate the phylogenetic tree (Fig. 2.11). The alignment includes the sequences obtained using 

the primer combination AM1-NS31 and related sequences from the public database. 

 

 
Fig. 2.10 The most variable part of the alignment (using PAUP*4b10) of all the sequences used 

to calculate the phylogenetic tree (Fig. 2.12). The alignment includes the sequence obtained 

using the primers combination ARCH1311A/B-ITS4i and related sequences from the public 

database. 
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P. dactylifera -2004- 1m-T2 1
Glomus intraradices X58725. Spore.(Schenck and Smith DAOM 197198)

Glomus intraradices AY635831
M. indica-2004-1m-T5 

P. dactylifera 2004-1m-T2 3
Uncultured Glomus AM412541.Conocephalum conicum. Env.sample

Glomus sp. AJ496059. Pulsatilla patens. Estonia

Glomus sp. AY512352. Hieracium pilosella and Ononis repens .                                                   
Holland: dry dune grassland 

Glomus proliferum AF213462
Glomus clarum AJ276084

Glomus sinuosum AJ133706
Z. hamiense-2004-3m- T4 1

Glomus sp. AY129630. Tetragastris panamensis. Tropical forest 
on Barro Colorado Island. Panama

Glomus caledonium Y17653
Glomus mosseae Z14007

P. dactylifera-2004-3m-T2 6

Uncultured Glomus AM412110.Env. Sample. Mexico.

Uncultured Glomus AJ563865. Phragmites australis. Germany:Lake Constance

P. dactylifera-2004-1m-T2 2
uncultured Glomus AM412538. Conocephalum conicum. Env. sample

Glomus sp. AF480157

Glomus hoi AF485890
Glomus sp. AF437688

Glomus sp. AF437664
Diversispora spurca Y17650.Spore.U.S.A

Diversispora spurca AJ276077.Spore.U.S.A

P. dactylifera-2004-3m-T2 5
Z. hamiense-2004-3m-T4 10

Glomus versiforme X86687. 
Uncultured Glomus AJ563878. 

P. dactylifera-2004- 3m-T2 1
Diversispora spurca AJ854092. 
Uncultured Diversispora DQ396721. 
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Fig. 2.11 Phylogenetic relationships of sequences obtained in this study with other 
Glomeromycotan sequences obtained from GenBank. The rooted phylogenetic tree was 
constructed using PAUP*4.0b10 and the neighbour joining algorithm based on 511 characters 
from the 18S rDNA. A PCR-RFLP approach was performed using a universal eukaryotic primer 
NS31 (Simon et al. 1992) and the primer AM1 (Helgason et al. 1998). The numbers above the 
branches are neighbour-joining bootstrap values from 1,000 replications. Sequences obtained in 
present study are shown in red and boldface, with the plant species in which the sequence was 
found. 
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Fig. 2.12 Phylogenetic relationships of sequences obtained in the present study with other 
Glomeromycotan sequences obtained from the GenBank. The rooted phylogenetic tree was 
constructed using PAUP*4.0b10 and the neighbour joining algorithm based on 538 characters 
from the 18S rDNA and the ITS1. A PCR-RFLP approach was performed using 
ARCH1311A/B-ITS4i primers (Redecker, 2000) in the second nested PCR (see methodology in 
Chapter 3). The numbers above the branches are neighbour-joining bootstrap values from 1,000 
replications. The sequence obtained in present study is shown in red boldface. 
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2.5 Discussion 

2.5.1 Morphological diversity  

Morphologically, 15 different AM fungal morphospecies belonging to four different 

glomeromycotan genera were identified from the two different habitats with four different host 

plants (Table 2.1). This number represents 7% of the globally known AM fungal species which 

are around 200. These 15 species are all newly reported in Southern Arabia. Arabian Peninsula 

as a whole, as have been previously reported, known to have just G. mosseae and G. 

fasciculatum (Malibari et al, 1988; Khaliel, 1989). Therefore, this investigation added 15 new 

species. More than half of the detected species (8 out of the 15) belong to the genus Glomus. 

This is in agreement with the dominance of small-spored Glomus species in the arid 

environments (Stutz et al., 2000). Most of these species seem to be present in most parts of the 

world (Table A, Appendix). Scutellospora biornata might be an exception. To our knowledge, it 

has been detected only in South America so far.  In the present study a species resembling 

Scutellospora biornata was detected in the rhizosphere of Zygophyllum hamiense.  

Acaulospora scrobiculata, which was suggested to highly prefer sand dunes (Blaszkowski, 

http://www.agro.ar.szczecin.pl/~jblaszkowski) was also found in the sand dunes of this study.  

Clearly there is a considerable presence of the species found in the present study in other arid, 

semi-arid, sand dunes and desert habitats (Table A, Appendix).  

The morphological diversity of AM fungi in the studied habitats is believed to be underestimated 

and the actual AM fungal species number might be higher. This underestimation might be due to 

low number of soil samples analysed, and the presence of decayed spores which are difficult to 

identify.  
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2.5.2 Molecular diversity 

Ten phylotypes were found in the study site most of them belong to Glomus, one to Diversispora 

and one to Acaulospora (Fig. 2.11 and Fig. 2.12).  The phylogenetic analysis of all the sequences 

showed that only 3 out of the 10 revealed phylotypes could be assigned to named AM fungi. 

These are: GLOM-1 associated with Glomus intraradices; a Diversispora group which contains 

sequences associated to Diversispora spurca (DIVE1 in Fig. 2.11) and GLOM-8 which is 

associated with Glomus aurantium (Fig. 2.12). The presence of sequences related to 

Glomus intraradices in the present study (Fig. 2.11) supports the hypothesis that this species is 

present in almost every continent (Morton, 1990b). 

Interestingly, non-target  amplification by  the ARCH1311A/B-ITS4i  primer combination 

revealed a sequence phylogenetically associated to Glomus aurantium (Fig. 2.12). As 

morphospecies, Glomus aurantium was discovered in a trap culture of rhizosphere soil of 

Cenothera drummondi colonizing dunes of the Mediterranean Sea adjacent to Tel-Aviv 

(Blaszkowski et al., 2004).  Later, spores of Glomus aurantium were isolated from trap cultures 

established from soils collected under A. arenaria growing in Spain, and seven trap cultures 

containing rhizosphere soil and root mixtures taken from under A. arenaria growing in dunes 

adjacent to Calambrone, Italy.(http://www.agro.ar.szczecin.pl/~jblaszkowski). The spores of this 

species were not found in ca. 3000 soil samples coming from dune and non-dune soils of 

northern Europe (Blaszkowski, 2003). The finding of a sequence from the study habitat which is 

clearly associated with Glomus aurantium supports the suggestion of Blaszkowski et al., (2004) 

that this fungus prefer the warm sites.    

A Glomus sp. sequence (AY512352) which originated from a dry dune grassland in Holland 

clustered with a sequence of the present study (GLOM2 in Fig. 2.11). This is a nother example of 
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the presence of a sequence coming from a sandy and dry environment. All the rest of sequences 

produced in this study were clustering with other sequences associated with “uncultured” and to 

“unknown” glomeromycotan species coming from Estonia, Mexico, Panama, USA, and UK. The 

increase of such unknown species in GenBank is due to the increasing use of molecular tools to 

analyse the AM fungal communities in the roots or in soils.  

 

In this study, a  part of AM fungi community present in both the agricultural site and the natural 

sand dunes of Southern Arabia were revealed.  Molecular identification of the trap culture roots 

did not reflect the spore population found in the field. This might be because most of the species 

detected morphologically in the present study still do not have corresponding sequences in 

GenBank. The species of the genus Glomus were dominant among the other glomeromycotan 

morphospecies and phylotypes.   
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Chapter 3: Impact of land-use change on the 

biodiversity of  native AM fungi: a community shift 

 

3.1 Abstract  

The main aim of this study was to evaluate the effect of land-use change of a hyper arid site in 

Southern Arabia on the diversity of AM fungi. Rhizosphere soils of the native plant species 

(Zygophyllum hamiense, Salvadora persica, Prosopis cineraria and Heliotropium kotschyi in 

addition to the natural vegetation growing between these plants) were sampled. The agricultural 

ecosystems were represented by two sites cultivated with date palms (Phoenix dactylifera) 

situated close to a natural site and managed by two management systems (traditional and 

modern). AM fungal spores found in the field and those which sporulated in green house trap 

cultures were identified morphologically. AM fungal inoculum potential was assessed through 

the evaluation of colonization in the roots of Sorghum bicolor inoculated with soils coming from 

the rhizospheres of different plants growing in the different sites.   

The results showed that AM fungal community composition in the agricultural sites shifted from 

that in the natural site. The agricultural sites had higher AM fungal spore abundance, species 

richness and inoculum potential. In total, 25 AM fungal species were found; 18 of them belong 

to the genus Glomus, four to Scutellospora, and one species from each genus of Acaulospora, 

Paraglomus and Ambispora. The study showed an uncommon pattern of a dramatic increase of 

AM fungal diversity due to land-use change. This pattern might be due to the reduction of the 

extreme abiotic environmental stresses factors through the agricultural practices.    
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3.2 Introduction  

The expansion of human population along with the access to technology have led to a change on 

the earth’s biota and communities, including species introductions, species extinctions and 

fragmentation of the natural habitats through land-use change (Vitousek et al., 1997). Through its 

dramatic alteration of the ecosystem functions, land-use change was nominated to be the main 

cause of biodiversity loss in the 21st century (Sala et al., 2000).  

Arid and semiarid lands cover about one third of the Earth’s terrestrial land, and unlike the 

common idea that they are hostile places, they are in fact, often heavily used by man. The 

extreme environments of arid lands have led to evolution of considerable biodiversity and unique 

adaptation, some of which are potentially valuable in human terms (Huenneke and Nobel 1996). 

This unique biodiversity of the arid lands is not immune from biodiversity loss (Sala et al., 

2000). While land-use change of the desert ecosystems through introduction of agriculture could 

have an obvious strong negative effect on the biodiversity of macro organisms, there are 

uncertainties about its effect on microbial diversity.  

There is a lack of explicit investigation on the effect of land-use change on the diversity of AM 

fungi in hyper arid regions. In general, and under different ecosystems, experiments evaluating 

these responses to the land-use change showed contradictory results.  

It was hypothesized that generally, in cases where the soil receives more water through irrigation 

and additional nutrients, the introduced ecosystem can have higher AM fungal species richness 

and spore abundance (Koske et al 1997; Li et al, 2007). However, in other cases, it was shown 

that disturbance resulting from agriculture decreases AM fungal species richness and infectivity 
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(Helgason et al. 1998; Douds and Millner 1999; Oehl et al., 2003). It seems that there is no 

simple correlation between management and AM fungal diversity and that there are many factors 

that could have effects on the diversity of these fungi in the introduced agricultural systems. 

The purpose of this study was to provide a description of the effect of land-use change from 

natural to agricultural on the native AM fungi in Southern Arabia.  

In this study, date palm was chosen as a model for the introduced agriculture. We have compared 

the AM fungal community structure in the rhizosphere of introduced date palms cultivated under 

two agricultural systems (traditional and modern), with that of the surrounding native desert 

vegetation (Zygophyllum hamiense, Salvadora persica and Prosopis cineraria) and with a 

successional vegetation on a modern agricultural site where all the natural vegetation was 

mechanically removed. Another site occurring in an interdune area has been chosen as a control 

site for the study. The data gathered included AM fungal spore density, species richness, and 

inoculum potential of the AM fungal communities. 
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3.3 Materials and methods 

3.3.1 Study sites 

All the study sites (Fig. 3.1) were located in Southern Arabia and all samples were taken in 

August 2006 as follows: 

Natural site 

A site with native vegetation not influenced by human activities was selected (Fig. 3.2). The 

vegetation consisted of three perennial plant species. They were Salvadora persica, Zygophyllum 

hamiense and Prosopis cineraria. The areas between the plants were covered with more than one 

kind of vegetation (Fig. 3.2 D and E). Social indigenous knowledge was helpful to locate this 

site. According to this knowledge, before agriculture was introduced, the agricultural lands used 

to look like this native site.  

