edoc

Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets

Hausser, Jean and Landthaler, Markus and Jaskiewicz, Lukasz and Gaidatzis, Dimos and Zavolan, Mihaela. (2009) Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. Genome research, Vol. 19, H. 11. pp. 2009-2020.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5844329

Downloads: Statistics Overview

Abstract

How miRNAs recognize their target sites is a puzzle that many experimental and computational studies aimed to solve. Several features, such as perfect pairing of the miRNA seed, additional pairing in the 3' region of the miRNA, relative position in the 3' UTR, and the A/U content of the environment of the putative site, have been found to be relevant. Here we have used a large number of previously published data sets to assess the power that various sequence and structure features have in distinguishing between putative sites that do and those that do not appear to be functional. We found that although different data sets give widely different answers when it comes to ranking the relative importance of these features, the sites inferred from most transcriptomics experiments, as well as from comparative genomics, appear similar at this level. This suggests that miRNA target sites have been selected in evolution on their ability to trigger mRNA degradation. To understand at what step in the miRNA-induced response individual features play a role, we transfected human HEK293 cells with miRNAs and analyzed the association of Argonaute/EIF2C-miRNA complexes with target mRNAs and the degradation of these messages. We found that structural features of the target site are only important for Argonaute/EIF2C binding, while sequence features such as the A/U content of the 3' UTR are important for mRNA degradation.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Computational & Systems Biology > Bioinformatics (Zavolan)
UniBasel Contributors:Zavolan, Mihaela
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Cold Spring Harbor Laboratory Press
ISSN:1088-9051
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:08 Jun 2012 06:56
Deposited On:08 Jun 2012 06:48

Repository Staff Only: item control page