edoc

Structure and mechanics of membrane proteins

Engel, A. and Gaub, H. E.. (2008) Structure and mechanics of membrane proteins. Annual Review of Biochemistry, Vol. 77. pp. 127-148.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257617

Downloads: Statistics Overview

Abstract

Evolution has tuned membrane proteins to exist in a lipid bilayer, provide for cell-cell communication, transport solutes, and convert energies. These proteins exhibit a hydrophobic belt that interacts with the lipid bilayer. Detergents are therefore used to extract membrane proteins and keep them in solution for purification and subsequent analyses. However, most membrane proteins are unstable when solubilized and hence often not accessible to NMR or X-ray crystallography. The atomic force microscope (AFM) is a powerful tool for imaging and manipulating membrane proteins in their native state. Superb images of native membranes have been recorded, and a quantitative interpretation of the data acquired using the AFM tip has become possible. In addition, multifunctional probes to simultaneously acquire information on the topography and electrical properties of membrane proteins have been produced. This progress is discussed here and fosters expectations for future developments and applications of AFM and single-molecule force spectroscopy.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Structural Biology (Engel)
UniBasel Contributors:Engel, Andreas H
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Annual reviews
ISSN:0066-4154
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:18

Repository Staff Only: item control page