Traditional agricultural site 

This site (Fig. 3.3 A) was cultivated mainly with date palms. The management has followed the 

local traditional way of farming since the establishment of the farm in 1992. The only source of 

fertilization was the manure produced on the same farm. Irrigation was based on the traditional 

flooding irrigation system (Al-Marshudi, 2001) where water flows from a natural source of few 

kilometers away from the farm through narrow channels called Aflaj 

(http://whc.unesco.org/en/list/1207/). The inter-plant area of the farm was cultivated mainly with 

sorghum. In order to prepare the land for the sorghum cultivation, the soil was tilled annually 

using the tractor. No synthetic pesticides or chemical fertilizers were ever used. The source of 

most of the date palm seedlings was the same cultivated area, whereas some other seedlings of 

popular varieties were brought from other geographical areas in the interior part of Oman around  
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A

B C

D E
 

Fig. 3.2 The native vegetation of the natural site. (A) Zygophyllum hamiense. (B) Salvadora 

persica, where the arrow indicates (C) A tree of Prosopis cineraria. (D and E) Natural 

vegetation growing between the perennial plant species. The pen was included to demonstrate 

the scale.  
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300 km northwest. Soil traces from the original land usually are attached to the roots of the 

imported seedlings. 

Modern agriculture site 

 This site (Fig. 3.3 B) was situated 3 km away from the traditional agriculture site. It was located 

inside an agricultural experimental station and cultivated exclusively with date palms. The 

management followed the modern way of farming since the establishments of the farm in 1990, 

i.e., synthetic pesticides were used rarely and chemical fertilizers (mainly NPK) were added 

annually in reasonable amounts. A drip irrigation system was being used. The area between the 

date palms was not cultivated with any other plants and lost its native vegetation apparently 

because of the mechanical and human activities. The date palms were originally produced 

through the tissue culture (micropropagation) technique in The Tissue Culture Laboratory of the 

Ministry of Agriculture of Oman located 300 km North West of the study site. The seedlings 

passed a period of weaning in a shadow house in the same laboratory where they were 

transferred to an unsterilized mixture of soil and organic matter. Then they were transferred to be 

planted in the study site.  

A B
 

Fig. 3.3 The two agricultural sites. (A) The traditional site and (B) the modern site.  
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3.3.2 An extinct Holocene lake site  

A natural site occurring outside the studied habitat was chosen to be a control site for the study. 

The location of sampling (Fig. 3.4) was the bottom of an extinct Holocene lake (Radies et al., 

2005). Soil samples of the rhizosphere of one of the native plants Heliotropium kotschyi (Fig. 3.4 

D), were collected at this site.  

A B

C D
 

Fig. 3.4 The Holocene extinct lake. (A) A view of the location of the extinct lake from of the 
surrounding dunes. The white spot in the middle is our car. (B) The surface of the extinct lake as 
appears from around 50 cm elevation. Diverse trace fossils were exposed on the present day 
surface. (C) A rock found in the bottom of the lake. Most probably it is a calcium carbonate 
precipitation (Dr.Frank Preusser, personal communication). (D) Heliotropium kotschyi growing 
at the site. The pen was included to deomonstrate a scale. 

 



Chapter 3 Impact of land-use change on the biodiversity of the native AM fungi: a community shift

 

52 
 

3.3.3 Soil sampling 

Samples were collected on August 2006. For each of the four sites, four replicate plots were 

randomly chosen. Each plot size was ≈ 200 m2. From each plant in each plot four plants were 

selected for a pooled sample (Fig. 3.6) 

In the case of the natural vegetation (Salvadora persica, Zygophyllum hamiense and Prosopis 

cineraria) and the date palms at the two agricultural sites, rhizosphere soils were sampled by 

making a soil cross section of 30 cm diameter and a depth of 30 cm, 20 cm away from the stem 

of the trees to have an access to the roots. Soils collected represent vertical cross sections of the 

root zones.  The moist soils samples from the agricultural sites were air dried and then 

transported to the lab in Basel.  

Rhizosphere soils of the inter-plant vegetation at the natural site, the successional vegetatione in 

the modern agricultural site and  Heliotropium kotschyi in the sand dunes were sampled by 

collecting around 2 kg of the soil around the their root systems. This sampling method was 

chosen because the shallow root system did not allow making the soil cross section. In addition, 

in the sand dunes where soil has no texture, such a cross section in the soil was not possible. A 

graphical representation of the sampling strategy is shown in Fig. 3.5.  
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Fig. 3.5 A representation of the sampling collection strategy in the four sites. Each circle with a 

letter inside represents a pooled sample from four subsamples (represented by four smaller 

circles attached to it) corresponding to the same plant species. Diagram is not to scale.  

Natural site

Trad. agr. site

Sand dunes

Mod. agr. site

Mod. agr. site, where successional 
vegetation was sampled

 

Fig. 3.6 The soil samples of the different sites in the present study in petri dishes. The colors of 

the soils of different sites appear different. The soils from the agricultural lands have darker 

colors than the soils from the natural site. This is most probably due to the addition of the 

organic matter in the agricultural land especially the traditional site. The red colour of soils from 

sand dunes is attributed to the presence of iron oxides. 
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3.3.4 Trap culturing the AM fungi 

For each pooled soil sample representing plants in each of the four replicate plots at each field 

site, two trap culture pots (0.85L) were established (Fig. 3.7). Pots were filled with 0.45 kg of an 

autoclaved substrate consisting of Terragreen (American aluminium oxide, oil dry US special, 

type III R, <0.125 mm; Lobbe Umwelttechnik, Iserlohn, Germany). The mycorrhizal inocula (50 

g of soil sample) were spread as a layer on the surface of the substrate in the pots and covered 

with a thin layer of the substrate. The two trap cultures were the following: 

A. Trapping system with various plants 

Three different trap culture plants (Plantago lanceolata, Hieracium pilosella and Allium porrum) 

were randomly planted in every pot (Fig. 3.8 A).  Using more than one trap plant species was 

expected to increase the resolution of the species richness of AM fungi in the field soils. This is 

based on the assumption that different plants might trap different AM fungi. All the three species 

are known to be AM fungi host plants and routinely used for trap cultures. The trap cultures were 

kept in a greenhouse for 8 months and were irrigated with an automatic irrigation system (Tropf-

Blumat; Weninger GmbH, Telfs, Austria). 

B. Trapping system with Sorghum bicolor 

Five 2-week-old AM fungi-free plantlets of Sorghum bicolor were randomly planted in every pot 

(Fig. 3.8 B). The roots of the trapping plant were used to evaluate the AM fungal colonization 

levels as an indicator for the inoculum potential of the present AM fungal communities. Sorghum 

bicolor was chosen because it is one of the crops cultivated in the study area of Southern Arabia, 
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therefore, evaluating its response to mycorrhizal communities in the natural and agricultural sites 

is useful to predict the functional change in these communities due to the land-use change. 

3.3.5 AM fungal spore isolation and identification 

AM fungal spores occurring in the field soil samples and those propagated in the trap cultures 

were extracted by wet sieving and sucrose density gradient centrifugation (Daniels and Skipper, 

1982). Fifteen g of air-dried field soil or 30 cm3 of harvested trap culture substrate were passed 

through 1,000-, 500-, 125-, and 32-µm sieves. The 500-µm sieve was checked for large spores, 

spore clusters, and sporocarps whereas the contents of the 125- and 32-µm sieves were layered 

onto a water-sucrose solution (70% [wt/vol]) gradient and centrifuged at 900 x g for 2 min. The 

resulting supernatant was washed with tap water for 2 minutes in a 32-µm sieve, and transferred 

to petri dishes. Spores, spore clusters, and sporocarps obtained from all sieves were mounted on 

slides with polyvinyl-lactic acid-glycerol (Koske and Tessier, 1983) or polyvinyl-lactic acid-

glycerol mixed 1:1 (vol/vol) with Melzer's reagent (Brundrett et al., 1994). The spores were 

examined under a light microscope (Zeiss; Axioplan) at a magnification of up to x400. 

Identifications were based on current species morphological descriptions and an identification 

manual (Schenck and Perez, 1990; International Culture Collection of Arbuscular and Vesicular-

Arbuscular Endomycorrhizal Fungi) The presence/absence of spores from all AM fungal species 

was determined for each sample and expressed as the number of AM fungal spores per 15 gram 

of soil for the field site samples.  

3.3.6 Inoculum potential evaluation 

The parameters of mycorrhizal colonization (Trouvelot et al. 1986) for each replicate of each 

sample of the trap culture system were evaluated. The evaluation was based on 30 roots (1cm-
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segments) of each replication. These roots were incubated overnight at room temperature in 

0.1% cotton blue (w: v) in lactic acid. Segments then were destained in lactic acid and observed 

under a light microscope for the quantification assay. Inoculum potential was defined as the 

percentage of mycorrhization (M%) according to the method used by Trouvelot et al. (1986). 

 

3.3.7 Statistical analysis 

Significance of differences in AM fungal spore abundance, species richness and inoculum 

potential between the samples coming from and within different sites was tested using Fisher`s 

least significant difference (LSD) at p <0.05 after one-way analysis of variance (ANOVA). The 

correlation between the AM fungal spore abundance and species richness and inoculums 

potential was calculated through a simple regression test. A dendrogram was obtained by cluster 

analysis displaying the similarity of AM fungal species composition across the host plants in all 

sites. Ward’s clustering method and squared Euclidean distance metric were used. All the 

statistical tests were performed using Statgraphics (Version 3.1). 
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Sites
Plants from study sites

Rhizosphere soils were sampled  
August 2006

Trap plants in green house (pot numbers)
Plantago lanculata
Hieracium pilosella

Allium porrum
Sorghum bicolor

N
at

ur
al

 si
te

Zygophyllum hamiense 1 2 3 4 33 34 35 36

Salvadora persica 5 6 7 8 37 38 39 40

Prosopis cineraria 9 10 11 12 41 42 43 44

Inter-plant area 13 14 15 16 45 46 47 48

A
gr

ic
ul

tu
ra

l 
si

te
s

Date palm (traditional site) 17 18 19 20 49 50 51 52

Date palm (modern site) 21 22 23 24 53 54 55 56

Successional veget.(modern site) 25 26 27 28 57 58 59 60

Sand 
dunes Heliotropium kotschyi 29 30 31 32 61 62 63 64

Fig. 3.7 The different trap cultures of the study. Four replicates of the soil samples of each 

sampled plant were used to establish trap culture with a mixture of trap plants and S. bicolor, 

respectively. 

 

A B
 

Fig. 3.8 The trap culture pots in the green house. (A) Pots with a mixture of plants (Plantago 

lanceolata, Hieracium pilosella and Allium porrum) (B) Pots with Sorghum bicolor. 
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3.4 Results 

Twenty five taxa of AM fungi were detected from 32 soil samples originating from the natural 

site, adjacent and nearby agricultural sites and sand dunes. Eighteen of these species belonged to 

the genus Glomus, 4 to Scutellospora, and 1 species from each genus of Acaulospora, 

Paraglomus and Ambispora (Table 3.1). Among the 25 identified species, only 11 species of 

Glomus and 1 species of Scutellospora were identified to the genus level. The most frequent 

species in the field was Glomus aggregatum, with 26 occurrences in the 32 samples while the 

least frequent was Glomus sp. OMA8 with one rare occurrence (Fig. 3.10). However, the most 

frequent species in the trap cultures was Glomus eburneum with 29 occurrences in the 32 trap 

culture pots (Fig. 3.10) 

As shown in Table 3.1, there were 4 AM fungal species (Gl. sinuosum, Glomus sp. OMA6, Sc. 

calospora and Scutellospora. sp. OMA10) which were found exclusively in both agricultural 

sites.  Another 6 AM fungal species (Gl. microaggregatum, Gl. sp. OMA9, Sc. fulgida, Sc. 

gregaria, Ac. spinosa and Gl. etunicatum) were found exclusively in only one of the agricultural 

sites but not the other.  Gl. aggregatum, Glomus sp. OMA3, Gl. eburneum and Gl. microcarpum 

were found both in the natural and in the agricultural lands. However, Gl. macrocarpum and 

Glomus sp.OMA5 (which is an un described species), Ambispora gerdemannii, Glomus 

sp.OMA7, Glomus sp.OMA8, Glomus sp.OMA 11 and Glomus sp. OMA12 were detected only 

in the natural site and not in any of the two agricultural sites.  

