Spin relaxation and decoherence of holes in quantum dots

Bulaev, D. V. and Loss, D.. (2005) Spin relaxation and decoherence of holes in quantum dots. Physical review letters, Vol. 95, H. 7 , 076805, 4 S..

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5254658

Downloads: Statistics Overview


We investigate heavy-hole spin relaxation and decoherence in quantum dots in perpendicular magnetic fields. We show that at low temperatures the spin decoherence time is 2 times longer than the spin relaxation time. We find that the spin relaxation time for heavy holes can be comparable to or even longer than that for electrons in strongly two-dimensional quantum dots. We discuss the difference in the magnetic-field dependence of the spin relaxation rate due to Rashba or Dresselhaus spin-orbit coupling for systems with positive (i.e., GaAs quantum dots) or negative (i.e., InAs quantum dots) g factor.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss)
UniBasel Contributors:Loss, Daniel
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physical Society
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:26
Deposited On:22 Mar 2012 13:53

Repository Staff Only: item control page