edoc

Items where contributor is "Martinazzi, Luca"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Item Type | Refereed | No Grouping
Jump to: 2016 | 2015 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2005

2016

Iula, Stefano and Maalaoui, Ali and Martinazzi, Luca. (2016) A fractional Moser-Trudinger type inequalitiy in one dimension and its critical points. Differential and Integral Equations, 29 (5/6). pp. 455-492.

Maalaoui, Ali and Martinazzi, Luca and Schikorra, Armin. (2016) Blow-up behaviour of a fractional Adams-Moser-Trudinger type inequality in odd dimension. Communications Partial Differential Equations, 41 (10). pp. 1593-1618.

2015

Jin, Tianling and Maalaoui, Ali and Martinazzi, Luca and Xiong, Jingang. (2015) Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three. Calculus of variations and partial differential equations, Vo. 52, H. 3-4. pp. 469-488.

Martinazzi, Luca and Hyder, Ali. (2015) Conformal metrics on R^{2m} with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete and continuous dynamical systems. Series A, Vol. 35, H. 1. pp. 283-299.

Da Lio, Francesca and Martinazzi, Luca and Riviere, Tristan. (2015) Blow-up analysis of a nonlocal Liouville-type equation. Analysis & PDE, Vol. 8, H. 7. pp. 1757-1805.

Martinazzi, Luca. (2015) Fractional Adams–Moser–Trudinger type inequalities. Nonlinear Analysis, 127. pp. 263-278.

2013

Martinazzi, Luca. (2013) Conformal metrics on R^2m with constant Q-curvature and large volume. Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, 30 (6). pp. 969-982.

2012

Martinazzi, Luca and Struwe, Michael. (2012) Quantization for an elliptic equation of order 2m with critical exponential non-linearity. Mathematische Zeitschrift, 270 (1-2). pp. 453-487.

Mantegazza, Carlo and Martinazzi, Luca. (2012) A note on quasilinear parabolic equations on manifolds. Annali della Scuola Normale di Pisa - Classe di Scienze, 11 (4). pp. 857-874.

Malchiodi, Andrea and Martinazzi, Luca. (2012) Critical points of the Moser-Trudinger functional on a disk. Journal of the European Mathematical Society, 16 (5). pp. 893-908.

Giaquinta, Mariano and Martinazzi, Luca. (2012) An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Pisa.

2011

Martinazzi, Luca. (2011) Quantization for the prescribed Q-curvature equation on open domains. Communications in Contemporary Mathematics, 13. pp. 533-551.

Ambrosio, Luigi and De Philippis, Guido and Martinazzi, Luca. (2011) Gamma-convergence of nonlocal perimeter functionals. Manuscripta Mathematica, 134 (3-4). pp. 377-403.

Martinazzi, Luca. (2011) A note on n-axially symmetric harmonic maps from B^3 into S^2 minimizing the relaxed energy. Journal of Functional Analysis, 261 (10). pp. 3099-3117.

2010

Martinazzi, Luca and Petrache, Mircea. (2010) Asymptotics and quantization for a mean-field equation of higher order. Communications Partial Differential Equations, 35. pp. 443-464.

Martinazzi, Luca and Petrache, Mircea. (2010) Existence of solutions to a higher dimensional mean-field equation on manifolds. Manuscripta Mathematica (133). pp. 115-130.

2009

Martinazzi, Luca. (2009) Classification of solutions to the higher order Liouville’s equation on {\mathbb{R}^{2m}}. Mathematische Zeitschrift, 263. pp. 307-329.

Martinazzi, Luca. (2009) Concentration-compactness phenomena in the higher order Liouville's equation. Journal of Functional Analysis, 256 (11). pp. 3743-3771.

Martinazzi, Luca. (2009) A threshold phenomenon for embeddings of {H^m_0} into Orlicz spaces. Calculus of Variations and Partial Differential Equations, 36 (4). pp. 493-506.

Martinazzi, Luca. (2009) An application of Q-curvature to an embedding of critical type. Oberwolfach Reports, 6 (3). pp. 1997-2000.

2008

Martinazzi, Luca. (2008) Conformal metrics on R^{2m} with constant Q-curvature. Rendiconti Lincei. Matematica e Applicazioni, 19 (4). pp. 279-292.

2005

Giaquinta, Mariano and Martinazzi, Luca. (2005) An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Pisa.