3.4.1 Changes in the composition of AM fungal communities 

The AM fungal species detected in the natural site and in the two different agricultural sites 

clearly form two different clusters in the dendrogram (Fig. 3.9), suggesting that the AM fungal 
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communities in the agricultural sites differ from that on the natural site.  The AM fungal 

communities associated with successional vegetation and the sand dunes were closer to that of 

the natural site than the agricultural one.  

 

Distance
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Heliotropium kotschyi
(Sand dunes)

Successional vegetation

Zygophyllum hamiense

Salvadora persica

Prosopis cineraria

Inter-plant vegetation
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Date palm (Mod. Agri.)

Natural sites

Agricultural sites

0 30

 

 

Fig. 3.9 Dendrogram of cluster analysis based on the similarity of AM fungal species 

composition across the host plants in all sites. Two main clades were formed suggesting the 

presence of two different communities occurring in natural and agricultural sites. Ward’s 

clustering method and squared Euclidean distance metric were used.  

 

3.4.2 Changes in the species abundance  

The spore abundance in the field was by far higher in the agricultural sites (mean=70.5) than the 

natural site (mean=16) and the successional vegetation site (mean=8) (Fig 3.11 A). The spore 

abundance related to the successional vegetation was not statistically different from those found 
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the natural site (Fig. 3.11 A). No AM fungal spores were found in the rhizosphere of 

Heliotropium kotschyi growing in the sand dunes (Fig. 3.11 A).   

The spore abundance also varied among different host plants in the same site (Fig. 3.12 A). The 

highest mean of spore abundance in the natural site was 25.7, corresponding to the inter-plant 

area. This abundance was significantly higher than the that corresponding to both Zygophyllum 

hamiense (mean=9.75), and Salvadora persica (mean=7), but not to Prosopis cineraria 

(mean=21.5). The two agricultural sites also differed in spore abundance (58.75 and 82.25 at 

traditional site and modern site respectively). 

3.4.3 Changes in the species richness 

The AM fungal species richness represents the number of species found in both the field soils 

and in the trap culture system (Table 3.1). The agricultural sites were found to have significantly 

higher species richness (mean= 9.75) than the natural land (mean= 4.88) and than successional 

vegetation (mean=4.25) (Fig. 3.11 B). The spore richness related the successional vegetation was 

not statistically different from those related to the natural site (Fig. 3.11 B). The lowest number 

of species was found associated to Heliotropium kotschyi growing in the sand dunes (mean=1) 

this is statistically lower than the agricultural sites, natural site and successional vegetation 

(Fig.11.3 B).   

The species richness did not vary greatly among different host plants in the same site (Fig. 3.12 

B). The highest mean of species richness in the natural site corresponded to Prosopis cineraria 

(mean=6). This richness was significantly higher than the richness corresponding to both 

Zygophyllum hamiense (mean=4.5) and Salvadora persica (mean=4), but not to inter-plant area 

(mean=5) (Fig. 3.12 B). The two agricultural sites, unlike their species abundance, did not have 
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significantly different species richness, and the means were 10.25 and 9.25 species at the 

traditional and modern sites, respectively (Fig. 3.12 B). 
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Fig. 3.10 The frequency of species occurrence in the field and in the trap culture samples.   

 

3.4.4 Changes in the inoculum potential 

The inoculum potential was higher in the agricultural sites (mean=52.79) than both the natural 

site (mean= 22.91) and than successional vegetation (mean=35.66). The inoculum potential of 

AM fungal community associated to the successional vegetation, however, was not significantly 

different from those related to the natural site (Fig. 3.11 C). The lowest inoculum potential was 

found to be associated with Heliotropium kotschyi growing in the sand dunes (mean=2.74) which 

was significantly lower than the agricultural sites, natural site and successional vegetation (Fig. 

3.11 C).   

The AM fungal inoculum potential was not different among different host plants in the natural 

site (Fig. 3.12 C). The two agricultural sites, however, did maintain statistically different 
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inoculum potential with higher value in the traditional site (mean 62.6) than the modern site 

(mean=45.43) (Fig. 3.12 C). 
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Fig. 3.11 Comparison of the effect of the land-use type on (A) AM fungal spore abundance in 
the field (B) Species richness in the field and the trap cultures and (C) the inoculum potential. 
Values are reported as means (±SD). Non-significant differences between the means are 
indicated by similar letters above their error bars as determined by Fisher’s least significant 
difference (LSD)  at the 5% level after one-way ANOVA.  
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Fig. 3.12 Comparison of the effect of the type of vegetation in different land-use types on (A) 
AM fungal spore abundance in the field (B) Species richness in the field and the trap cultures 
and (C) inoculum potential. Plant species are H: Heliotropium kotschyi, Z: Zygophyllum 
hamiense, S: Salvadora persica, P: Prosopis cineraria, IP: inter-plant vegetation, G: 
successional vegetation, TS: traditional site of date palm, MS: modern site of date palm. Values 
are reported as means (±SD). Non-significant differences between the means are indicated by the 
same letters above their error bars as determined by Fisher’s least significant difference (LSD)   
at the 5% level after one-way ANOVA.  
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3.4.5 Correlations between spore abundance and species richness and inoculum 
potential 

The results of the simple regression analysis revealed a significant positive correlation between 

the AM fungal spore abundance in the field and the AM fungal inoculum potential (Fig. 3.13 A) 

(correlation coefficient=0.676, r2 =45.68, P=0.0001). AM fungal species richness found both in 

field soils and trap cultures had as well a positive correlation with the AM fungal inoculum 

potential (correlation coefficient=0.729, r2 =53.09, P= 0.0001) (Fig. 3.13 B).   

‐20

0

20

40

60

80

100

120

0 20 40 60 80 100

Sp
or

es
 a

bu
nd

an
ce

Inoculum potential

0

2

4

6

8

10

12

14

0 20 40 60 80 100

Sp
ec

ie
s r

ic
hn

es
s

Inoculum potential

A B

 

 

Fig. 3.13   The relationship between the inoculum potential and (A) field spore abundance 

(correlation coefficient=0.676, r2 =45.68, P=0.0001) and (B) field and trap culture species 

richness (correlation coefficient=0.729, r2 =53.09, P=0.0001) 
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3.5 Discussion 

The results suggest that there was a high impact of land-use change on the community of AM 

fungi in the studied ecosystem. The agricultural sites had higher AM fungal spore abundance, 

species richness and AM fungal inoculum potential. The AM fungal community composition in 

the natural site also differed from that in the two agricultural sites. This change occured in a 

realatively short time (15 and 17 years for traditional and agricultural sites, respectively) 

(Fig.3.14). 

Low AM 
fungal diversity

Higher AM 
fungal diversity
and different 
composition

Short timeNatural sites

Agricultural sites

 

Fig. 3.14 The effect of land-use change from natural to agricultural on the AM fungal 

communities of the study sites. 

 

Regardless of the mechanical disturbance of the uncultivated land occurring between the date 

palms in the modern agricultural site, the successional vegetation had similar AM fungal spore 

abundance (Fig. 3.11 A), species richness (Fig. 3.11 B) and inoculum potential (Fig. 3.11 C) as 

the natural vegetation. It is an indication that the propagules of the native AM fungi at least in 

the rhizospheres of the successional vegetation were not affected by the mechanical disturbance 

and the shift in the AM fungal communities seems to be due to the direct agricultural practices.  
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The degree of mycorrhization on the roots of the Sorghum bicolor is an indirect estimation of the 

vitality and activity of the AM fungal community present in the field. The higher inoculum 

potential of the AM fungal communities of the agricultural sites (Fig. 3.11 C) suggests a shift in 

the activity of this community due to the land-use change. The change in the abundance and the 

richness of this community (Fig. 11.3 A and B) was possibly responsible for such an increase in 

the inoculum potential. This suggestion is supported by the strong positive correlation between 

the AM fungal spore abundance and species richness and the AM fungal inoculum potential (Fig. 

3.13).  

Agricultural practices often lead to a lower AM fungal species diversity compared to the natural 

sites (Helgason et al., 1998; Boddington and Dodd, 2000, Oehl et al., 2003). In a long term 

experiment, it was found that these practices caused an almost complete dissappearance of AM 

fungal population (Plenchette, 1989).  

In fact, in the present study, some of the AM fungal species occurring in the natural site were not 

detected in the agricultural sites nor recovered in the trap cultures (Gl. macrocarpum and 

Glomus. sp.OMA5, Ambispora gerdemannii, Glomus sp.OMA7, Glomus sp.OMA8, Glomus 

sp.OMA11 and Glomus sp. OMA12). These species might have been sensitive to habitat 

alteration which led to their disappearance or to a decrease of their abundance below detection 

level.  

However, the general species richness was higher in the agricultural sites than the natural site. 

The results of the present study represent a contradiction to the commonly-believed idea that 

land-use change reduces the AM fungal species richness. Recently, Li et al (2007) reported 

observations similar to the present study. They found that the Shannon diversity index in an 

agricultural site was higher than that corresponding to a natural site. The agricultural site of their 
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study was a 30 years-old hand tilled and low-input managed field while the natural site was 

composed of grasses and bushes with a few trees. The experiment was conducted in Southwest 

China where mean annual rainfall and temperature is 629 mm and 21.9 ºC respectively.  

3.5.1 The possible drivers for the community shift 

In the case of the present study at least, such a trend of AM fungal richness increasing might be 

attributed partially to the particularity of the studied ecosystem. The natural site is exposed to the 

extreme environmental factors of Southern Arabia (see section 1.6 of Chapter 1).  

Introducing agriculture in such a site represents a dramatic change in the environmental 

conditions and that will consequently lead to a dramatic shift in the AM fungal community. The 

following environmental factors or the interactions between them may be the cause for such a 

dramatic shift in the community of AM fungi in the studied site: 

1. Soil moisture alteration 

Soil moisture is a limiting factor in dry lands. The natural site of the present study is 

characterized as hyper arid region. One of the main dramatic changes on the soil when 

the site was converted to agricultural ecosystem was to increase the availability of water 

through permanent irrigation over years of the agriculture establishment. The structure of 

AM fungal communities along drought gradients has not been well studied. However, 

moisture and substrate stability were found to determine AM fungal community 

distribution and structure in an arid land (Jacobson, 1997). The long dry season in the 

study site might have affected the spore production due to overall limitation of the 

mycorrhizal status.   
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2. Soil chemical alteration 

The soil properties of the natural and agricultural sites suggest that there is an alteration 

of the soil chemical properties (Table 3.2). There is an increase in all the nutrient levels 

including phosphorus (P) which is known to have a particular effect on the AM fungal 

status in the soil. High soil P levels limit formation of AM fungi (Menge et al., 1978; 

Sanders, 1975). Consequently the elevated soil P level could decrease the size of the AM 

fungal community.  The increase in soil P supply could also change the community 

structure. This might be attributed to the variation in sensitivity to P among AM fungal 

species (Sylvia and Schenck, 1983). A negative impact of cumulative P fertilization on 

AM fungal inoculum potential and effectiveness together with a change in AM fungal 

species composition was observed (Thomson et al., 1986; Johnson, 1993; Gryndler and 

Lipavsky, 1995). 

Paradoxically, there is some evidence that in a situation where soil P is very low, the 

mycorrhization and spore abundance will increase due to moderate increase of P (Bolan 

et al., 1984; Koide and Li, 1990; Xavier and Germida 1997). In some cases, the rates of 

colonization were found to decrease only when the bicarbonate-soluble P level exceeded 

140 ppm (Amijee et al. 1989) or 133 ppm (Abbott and Robson 1977; 1978). The 

development of the mycorrhizal association was found to be highest at soil P levels of 50 

ppm (Schubert and Hayman, 1986). In the present study, the bicarbonate-extracted P 

levels in the two agricultural sites were 71 and 93 ppm for the traditional and the modern 

agricultural sites respectively, (Table 3.2). Both P concentrations did not exceed the 

reported P level which might suppress the mycorrhization development. In the contrary, 

the P levels in the agricultural sites may have been raised in the present study to a degree 
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which might promote the mycorrhizal association compared to the lower level of P of 

41.4 ppm in the natural site. It might be possible that the enhanced mycorrhization status 

of the plants led to a higher production of spores of different species occurred as an 

inculum before the agriculture was introduced.  

