edoc

Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2)

Most, Patrick and Boerries, Melanie and Eicher, Carmen and Schweda, Christopher and Ehlermann, Philipp and Pleger, Sven T. and Loeffler, Eva and Koch, Walter J. and Katus, Hugo A. and Schoenenberger, Cora-Ann and Remppis, Andrew. (2003) Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2). Journal of biological chemistry, Vol. 278, H. 48. pp. 48404-48412.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6070195

Downloads: Statistics Overview

Abstract

S100A1 is a Ca2+-binding protein of the EF-hand type that belongs to the S100 protein family. It is specifically expressed in the myocardium at high levels and is considered to be an important regulator of cardiac contractility. Because the S100A1 protein is released into the extracellular space during ischemic myocardial injury, we examined the cardioprotective potential of the extracellular S100A1 protein on ventricular cardiomyocytes in vitro. In this report we show that extracellularly added S100A1 protein is endocytosed into the endosomal compartment of neonatal ventricular cardiomyocytes via a Ca2+-dependent clathrin-mediated process. S100A1 uptake protects neonatal ventricular cardiomyocytes from 2-deoxyglucose and oxidative stress-induced apoptosis in vitro. S100A1-mediated anti-apoptotic effects involve specific activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pro-survival pathway, including activation of phospholipase C, protein kinase C, mitogen-activated protein kinase kinase 1, and ERK1/2. In contrast, neither transsarcolemmal Ca2+ influx via the L-type channel nor protein kinase A activity seems to take part in the S100A1-mediated signaling pathway. In conclusion, this study provides evidence for the S100A1 protein serving as a novel cardioprotective factor in vitro. These findings warrant speculation that injury-dependent release of the S100A1 protein from cardiomyocytes may serve as an intrinsic mechanism to promote survival of the myocardium in vivo.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Structural Biology (Schoenenberger)
UniBasel Contributors:Schoenenberger, Cora-Ann
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Society of Biological Chemists
ISSN:0021-9258
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:01 Feb 2013 08:46
Deposited On:01 Feb 2013 08:44

Repository Staff Only: item control page