3. Soil physical alteration 

 Another factor which might contribute to the AM fungal community shift is the soil 

physical alteration. While soil physical alteration affects negatively the abundance of 

certain species, it can encourage the abundance of other species (Douds et al., 1995, Jansa 

et al, 2002).  It was found as well that different soil layers were shown to contain 

different AM fungal communities (Oehl et al, 2005). Alteration of the deep soil layers 

due to preparing land for cultivation and for date palms sowing, might have caused a 

redistribution of the community present in different layers. Oehl et al, (2005) found that 

Scutellospora species occur more abundantly with increasing soil depth (50-70 cm). 

Interestingly, the two Scutellospora species detected in the present study were found 

exclusively in the agricultural sites where soil layers were disturbed. It might be 

hypothesized then that the presence of some of the species on the top soils are due to 

mechanical lifting of the deep soil AM fungal community to the top soils. 

4. Soil temperature 

 Although it was not measured in the different sites of this experiment, soil temperature in 

Southern Arabia is considered to be hyperthermic (United States Department of 

Agriculture, 1997). The natural site has higher exposure to direct sun compared to that in 
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the agricultural site. This is because of the scattered natural vegetation with their small 

sizes and vegetative parts. 

 The date palms, however, have larger vegetative parts and they were planted relatively 

close to each other, which provides enough shadow to cover the rhizosphere during most 

of the day.  Hence, I assume that the AM fungal community in the natural site was 

exposed to higher soil temperature than the community on the agricultural sites. 

Temperature is known to have a negative impact on AM fungal activity. It was shown 

that root colonization by AM fungi often decreases when the temperature exceeds 30°C 

(Bowen 1987), while in other cases, soil temperatures above 40°C generally suppress the 

AM fungi (Bendavid-Val et al. 1997). Germination of the AM fungal spores can also be 

affected by temperature. Above 34°C, temperature caused a reduction in the germination 

of Scutellospora coralloidea and Scutellospora heterogama (Schenck et al. 1975). 

Numbers of arbuscules in the roots of soybean were found to decrease at tempreatures 

above 30°C, while temperature above 34°C caused a reduction in the production of 

external hyphae outside the roots (Schenck and Schröder, 1974). Colonization of 

Anacardium occidentale roots by Glomus intraradices was as well found to decline at 

temperatures above 30°C and was severely reduced at 38°C (Haugen and Smith, 1992). 

All examples above of a negative effect of high temperature on AM fungal activities and 

spore germination might suggest that temperature was a cause of the lower AM fungal 

abundance, richness and inoculum potential in the natural site with respect to the 

agricultural one.  
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5. Introduction of exotic AM fungal species 

There were four AM fungal species (Gl. sinuosum, Glomus sp. OMA6, Sc. calospora and 

Scutellospora sp. OMA10) which were found exclusively in both agricultural sites. 

Agricultural inputs might have introduced these species in the traditional and modern 

agricultural sites. Seedlings of the date palm in the traditional agricultural site were 

brought from another geographical area due to the abundance of preferable date palm 

varieties grown in the interior part of Oman. Soil traces from the original land usually are 

attached to the roots of the imported seedlings. In the modern agricultural site, the source 

of the date palms is the same geographical area as the trees of the traditional site. They 

were tissue-cultured and then passed a “weaning” period where they had been 

transplanted into unsterilized soils. This process of transplanting the seedlings might be a 

source for exotic AM fungal species which were unintentionally introduced into the 

rhizosphere of the agricultural site. These exotic introduced species might use the new 

habitat with its low indigenous AM fungal diversity as an open ecological niche that can 

easy to be colonized, leading to an increase in the AM fungal species richness 

6. Changes of the host plant 

Another possible reason for the community shift might be the introduction of a new host 

plant (date palm).  Host specificity and influence of plant species community on AM 

fungal composition have been demonstrated in natural ecosystems (Eom et al., 2000). 

With the widespread root network of date palms, part of the dormant mycorrhizal 

community might found the new host’s roots as a good source of carbon. Consequently 

higher spore abundance and richness were detected in the agricultural sites.  
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This study was targeting a habitat with unique environmental settings. Such a habitat offered a 

new perspective to look at the response of AM fungal community to land-use change.  

The agricultural sites had a different community structure with higher spore abundance, species 

richness and AM fungal inoculum potential. Many factors can be responsible for this community 

shift.  More detailed future studies of the effects of single factors such as irrigation, fertilization, 

physical alteration, temperature etc., need to be designed to elucidate the influence of these 

factors and the interaction between them on the native AM fungal communities. Controlled 

experiments are also needed to determine how alterations of community structure in agricultural 

ecosystems have an impact upon the functionality of mycorrhizal associations, including effects 

on plant productivity.  
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Chapter 4: Molecular diversity of AM fungi 

associated with date palm: a closer look    

 

4.1 Abstract 

The AM fungal community associated with date palm cultivated in sandy loam alkaline soils of 

Southern Arabia was investigated. Roots from two sites under modern and traditional 

agricultural systems were sampled. The modern agriculture site was sampled in 2004 and in 

2006, whereas the traditional agriculture site was sampled only in 2006. Specific amplifications 

of the nuclear-encoded 18S ribosomal RNA gene fragments of the AM fungi were used to 

determin their phylogenetic identity. This was achieved by PCR followed by cloning, RFLP 

digestion, sequencing and bioinformatics.  

The overall diversity revealed from the two sites consisted of 9 phylogenetic taxa 8 of which 

belonged to the Glomus group A (the most diverse group in the Glomeromycota).  One 

Scutellospora group was detected in the traditional agriculture site. Out of the 9 taxa revealed 

only 2 can be associated to named species of AM fungi. These are Glomus sinuosum and Glomus 

proliferum. Three phylotype groups are associated with AM fungal environmental sequences. 

The other 4 phylotype groups are not associated with any of the sequences in GenBank nor to 

our own database, and therefore we assume that they are new to science. The communities of 

these fungi were found to be differentiated between the two agriculture sites and consisted of 

both site-specialist and site-generalist groups. 
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4.2 Introduction 

On the global scale, to our knowledge, the only study which dealt with AM fungal communities 

associated with date palm under field conditions came from North Africa (Bouamri et al. 2006). 

Based on the classical identification method by spore morphology, this study reported ten AM 

fungal morphospecies. The diversity of the AM fungal spores, however, was found not to 

necessarily reflect the species composition or abundance (Clapp et al. 1995). The AM fungi 

colonizing the roots in natural ecosystem are likely to be functionally active, and their 

identification is crucial for the understanding of the ecology of this symbiosis. The exact 

identification of the AM fungal community within roots requires the use of PCR-based 

techniques. These techniques have been used to analyze the composition of AM fungal 

communities colonizing the roots in the fields around the globe (see Öpik et al. 2006 for review).  

The aim of this study was to characterize the molecular diversity of the AM fungal communities 

colonizing the roots of date palm, an ecologically, economically and socially important food crop 

in many arid parts of the world. The study also aims to compare these communities in two 

different agriculture sites which have different histories of establishment and management. 
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4.3 Materials and methods 

4.3.1 Study sites   

Traditional agriculture site 

See the site description in the materials and methods section of Chapter 3. 

Modern agriculture site 

See the site description in the materials and methods section of Chapter 3. 

4.3.2 Samples collection 

 In August 2006, the two sites were sampled on the same day. Each site was divided into four 

plots. In every plot roots were collected from the rhizosphere of four trees. These four 

subsamples were then pooled. Thus, four pooled samples were obtained from each site. Roots 

were washed with tap water and kept inside microcentrifuge tubes in a cooling box during the 

whole period of transportation. DNA was extracted from the roots as soon as the samples arrived 

to the laboratory. In January 2004 only the modern agriculture site was sampled by taking root 

samples from the rhizosphere of 5 different date palms. They were treated in the same way for 

transportation and DNA extraction. 

4.3.3 DNA extraction and polymerase chain reaction 

Five cm of the roots were first ground in liquid nitrogen within a 1.5 ml microcentrifuge tube 

using a pellet pestle. A DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) was used according to 

the manufacturer’s instructions to extract the total DNA. A volume of 30µl of elution buffer was 

used to elute the DNA.  DNA extracts were diluted 1:10, 1:50 or 1:100 in TE buffer and used as 

template for the first PCR reaction. PCR was performed in a nested procedure as described by 

Redecker (2000) and Redecker et al., (2003) using Taq polymerase from Amersham (Basel, 

Switzerland), 2 mM MgCl2, 0.5 µM primers and 0.13 mM of each desoxynucleotide. The first 
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PCR was performed using the universal eukaryote primers NS5 and ITS4 (White et al., 1990). 

The PCR was carried out as follows: 3 min at 94°C, followed by 30 cycles (45 sec at 94°C, 50 

sec at 51°C and 1 min 30 sec at 72°C) and a final extension phase of 10 min at 72°C. Dilutions 

of 1:100 of the PCR products in TE buffer were used as a template for the second PCR.  Primer 

sequences and target AM fungal clades were: ACAU1661 (TGA GAC TCT CGG ATCGGG, 

Acaulosporaceae), ARCH1311AB (equimolar mixture of TGC TAA ATA GCTAGG CTG C 

and TGC TAA ATA GCC AGG CTG T; Archaeospora/Paraglomus), GIGA1313 (CTA AAT 

AGT CAG GCT AWT CTT, Gigasporaceae), GLOM1310 (AGCTAG GYC TAA CAT TGT 

TA, Glomus group A), LETC1677 (CGG TGA GTA GCAATA TTC G, Glomus group B), 

PARA1313 (CTA AAT AGC CAG GCT GTT CTC, Paraglomus), GIGA5.8R (ACT GAC CCT 

CAA GCA KGT, Gigasporaceae), GLOM5.8R (TCC GTT GTT GAA AGT GAT, Glomus group 

A), ITS4i (TTG ATATGC TTA AGT TCA GCG). The priming sites of the primers used are 

shown on Fig. 4.1. 

For the second PCR, a hot start at 61°C was performed to minimize the possibility of non-

specific amplification. The cycling parameters of the second PCR step were the same as the first 

ones except that the annealing temperature was raised to 61 °C. The second PCR products were 

then run on agarose gels (2%:1% NuSieve/SeaKem, Cambrex Bio Science, Rockland, ME, USA) 

in Tris/Acetate buffer at 120V for 25 min. In the cases no second PCR product was observed, the 

amplification process was repeated using combinations of different dilutions of the template 

DNA and different dilutions of first PCR products.  
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Fig. 4.1 Ribosomal RNA genes with annealing sites of the primers. Diagram is not to scale.  

4.3.4 Cloning, RFLP analysis and sequencing 

 Positive PCR reactions were purified using the High Pure Kit from Hoffman LaRoche (Basel, 

Switzerland) and cloned using the pGEM-T vector (Promega/Catalys, Wallisellen, Switzerland). 

Thirty four positive clones of each PCR product were chosen randomly and the inserts were re-

amplified. Digestion reactions of three hours were performed using the restriction enzymes HinfI 

and MboI. Products of the reaction were revealed by agarose gels as described above. The sizes 

of the bands and the classification of different RFLP patterns in addition to their occurrences in 

different samples are presented in Table 4.2. Representative clones of restriction types were then 

re-amplified, purified using the High Pure Kit and sequenced in both directions. The BigDye 

Terminator Cycle Sequencing Kit (ABI, Foster City, CA, USA) was used for labeling. Samples 

were run on an ABI 310 capillary sequencer.  
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4.3.5 Sequence analyses  

The Glomeromycotan origin of the sequences was initially tested by BLAST search. Those 

sequences in GenBank which showed high similarity to the blasted sequence were downloaded. 

Using PAUP*4b10 (Swofford, 2001), sequences from the present study were aligned to 

previously published sequences in addition to yet unpublished sequences from our own database 

(Fig. 4.2). Phylogenetic trees were primarily obtained by distance analysis (using the neighbor 

joining algorithm) in PAUP*4b10 using the Kimura two-parameter model and a gamma shape 

parameter=0.5. Results were verified by performing maximum likelihood analyses based on 

parameters estimated in Modeltest 3.5 (Posada, 2004). In the resulting phylogenetic trees 

sequence phylotypes were defined in a conservative manner as consistently separated 

monophyletic groups. The sequence phylotypes were named based on the numerical system used 

to define groups detected by the group of Basel.  

4.3.6 Statistical analysis 

A cluster analysis based on the similarity of AM fungal phylotypes composition across the host 

plants in the two agriculture sites was performed. Ward’s was used as clustering method and 

squared Euclidean as a distance metric. Cluster analysis was performed using the Statgraphics 

program (Version 3.1). 
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4.4 Results 

4.4.1 The detected groups are members of Glomus group A and Scutellospora 

The primer combinations GLOM1310-GLOM5.8R and GLOM1310-ITS4i were used 

successfully. These primers were designed to target Glomus group A (as defined by Schwarzott 

et al., 2001). In addition, the primer combination GIGA-GIGA5.8R which was designed to target 

members of the Gigasporaceae was successful in one of the samples originating from the 

traditional agriculture site. All the other primer combinations targeted at other groups of 

Glomeromycota, did not yield PCR products. Clones were selected for sequencing on the basis 

of their RFLP patterns (Table 4.1). In the samples of 2006, 263 clones were classified into 19 

different RFLP patterns and 33 representatives were sequenced. In the samples of 2004, 43 

clones were classified into 10 different RFLP patterns (results are not shown) and 16 samples 

were sequenced. At least one clone representing each RFLP pattern found in each root sample 

was sequenced. A total of 49 clones were sequenced and analyzed phylogenetically in this study. 

Details about the number of screened clones and the occurrence of the different RFLP patterns 

among the different root samples of 2006 in both sites are shown in Table 4.2   

The phylogenetic tree (Fig. 4.3) constructed in this study contains sequences obtained from the 

two sites in 2006 and one site in 2004. It reveals that there are at least 9 phylogenetic taxa 

colonizing the roots of the date palms. Eight of the 9 revealed taxa belong to the Glomus group 

A. There is one Scutellospora phylotype detected in one sample from the traditional agriculture 

site. Out of the 9 taxa, only 2 (GLOM-A32 and GLOM-A34) can be associated to arbuscular 

mycorrhizal fungal known species. Sequence types clustering in the GLOM-A32 group are 

associated with both Glomus sinuosum and a Glomus clarum sequence at the same time. There 
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are also some sequences from semi arid areas of Namibia clustering in this group. GLOM-A34 is 

a sequence type which is related to Glomus proliferum. GLOM-A35 and GLOM-A39 are sister 

groups of AM fungal environmental sequences. GLOM-A36, GLOM-A37, GLOM-A38 and the 

Scutellospora are not closely related to neither sequences in GenBank nor in our own database, 

and hence we assume that they are new to science. They might be unique to the studied habitat. 

No members from Diversisporaceae, Archaeosporaceae, Acaulosporaceae or Paraglomeraceae 

were detected in this study.   

4.4.2 Site differentiation of AM fungal phylotypes 

The cluster analysis (Fig.6.4) only those taxa colonizing the roots sampled in the two field sites 

at the same time (2006 sampling) were compared. It demonstrates the existence of site specialist 

AM fungal groups by the obvious separation of the two sites. 
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Table 4.1: RFLP banding patterns and their occurrence in the different field sites. The sizes of 
the bands of each RFLP type are listed in bp.    
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Fig. 4.2 The part of the 18s rDNA alignment (using PAUP*4b10) which has the highest 

variability among the sequences used to build the phylogenetic tree in this study (Fig. 4.3). The 

alignment includes the sequences obtained in the present study in addition to all those in 

GenBank which show high similarity to them.  
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Fig. 4.4 Dendrogram of a cluster analysis based on the similarity of AM fungal composition 

across all the 8 root samples of both agricultural sites. Two main groups were formed suggesting 

the presence of two different communities occurring in natural and agricultural sites. Ward’s 

clustering method and squared Euclidean distance metric were used.  
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4.5 Discussion 

4.5.1 AM fungal community associated with date palm 

Data from two sites with different management histories sampled in 2006 in addition to data 

from the modern agriculture site sampled in 2004 were all put together to better estimate the 

overall AM fungal diversity associated with date palm. The total number of taxa detected was 9. 

This is in accordance with earlier field studies which showed that single plants can be associated 

with several AM fungal taxa. Molecular techniques have been used to investigate AM fungal 

communities colonizing the roots in the field in different ecosystems around the world. In these 

studies, the number of taxa detected in the roots of one plant species per site ranged between 2 

associated with Taxus baccata in Germany (Wubet et al., 2003) and 22 associated with 

Tetragastris panamensis growing in tropica rainforest in Panama (Husband et al., 2002a). In a 

literature survey of studies using the SSU rDNA -the same gene used as in the present study- to 

identify the AM fungal community within the roots, Öpik et al. (2006) found that the number of 

taxa detected per host plant species was significantly dependent on the habitat type. They found 

that the average number of taxa associated with host plant species ranged from 5.2 in habitats 

under “strong anthropogenic” influence to 5.6 in temperate forests, 8.3 in temperate grasslands 

and 18.2 in tropical forests.  The 9 taxa detected in the present study are associated with roots of 

a plant grown in an agricultural system in a hyper-arid environment with alkaline soils. This 

number of taxa is closer to 8.3, the average number of taxa detected in the temperate grasslands.  

We are not aware of any similar study dealing with AM fungal communities associated with date 

palm, nor with any other plant growing in the ecosystems of Arabia. This makes it difficult to 

compare our results with other similar studies. In general, the number of the AM fugal taxa 
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associated with date palm does not seem to be exceptionally different from those associated with 

different plants in different ecosystems. 

4.5.2 Sequences associated to Glomus sinuosum and Glomus proliferum 

Out of the 9 AM fungal taxa recorded in this study, only 2 can be associated with known and 

named species. In the GLOM-A32 group (Fig. 4.3), our sequences clustered with a sequence of 

Glomus sinuosum isolated from Maryland in the USA.  Interestingly, the same group contained 

sequences obtained from roots and rhizosphere of different plants growing in a semi-dry region 

of Namibia (Uhlmann et al., 2004).  

One of these sequences was obtained from a spore of Glomus clarum (AY285854) which is 

surprising as Glomus sinuosum and Glomus clarum are easy to distinguish morphologically. 

Other sequences from Glomus clarum in the database were not closely related to Glomus 

sinuosum. If this discrepancy is not due to an error in assigning AY285854 to Glomus clarum, 

the most likely explanation would be that a species fitting the morphological description of 

Glomus clarum cannot be distinguished from Glomus sinuosum using 18s DNA sequences. We 

also found sporocarps of Glomus sinuosum in the same field (see Table 3.1, Chapter 3) but no 

Glomus clarum-like spores in the site of the study. Therefore, all available evidence appears to 

support assigning GLOM-A32 to Glomus sinuosum. 

 Phylogenetically, Glomus sinuosum-associated sequences obtained from different regions of the 

rDNA of AM fungi were found within the roots of different plant species growing in different 

habitats around the world. Glomus sinuosum associated sequences were detected in the roots of:  
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• Prunus africana in Afromontane a forest in Ethiopia (altitudinal range of 1500-2700m, 

an average annual temperature between 14-20ºC, annual rainfall of 700-1100 mm) 

(Wubet et al., 2003) 

• Hieracium pilosella growing in an unmanaged grassland on the North coast of Zeeland in 

Denmark (Rosendahl and Stukenbrock, 2004) 

•  Faramea occidentalis and Tetragastris panamensis in a tropical forest in Panama (mean 

annual rainfall 2.6m) (Husband et al., 2002) 

• Potentilla erecta in Thuringia, Germany (950-1099 mm annual rainfall and 6.0-7.0 mean 

annual temperature) in a mountain meadow where soil P was not detectable, but not in 

another meadow where soil P was 76.28 mg/kg (Börstler et al., 2006).  

Morphologically, Glomus sinuosum is one of the easiest AM fungal species to identify due the 

unique structure of its sporocarps (see Fig. 2.7 E-G, Chapter 2) so its existence is unlikely to be 

missed in morphological studies. This species was found in a semi-arid soils of monsoonal 

southern India (annual rainfall ranges between 500-700 mm), in the rhizosphere of Cymbopogon 

caesius dominating ungrazed grasslands  and in scrub jungles at slopes dominated by Acacia 

species (Muthukumar  and Udaiyan,  2002). It was reported as well in the arid part of northwest 

China, in meadow steppe, desert steppe, steppe desert and typical desert (Shi et al. 2007). Low-

input agricultural practices did not seem to affect the presence of Glomus sinuosum in Southwest 

China (mean annual rainfall and temperature is 629 mm and 21.9 C respectively) and it was 

found in the natural land composed of grasses and bushes with a few trees and from 30 years old 

converted land to a hand tilling and low-input managed field cultivated with sweet potato, 

peanut, onion and sorghum, and from old field fallowed from the cultivated land (Li et al., 2007).  

However in Southern Brazil, at 1425 m above sea level (described as humid mesothermic 
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climate according to Köppen classification), Glomus sinuosum was isolated from native 

grassland but neither in conventional nor in organic apple orchards (Purin et al. 2006). Similarly, 

in Central Europe (mean annual rainfall and temperature are 650-850 mm and c. 9.5 ºC 

respectively) in a study comparing the AM fungal community in five different field sites 

representing three different agriculture land-use systems, sporocarps of Glomus sinuosum were 

found in an extensively managed grassland but they were absent in another extensively managed 

grassland site with a continuous slight surface erosion, in a vineyard and in an intensively-

managed mono-cropped maize field (Oehl et al., 2005).  However, in a submediterranean climate 

of Tuscany, Italy, (mean annual rainfall and temperature  are 930 mm and 15 ºC respectively) 

Glomus sinuosum was found in adjacent three different land use types including long-term 

intensive maize monoculture, unmanaged forest and native grassland (Bedini et al., 2007).  

In these studies, it seems from the available data that Glomus sinuosum prefers low-disturbed 

habitats. The finding of this species in the modern agriculture site of the present study is in 

agreement with the observation of the low-disturbance preference of Glomus sinuosum. In the 

traditional agriculture site, the soil was tilled annually using the mechanical tractor in order to 

prepare the land between the date palms for cultivation. In addition, the nutrient level of the soil 

P is higher in the traditional agriculture site. In the modern agriculture site, however, the area 

between the date palms was not cultivated and therefore, the rhizosphere of the date palms was 

not disturbed mechanically in the last 16 years of cultivation. 

The other sequence which had an association with a sequence of known species was GLOM-A34 

(Fig. 4.3). It had an association to Glomus proliferum which was relatively recently described 

(Declerck et al., 2000). The authors found this species in a single site in Guadeloupe (altitude of 

250 m and mean annual rainfall of 3500 mm). It was isolated from the rhizosphere of Clausena 
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excavata at the margin of a banana plantation. The occurrence of Glomus proliferum both in 

roots and as spores has been rarely reported, and hence, it is difficult to compare its global 

ecology with the finding of the present study.  

Glomus proliferum as a morphospecies did not co-occur with Glomus sinuosum in any of the 

above mentioned studies. In the study of AM fungal diversity associated with date palm 

(Bouamri et al., 2006), no spores of Glomus sinuosum nor of Glomus proliferum were detected.   

However, two sequences closely related to these two species co-occurred in the roots of 

Botrychium ternatum in Korea (Lee et al., 2004).  

4.5.3 Environmental sequences  

Three taxa were related to other environmental Glomeromycotan phylotypes.  GLOM-A33 (Fig. 

4.3) was associated with a sequence coming from a sandy and alkaline soil (Kovacs et al. 2007) 

which are two characteristics as well of the soil in the present study. GLOM-A35 (Fig. 4.3) was 

associated with an AM fungal sequence obtained from the roots of the non-photosynthetic plant 

Arachnitis uniflora which was found to be epiparasitic plant specialized on arbuscular 

mycorrhizal fungi (Bidartondo et al., 2002). GLOM-A39 (Fig. 4.3) group was another group -in 

addition to GLOM-A32- which was associated with sequences obtained from roots and 

rhizosphere of different plants growing in a semi-dry region of Namibia (Uhlmann et al., 2004).  

4.5.4 New sequence types 

Four taxa (GLOM-A36, GLOM-A37, GLOM-A38 and the Scutellospora group) (Fig. 4.3) have 

no closely related sequences in GenBank, and hence cannot be related to taxonomically 

described and named fungi nor to environmental sequences. We hypothesize that the groups 

which are not associated to any other sequences in Genbank and those which have the closest 
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relative sequences to be found in semi-arid lands to be entities specialized to the dry habitats. 

This hypothesis is in agreement with the observation that there are some groups which are 

specific to certain habitats (Öpik et al, 2006). 

4.5.5 The missing AM fungal groups  

A noteworthy finding of this study is that none of our sequences is related to the Glomus 

intraradices/ fasciculatum group, the globally most frequently detected Glomus groups nor to 

Glomus mosseae which is often found in temperate arable fields, tropical forests, grasslands and 

wetlands. It is worth mentioning however, that a sequence related to Glomus intraradices was 

detected in the roots of trap culture plants setup to trap the AM fungi in the rhizosphere of date 

palms  in the modern agriculture site in the sampling of 2004 (see Fig. 2.11 Chapter 2). 

However, we have no evidence that the same taxon was symbiotically active and colonized the 

roots of date palm in the field. Glomeromycotan groups other than Glomus group A and 

Gigasporaceae were not detected although in our two study sites  spores belonging to the genera 

Paraglomus and Acaulospora were identified morphologically (Table 3.1, Chapter 3). The 

absence of these groups in the field roots cannot be attributed to PCR problems because the PCR 

positive controls used in the present study worked.  

4.5.6 Fungal community differentiation between the two sites 

One of the aims of this study was to examine whether the two agricultural sites are associated 

with different AM fungal communities. Relatively few molecular studies have explored these 

communities associated with one plant species growing in different agricultural systems a. Some 

of these studies showed community differentiation between two sites (Wubet et al., 2003; 

Börstler et al., 2006; Hijri et al., 2006). In the present study, the community differentiation 
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observed (Fig. 4.4) might be due to the differences in the agricultural practices in the two sites. 

The chemical soil properties of the two sites (Table 3.2, Chapter 3) are different.  It has been 

shown that agricultural practices (Boddington and Dodd, 2000), including soil fertilization 

(Johnson, 1993), can affect the formation of mycorrhiza. The occurrence of site-specific taxa in 

these two sites might imply that in different agricultural systems, date palm might be associated 

with site-specific taxa, and to test that a larger-scale survey is needed. 

4.5.7 Soil characteristics  

Regardless of the many years of agricultural inputs in the two studied fields, the soil nutrient 

content has remained low to medium (Table 3.2, Chapter 3). Although the types of agricultural 

practices in the two sites appear different from each other, they both did not seem to be intensive 

enough to raise the content of nutrients to high levels perhaps because of the inherited low soil 

fertility (MAF, 1989, 1991) and the reasonable amount of the inputs added. The levels of sodium 

bicarbonate extracted P in the soils of the two agricultural sites  (Table 3.2, Chapter 3) seems to 

be within the range where AM fungi have been found to be symbiotically active (see the 

Discussion section of Chapter 3).  

This report is the first on the molecular diversity of an AM fungal communities associated with 

date palm and from the whole Arabian Peninsula. Although the richness of the AM fungal taxa 

associated with this tree in two agricultural sites does not seem to be  exceptionally different 

from the richness associated with different plants in other ecosystems, the composition of this 

community suggests some degree of uniqueness. We believe that this study is contributing to a 

better understanding of the global biodiversity of such an important symbiosis through exploring  

one of the least known habitats in this respect.
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Chapter 5: General discussion 

 

5.1 Common trends of diversity revealed by using molecular and 

morphological approaches 

Only Glomus sinuosum and Glomus intraradices were detected as morphospecies in soil and as 

phylotypes inside roots. Although the morphological and molecular approaches used in this 

project revealed different AM fungal communities, they showed the following common diversity 

trends: 

•  A high dominance of the genus Glomus (Fig. 5.1): This is in accordance to the findings 

that under arid and semiarid environments, morphospecies and phylotypes belong to the 

genus Glomus were the dominant (Stutz et al. 2000; Uhlmann et al. 2006).  

•  The presence of a high number of taxa which cannot be identified to the species level:  

Out of 27 morphospecies (Table 2.1; Table 3.1), only 14 where identified to species 

level with high identification confidence, 12 resembled some known species and one 

seems to be an un-described species. Phylogenetically, the identities of most phylotypes 

were not clear. In trap culture roots, only three phylotypes where associated with known 

AM fungi (Glomus intraradices, Diversispora spurca and Glomus aurantium). Four 

phylotypes were similar to previously reported environmental sequences and two had no 

closely related sequences in the Genbank (Fig. 2.11). In the date palm field roots, only 

two sequences were associated to known species (Glomus sinuosum and Glomus 

proliferum) while three phylotypes were associated with AM fungal environmental 

sequences and four with no sequences in GenBank (Fig. 4.3) 
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•  Both morphological and molecular approaches suggested that the AM fungal communities 

in the two date palm sites were differentiated between the two sites (Fig. 3.9; Fig. 4.6). 

Some groups were specialised in each site in addition to some groups present in both 

sites. 
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Fig. 5.1 The affiliation of different AM fungal species detected in the present study. 

Phylogenetic tree from A. Schüßler’s website: www.lrz-muenchen.de/~schuessler/amphylo/   
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5.2 Richness and composition of AM fungi in Southern Arabia 

5.3.1 AM fungal richness  

Based on morphological identification of AM fungal spores, a total of 36 morphospecies were 

detected at five sites in Southern Arabia. Altogether, 31 species were detected in the field 

samples directly, and five additional ones were found upon trap culturing for eight months with a 

consortium of three AM fungal trap plant species. This is a high total richness given that so far 

only around 200 AM fungal species have been described worldwide for the phylum 

Glomeromycota (see: http://www.lrz-muenchen.de/~schuessler/amphylo/amphylo_species.html). 

In natural sites, 15 species were associated with the vegetation in the marginal sand dunes (Table 

2.1, Chapter 2), 13 with natural site adjacent to the modern agriculture site and only two with the 

vegetation in a Holocene extinct lake (Table 3.1, Chapter 3). The detected species richness seems 

to be in the range of richness in other similar dry habitats. Stutz et al. (2000) reported a range of 

7 to 14 species at 13 sampling sites in two arid regions and semi-arid grass lands in North 

America and in Namib Desert in Africa. Jacobson (1997a) reported 12 AM fungal species in soil 

samples of 10 sites in the Namib Desert. Uhlmann et al. (2006) reported, as well, 12 species from 

3 sites in an arid region of Namibia.  

In agricultural sites, 13 and 14 morphospecies were associated with date palm growing in 

modern and traditional sites, respectively (Table 3.1, Chapter 3). This is higher than the richness 

range (4 to 7 species) found to be associated with date palm in ten different sites in an arid zone 

Southwest of Morocco but closer to the overall richness of 10 species (Bouarmi et al. 2006). An 

exceptionally high richness of 42 species was reported by Li et al. (2007) in an agricultural land 

in Southwest China (Mean annual temperature is 21.9ºC, the highest up to 43ºC. Mean annual 

rainfall is 629 mm). The species richness range of 8 to 13 was found in lands with monocropping 
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in Central Europe (Oehl et al., 2003). Other studies on species richness in European and North 

American arable lands are in the same range found in Central Europe (Douds and Millner, 1999; 

Franke-Snyder et al., 2001; Kurle and Pfleger, 1996; Land and Schönbeck, 1991). 

The molecular techniques were used to target AM fungal entities colonizing roots coming from 

two different sources. One source was the trap culture plants established from rhizosphere soils 

of date palm, mango and Zygophyllum hamiense, all sampled in 2004 (Chapter 2). The other 

source of roots was date palm cultivated in two agricultural sites and sampled in 2006 (Chapter 

4). The roots of the trap culture plants were investigated using a different pair of primers (AM1-

NS31) than those used to investigate the field roots. Both molecular approaches, interestingly, 

revealed the presence of very similar number of taxa (9 and 10 from field and trap culture roots, 

respectively). Moreover, the composition of communities in both roots was exceedingly 

dominated by taxa which belong to the genus Glomus (8 out of 9 and 8 out of 10 taxa in fields 

and trap cultures, respectively).  

It was already discussed in chapter 4 that the average number of taxa associated with host plant 

species was found to  have a range from 5.2 in habitats under “strong anthropogenic” influence 

to 5.6 in temperate forests, 8.3 in temperate grasslands and 18.2 in tropical forests (Öpik et al., 

2006). With the exception of taxa number associated with tropical forests, the 9 to 10 taxa 

present in the our studied agricultural sites seem in the range of average number of taxa 

associated with different plants in different ecosystems. 
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5.3.2 AM fungal composition 

Biogeography is a science which studies all patterns of geographic variation in nature -from 

genes to entire communities and ecosystems- elements that vary across geographical gradients 

including those of area, isolation latitude, depth and elevation (Lomolino et al., 2006).  

There is a known old theory that microorganisms have no biogeography and they do not exhibit a 

taxa-area relationship (Beijerinck, 1913). However, recent evidence has challenged that view and 

showed that microbes can exhibit a taxa-area relationship (Horner-Devine et al. 2004). Öpik et 

al. (2006) used 26 published studies on the molecular identification of AM fungi colonizing roots 

of different plants to compare the diversity and composition of AM fungal communities in 

different environments around the world. Interestingly, they found that AM fungal communities 

exhibit different compositions in broadly defined habitat types like tropical forests, temperate 

forests and habitats under anthropogenic influence. Investigating AM fungal spores composition 

Stutz et al. (2000) proposed that pattern of taxonomic range of AM fungi in arid regions lands 

appears to exist. We hypothesized that the AM fungal communities in Southern Arabia should 

show a more similarity to another AM fungal community inhabit an environment which has 

some degree of similarities to Southern Arabia. To test this hypothesis, a cluster analysis (Fig. 

5.3) was performed. The analysis included those taxa which were found in the present study and 

which were identified to a species level with highest identification confidence. These species 

were Gl. sinuosum, Gl. etunicatum, Gl. constrictum, Gl. microaggregatum, Gl. microcarpum, 

Gl.eburneum, Gl. macrocarpum, Sc. fulgida, Sc. gregaria, Sc. calospora, Ac. spinosa, P. 

occultum, Am. gerdemannii and Ac. morrowiae. Phylotypes detected in the present study were 

excluded from the analysis in order to avoid the bias which might result from the non presence of 
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enough molecular phylotypes associated with the natural vegetation investigated by the present 

study.  

The selection of different published studies to construct a database of the cluster analysis was 

based on two methods. First, the search through the species distribution database of Department  

of Plant Pathology, University of Agriculture, Poland  

(http://www.agro.ar.szczecin.pl/~jblaszkowski/), a world wide known source of information on 

AM fungal taxonomy (Author: Prof. Janusz Blaszkowski). Second, and to complement the first 

searching method, the name of each fungus was searched on the Web of Science. The total 

number of the studies used in the comparison was 87, representing different broadly-defined 

habitats and land-uses (deserts, agricultural lands, natural lands and sandy soils) in the six 

continents (Table A, Appendix).   

The cluster analysis (Fig.5.2) indicates that the AM fungal community detected in the 

agricultural lands of Southern Arabia was closely related to those AM fungal communities which 

occur in sandy soils of different parts of the world. This might be due to some similar 

environmental factors controlling the composition of AM fungal communities in sandy soils.  

The communities of AM fungi present in the natural sites, however, seem to be unique and do 

not resemble a community of any of the broadly-defined habitats. Many studies provide evidence 

that the distribution of AM fungal spores in soil can be affected by biotic and abiotic factors, 

such as ecosystem type, soil pH, soil moisture, total soil C and N, temperature and disturbance 

regime (McGraw and Hendrix 1984; Koske 1987; Gibson and Hetrick 1988; Johnson et al. 1991, 

1992; Boddington and Dodd 2000; Carvalho et al., 2003).  

Therefore, the proposed different community composition present in the studied natural sites of 

Southern Arabia might have emerged due to unique biotic and abiotic environmental factors 
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(Fisher and Membery, 1998; Glennie and Singhvi, 2002; Ghazanfar and Fisher,1998) affecting 

these sites.  

 

Distance
0 10 20 30 40 50 60

Deserts

Agricultural lands

Natural lands

Sandy soils

Southern Arabia
(Agricultural lands)

Southern Arabia
(Natural lands)

  

Fig. 5.2 Cluster analysis based on the similarity of AM fungal species composition across the 

natural and agricultural ecosystems, deserts and sandy soils around the world.  The 

differentiation between the AM fungal communities in natural and agricultural sites in our study 

was already recognized and discussed in Chapter 3. Ward’s clustering method and squared 

Euclidean distance metric were used.  

 

These results show the need for a more elaborate study in order to compare the AM fungal 

community of the studied region of Southern Arabia to that in different habitats of the world. 
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Such a study needs more information on the AM fungal communities, both in study sites of 

Southern Arabia and in other parts of the world. 

 

5.3 Overall contributions of this work to science 

To my knowledge, this is the first comprehensive report on AM fungal communities in Arabian 

Peninsula, which was in this respect; known only through two studies reported a very low AM 

fungal diversity (Malibari et al, 1988; Khaliel, 1989). It has been shown, however, through the 

studies presented in this thesis that natural and agricultural sites of Southern Arabia were 

associated with a wide range of AM fungal species. It is, as well, the first molecular investigation 

ever on AM fungi associated with date palm, a socio-economically important plant in many dry 

lands of the world. An important finding was that the agricultural sites were associated with a 

higher AM fungal abundance, richness and inoculum potential than their surrounding natural 

sites suggesting a shifting impact of agricultural practices on native AM fungal communities 

(Fig. 5.3). 

The composition of AM fungal communities detected in the present study was compared to that 

found in broadly-defined habitats of the world to seek for biogeographical patterns. It was found 

that agricultural sites have a composition most similar to those found in sandy soils of different 

parts of the world. Natural sites, however, seem to maintain a unique species composition, which 

might have emerged due to unique local biotic and abiotic environmental factors. 

I believe that this scientific work was crucially needed to fill a gap in our knowledge about AM 

fungi in Southern Arabia, and consequently, contributes to the knowledge on global diversity, 

phylogeny and ecology of the AM fungi.  



General discussion  

 

104 
 

 

Natural ecosystem

Land-use change

Molecular identification of AM fungi in the roots 
of date palm trees

AM fungal communites colonizing the roots 
of date palm trees were differentiated 

between sites, and this is in agreement with 
morphological observations

Land-use change had a strong impact on the 
native AM fungal community

Date palm trees host wide range of AM 
fungal species

AM fungal species found in Southern Arabia  
were identified

Lack of knowledge  on AM fungi 
of Southern Arabia 

 

Fig. 5.3 The main achieved goals of the thesis.  
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5.4 Future perspective 

• Interaction of date palm with native AM fungal community 

Through the work of this thesis, one of the questions which surfaced was: when date palms are 

being introduced to natural sites, how do they interact with the already existing native AM fungal 

communities? This interaction might include preferences toward particular AM fungal species 

(Husband et al., 2002; S korová et al., 2007) which might lead to their higher abundance in the 

field. Other species which would not be able to associate with the introduced date palms might 

be pushed toward local ecological extinction (Estes et al. 1989). We hypothesize that date palm 

itself is responsible -at least partially- for AM fungal community shift described in Chapter 3, 

through its interaction with the native AM fungi. To test this hypothesis, the diversity of AM 

fungi associated with date palm seedlings will be compared with that associated with plants in 

the natural and agricultural sites (Table 3.1, Chapter 3) and to the AM fungal species produced in 

trap cultures consisted of a consortium of three trap plant species (Fig. 3.8 A) inoculated with the 

same soils as date palm seedlings. See the experimental design in appendix B. 

A B
 

Fig.  5.4 Introduction of date palm plantlets into natural and agricultural soils under green house 

conditions. (A) Plantlets produced through tissue culture technique. (B) Plantlets transferred in 

pots containing the AM fungal inocula. 
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Appendix A: Global distribution of AM fungal species 

Table A: Twenty three morphospecies detected in the present study and their global 
distribution. The country or the geological location of their occurrences is given in boldface 
followed by the available information on the host plant and/or the type of habitat.  AM fungal 
species were followed by the plant species which were associated with (H: Heliotropium 
kotschyi, Z: Zygophyllum hamiense, S: Salvadora persica, P: Prosopis cineraria, I: inter-plant 
vegetation, V: successional vegetation, DP(T): Traditional site of date palm, DP(M): Modern 
site of date palm), (S) indicates that the plants was growing in the sand dunes).This survey is 
not intended to be a complete assessment of all the studies reporting the presence of these 
species. However, it seeks examples of their occurrences in agricultural and natural sites in the 
six continents.  
 

AM fungal morphospecies Global distribution 

Gl. etunicatum 
 

DP(T) 

• Brazil: the states of Bahia and Sergipe, associated with 
citrus (Weber and Deoliveira, 1994) 

• Cameroon: undisturbed soil (Musoko et al.,1994)    
• China: desert plants (Shi et al., 2007)                                   
• Central Europe: the border between France, Switzerland 

and Germany in semi natural and agricultural lands (Oehl 
et al., 2005) 

• Germany:  a wet fallow agricultural habitat (Kuehn, 
1992) 

• Iran: wheat fields in the Golestan Province (Sadravi, 
2006) 

• Israel: (Blaszkowski et al., 2001) 
• Namibia : 

o a desert under different plant species colonizing a 
dune (Stutz et al., 2000) 

o a semi natural land in a semi-arid region 
(Uhlmann et al., 2004) 

• Pakistan: wheat fields (Nasim and Bajwa, 2003) 
• Poland: both agricultural and natural lands (Blaszkowski, 

1990) 
• U.S.A:  

o sandy soil (Koske and Tews, 1987) 
o a common species associated with vineyards in 

Northern California (Cheng and Baumgartner, 
2004) 
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o Chihuahuan and Sonoran Deserts  and semi-arid 
grasslands (Stutz et al., 2000) 

Gl. microaggregatum 
 

DP(M) 

• Brazil: trapped from soils collected from maize field 
(Carrenho et al., 2001) 

• China:  
o associated with  R. repens in the Pearl River Delta 

area Southern China (Chen et al.,  2008) 
o present the highest relative abundance in desert 

ephemerals in Southern China (Shi et al., 2007) 
o One of the most common species in a hot and arid 

region in Southern China (Li and Zhao, 2005) 
• India:  Western Ghats (Muthukumar et al., 1994) 
• Namibia: Namib desert (Stutz et al., 2000) 
• Pakistan: wheat fields (Nasim and Bajwa, 2003) 
• U.S.A:   

o an area planted with landscape trees and shrubs at 
an experimental site in Phoenix, AZ (Whitcomb 
and Stutz, 2007) 

o Chihuahuan and Sonoran Deserts  and semi-arid 
grasslands (Stutz et al., 2000)  

o Hawaian dunes (Koske, 1988)  
o maritime and lacustrine sand dunes of North 

America and Hawai (Koske et al., 1986) 

Gl. microcarpum 
 

Z, S, P, I, V, DP(M) 
 

• West of U.S.A and Canada:  Festuca (Molina et al., 
1978) 

• France:  described as a first species of the genus Glomus. 
Found in the province Touraine (Tulasne and Tulasne, 
1844) 

• India: sandy beach soils of Madras coast (Mohankumar 
et al., 1988) 

• Iran:  wheat fields in the Golestan Province (Sadravi, 
2006) 

• Israel (Blaszkowski et al., 2001) 
• Italy: dunes (Puppi and Riess, 1987)   
• Australia:  (Hayman and Stovold 1979) 
• Poland: in ca. 40 sites, including both cultivated natural 

vegetation (Blaszkowski, 1993) 
• U.S.A: citrus (Menge et al., 1977) 
• UK: frequently in Bristol area (Godfrey,1957) 

Sc. fulgida 
 

• Argentina: cultivated Triticum aestivum (Schalamuk et 
al., 2006)  
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DP(M) • China (Gai et al., 2006) 
• Portugal , Italy and Oman: trap culture of plants 

colonizing maritime dunes 
(www.agro.ar.szczecin.pl/~jblaszkowski) 

• U.S.A.: 
o Virginia: A. breviligulata fern colonizing maritime 

dunes of the Seashore in the State Park (Koske 
and Walker, 1986)  

o Florida:  U. paniculata and Panicum sp. growing 
in soils of a beach replenishment site (Silvia and 
Will, 1988) 

Sc. gregaria 
 

DP(T) 

• India: had high spore abundance in the coastal sand 
dunes of southwest coast (Beena et al., 2001) 

• Japan: costal dunes plants (Abe et al., 1994) 
• Korea: sand dunes plants (Kim et al., 1993) 
• Senegal: semi-arid area (Diallo et al., 1999)  

Sc. calospora 
 

DP(T+M) 

• Australia (Hall and Abbott, 1984) 
• Brazil: sand dunes plants (Trufem et al., 1989) 
• Canada: sandy soils and plants of maritime sand dunes 

and shores (Dalpé, 1989) 
• Iran: wheat fields in the Golestan Province (Sadravi, 

2006) 
• Italy: maritime sand dunes (Giovannetti, 1985) 
• Scotland: this species has originally been described from 

spores isolated from a cultivated soil of Scotland 
(Nicolson and Gerdemann, 1968).  

• U.S.A.:  sand dunes (Gemma and Koske, 1997)  

Ac. spinosa 
 

DP(T) 

• Argentina: plants in a native mountain grassland in 
Central Argentina (Lugo, 1999) 

• Brazil: the states of Bahia and Sergipe, associated with 
citrus (Weber and Deoliveira, 1994)  

• Canada: sandy soils and plants of maritime sand dunes 
and shores (Dalpé, 1989) 

• China: one of the most common species in a hot and arid 
region in Southern China (Li and Zhao, 2005) 

• Costa Rica: tropical forest (Lovelock and Ewel, 2005)  
• Germany:  a wet fallow agricultural habitat (Kuehn, 

1992) 
• India: plants growing on fairly established iron ore mine 

dumps in Goa (Rodrigues, 2000). 



Appendix A  

 
 

 

109 
 

• Namibia: semi natural land in a semi-arid region 
(Uhlmann et al., 2004) 

P. occultum 
 

P, DP(T) 

• Brazil:   
o field soils and nursery conditions (Trindade et al., 

2006) 
o maize (Carrenho et al., 2001) 

• Iran: wheat fields in the Golestan Province (Sadravi, 
2006) 

• Namibia: semi arid region (Uhlmann et al., 2004)  
• Poland: both agricultural and natural lands (Blaszkowski 

1990) 
• Spain: a dry and hot region of Alicante province (East 

Spain). Associated with  Pistacea lentiscus, one of the 
most representative shrub species from Mediterranean 
regions (Ferrol, 2004) 

• U.S.A.:  a common species associated with vineyards in 
Northern California (Cheng and Baumgartner, 2004) 

Am. gerdemannii 
 

P 

• Australia (Morton and Redecker, 2001) 
• Brazil: associated with Araucaria angustifolia (Moreira-

Souza et al., 2003) 
• Namibia: semi natural land in a semi-arid region 

(Uhlmann et al., 2004) 
• Poland:  in 19 samples of roots and rhizosphere soils of 

14 species of uncultivated plants. None of the almost 
1500 root and soil mixtures coming from cultivated sites 
of Poland contained spores of this fungus 
(www.agro.ar.szczecin.pl/~jblaszkowski) 

• U.S.A.:   
o This species was described from mountains of 

Oregon on volcanic soil in stressed and pioneer 
sites (Rose et al., 1979) 

o  Desert habitat (Allen and MacMahon, 1985) 
o  Soybean (An et al., 1990) 
o  Tobacco (An et al., 1993) 
o  Mown grassland (Bever et al., 1996) 
o  Truf grass (Koske et al., 1977) 

Glomus  eburneum 
 

H(S), Z, S, P, I, V, 
DP(T+M) 

• Iran: wheat fields in the Golestan Province (Sadravi, 
2006) 

• Namibia: a desert under different plant species 
colonizing a dune (Stutz et al., 2000 )                                   

• U.S.A: 
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o South Eastern Arizona, trapped from the  soil and 
root fragments from a semiarid giant sacaton,  
Sporobolus wrightii (Kennedy et al., 1999) 

o  In an area planted with landscape trees and shrubs 
at an experimental site in Phoenix, AZ (Whitcomb 
and Stutz, 2007) 

Resembling 
Glomus aureum 

 
M, S(S) 

• Central Europe: described as a new species from 
extensively managed grass land of upper Rhine valley of 
France, Germany, Switzerland and in Umbria, Italy (Oehl 
et al., 2003)  

• Switzerland: in agricultural soils (Oehl et al., 2004) 

Resembling 
Glomus aggregatum 

 
H(S), Z, S, P, I, V, 

DP(T+M) 

• China:  Agricultural lands in Sichuan Province (Wang et 
al., 2008)  

• Poland 
o many plants colonizing the Baltic Sea coast sandy 

soils of the banks of the Odra river (Blaszkowski, 
1991) 

o cultivated plants (Blaszkowski, 1993b) 
o this fungus has been the third species in frequency 

of occurrence in soils of the Bledowska Desert 
(Blaszkowski et al., 2002b) 

o  soils of the Tuchola Forests (Tadych and 
Blaszkowski, 2000b). 

• U.S.A: 
o dunes of the eastern coast of North America 

(Friese and Koske, 1991) 
o San Miguel Island (Koske and Halvorson, 1989) 

Resembling 
Glomus  intraradices 

 
M, S(S) 

• Canada (Dalpé, 1989) 
• China (Gai et al., 2006)  
• India (Mohankumar et al., 1988) 
• Iran:  wheat fields in the Golestan Province (Sadravi, 

2006) 
• Israel (Blaszkowski and Czerniawska, 2006) 
• Namibia: a desert under different plant species 

colonizing a dune (Stutz et al., 2000) 
• Poland: different ecosystems including sand dunes 

(www.agro.ar.szczecin.pl/~jblaszkowski) 
• Switzerland (Jansa et al., 2002; Oehl et al., 2005) 
• Turkey and Cyprus: 

(www.agro.ar.szczecin.pl/~jblaszkowski) 
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• U.S.A.:  
o Florida: associated with roots of many plant 

species  (Schenck and Smith, 1981, 1982)  
o California (Bethlenfalvay et al., 1984; Koske and 

Halvorson, 1989)  
o Kentucky (An et al., 1993) 
o Texas (Stutz and Morton, 1996)  
o Chihuahuan and Sonoran deserts  and semi-arid 

grasslands (Stutz et al., 2000) 

Resembling 
Glomus  hoi 

 
M 

• Central Canada: sugar maple roots (Moutoglis et 
al.,1995) 

• China: desert plant (Shi et al., 2007)                                 
• Iceland: sandy soils (Greipsson et al., 2002)     
• Pacific Northwest: in trap cultures from of plants 

transplanted from sand dunes, forests and roadsides in 
British Colombia, Canada, Oregon and Washington 
(Berch and Trappe, 1985) 

• Finland : the most frequently identified (Vestberg, 1995) 
• Namibia: in a semi-arid region (Uhlmann et al., 2004) 
• India: some tree species of Mudumalai forest area and 

arabica coffee (Sumana et al., 2002)   

Glomus  constrictum 
 

V, DP(T+M), S(S), M 

• Brazil: dune soils on the island of Santa Catarina 
(Stürmer and Bellei, 1994)                                                     
China: desert plants (Shi et al., 2007)    

• Canada: sandy soils and plants of maritime sand dunes 
and shores (Dalpé, 1989) 

• Germany:  a wet fallow agricultural habitat (Kuehn, 
1992) 

• India: Acacia nilotica plants in arid and semiarid region 
of Rajasthan (Kaushal, 2004) 

• Iran: wheat fields in the Golestan Province (Sadravi, 
2006; Zanganeh and Blaszkowki, 2001) 

• Israel: cultivated land (Blaszkowski et al. 2001)                  
• Italy: both in cultivated and uncultivated lands (Bedini et 

al., 2007) 
• Mexico and Guadeloupe (Trappe, 1977) 
• Morocco:  date palm (Phoenix dactylifera) (Bouamri et 

al., 2006) 
• Namibia: from semi natural land in a semi-arid region ( 

Uhlmann et al., 2004) 
• Poland: cultivated and uncultivated lands (Blaszkowski, 
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1993b) 
• U.S.A:  

o California: cultivated land (Haas and Menge, 
1990) 

o Hawaii: dune plants (Koske, 1988) 
• Spain:  a dry and hot region in Alicante province (East 

Spain). Associated with  Pistacea lentiscus, one of the 
most representative shrub species from Mediterranean 
regions (Ferrol, 2004) 

Glomus  macrocarpum 
 

S, P, I, V, Z(S) 

• Australia (Hall and Abbott, 1984) 
• Brazil: trapped from soils collected from maize field 

(Carrenho et al., 2002) 
• Canada: sandy soils and plants of maritime sand dunes 

and shores (Dalpé, 1989) 
• China: desert plants (Shi et al., 2007)   
• Germany:  a wet fallow agricultural habitat (Kuehn, 

1992) 
• India:  Acacia nilotica plants in arid and semiarid region 

of Rajasthan (Kaushal, 2004) 
• Morocco: date palm (Phoenix dactylifera) (Bouamri et 

al., 2006) 
• Poland: Tuchola Forests (Tadych and Blaszkowski,  

2000) 
• U.S.A.:  Wisconsin: sandy soils ( Koske and Tews, 1987) 

Resembling 
Glomus invermaium 

 
Z(S) 

• Brazil: cultivated soils (Purin et al., 2006) 
• China: desert plants (Shi et al., 2007) 
• New Zealand: (Hall, 1977)                                                
• Spain: semiarid lands (Diaz and Honrubia, 1993) 

Glomus sinuosum 
 

DP(T+M) 

• Brazil: un cultivated soils (Purin et al., 2006) 
• China:  

o a meadow steppe, desert steppe, steppe desert and 
typical desert (Shi et al., 2007) 

o  Adjacent cultivated land, old field and a never 
cultivated field (Li et al., 2007) 

• India:   
o a semi-arid soils of monsoonal southern under 

Cymbopogon caesius dominating  ungrazed 
grasslands  and in scrub jungles at slopes 
dominated by Acacia species (Muthukumar  and 
Udaiyan, 2002) 
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• Iran:  wheat fields in the Golestan Province (Sadravi, 
2006) 

• Italy: both in cultivated and uncultivated lands (Bedini et 
al., 2007)                                                                                
Korea: in cultivated land (Eom et al., 1992) 

• Mexico: in petroleum contaminated soils (Franco-
Ramirez et al.,  2007)                                                            

• U.S.A:  
o Florida: associated with citrus and bahia grass 

(Nicolson and Schenck, 1979) 
o Hawaii:  sand dunes plants (Koske, 1988) 

Resembling 
Acaulospora scrobiculata 

 
Z(S) 

In the maritime sand dunes of:  
• Australia (Koske, 1975)  
• Brazil (Stürmer and Bellei, 1994)  
• Canada (Dalpé, 1989)  
• Italy (Paccioni and Puppi, 1988) 
• Spain, Greece and Israel: 

(www.agro.ar.szczecin.pl/~jblaszkowski)                         
• U.S.A.  (Friese and Koske, 1991)  

 
In lacustrine dunes of:                                                         

• U.S.A. (Koske and Tews, 1987) 
 
In non-dune soils: 

• Argentina: plants in a native mountain grassland in 
Central Argentina (Lugo et al., 1999) 

• Brazil: the states of Bahia and Sergipe, associated with 
citrus (Weber and Deoliveira, 1994)                                      

• China (Zhang et al., 1992)                                                 
• Costa Rica: in a tropical forest ( Lovelock and Ewel, 

2005)  
• Finland (Vestberg, 1995)    
• Germany:  in a wet fallow agricultural habitat (Kuehn, 

1992) 
• India:  Western Ghats (Muthukumar et al., 1994) 
• Japan: humus-rich Ando soils (Saito and Vergas, 1991)   
• Korea: sand dunes plants (Kim et al., 1993) 
• Mexico (Trappe, 1977)     
• U.S.A. : apple rootstock plantings (Miller et al., 1985)  

Acaulospora  morrowiae 
 

• Brazil:  
o cultivated soils (Purin et al., 2006).  
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DP(M) o in the states of Bahia and Sergipe, associated with 
citrus (Weber and Deoliveira, 1994) 

• Colombia: native grasses (Schenck et al., 1984)          
• Poland:  

o a forest (Blaszkowski, 1990) 
o  maritime dunes in Slowinski National Park 

(Tadych and Blaszkowski, 2000a) 
o  inland dunes of the Bledowska Desert 

(Blaszkowski et al., 2002)                                      
• U.S.A.: West Virginia in high aluminum, low pH soils 

(Morton, 1986) 
• Costa Rica: a tropical forest (Lovelock and Ewel, 2005)  

Resembling 
Scutellospora biornata 

 
Z(S) 

• Argentina: central mountains grasslands (Lugo et al., 
1999) 

• Brazil:  naturally established citrus plants  (Carrenho, 
1998)                                                     

• Colombia: described as new species from  llanos 
Orientales (Spain et al., 1989) 

Resembling 
Scutellospra  persica 

 
DP(M), M 

• Brazil: trapped from soils collected from maize field 
(Carrenho et al., 2002) 

• Greece (Blaszkowski and Tadych, 1997) 
• Italy: dunes (Puppi and Riess, 1987) 
• Poland:  dunes of Swinoujscie (Blaszkowski and Tadych, 

1997) and the Slowinski National Park (Tadych and 
Blaszkowski, 2000) 

• U.S.A.:  a barrier dune in New Jersey (Koske and Walker, 
1985) and in the eastern coast (Bergen and Koske, 1984) 

Resembling 
Archaeospora trappeii 

 
DP(M) 

• Australia, Brazil, Cuba, Japan, Namibia, South 
Africa, Scotland (Morton and Redecker, 2001) 

• Central Europe: in a small area located in the borders of  
Germany, Switzerland and France  in a trap culture of  
grassland and arable land  but not in the field of these 
sites (Oehl et al., 2003) 

• Iceland: plants in sandy soil (Greipsson et al., 2002) 
• Israel: avocado (Blaszkowski et al., 2001)   
• Namibia: Namib desert (Stutz et al., 2000)                           
• Poland:  

o dune of the Bledowska Desert (Blaszkowski et al., 
2002a) 

o Slowinski National Park (Tadych and 
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Blaszkowski, 2000a)  
o Vistula Bark (Blaszkowski et al., 2002b) 
o soils of The Tuchola Forests (Tadych and 

Blaszkowski 2000b)   
• Taiwan:  bamboo vegetation (Wu and Chen, 1986)             
• U.S.A:   

o mown grassland (Bever et al., 1996) 
o field crops in monoculture on a newly cleared 

woodland site (Schenck and Kinloch, 1980) 
o Chihuahuan and Sonoran Deserts  and semi-arid 

grasslands (Stutz et al., 2000) 
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Appendix B: Experimental design 

A greenhouse pot experiment was initiated to test our hypothesis. Mycorrhiza-free plantlets of 

date palms (Fig. 5.4 A) were obtained from the tissue culture lab belonging to Ministry of 

Agriculture in Oman. They were transported to laboratory in Basel were they passed 4 weeks of 

weaning  process in which they were transplanted into sterilized “terra green” under control 

relative humidity of 80% and temperature between 20-30ºC . After the weaning period, the 

plantlets were transplanted to the green house (Fig. 5.4 B) using the same procedure, materials, 

amounts and type of inocula used for the trap other trap culture plants (Fig. 3.7). A set of control 

pots were also included. These control pots were inoculated with autoclaved soil collected from 

rhizosphere of Zygophyllum hamiense growing in the natural site and suspension of soil bacteria 

extracted from the same soil before it was autoclaved.  The bacteria suspension was obtained by 

fine filtration (LS 141/2; Schleicher & Schuell, Feldbach, Switzerland) of a soil suspension (50 g 

of air-dried soil suspended in 1 liter of water).  
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