Identification of Steroid Sulfate Transport Processes in the Human Mammary Gland

F. PIZZAGALLI, Z. VARGA, R. D. HUBER, G. FOLKERS, P. J. MEIER, AND M. V. ST-PIERRE

Division of Clinical Pharmacology and Toxicology (F.P., R.D.H., P.J.M., M.V.S.-P.), Department of Internal Medicine, and Department of Pathology (Z.V.), University Hospital of Zürich, and Institute of Pharmaceutical Chemistry (F.P., R.D.H., G.F.), Department of Applied Biosciences, Swiss Federal Institute of Technology, Zürich 8091, Switzerland

Circulating hormones and local biotransformation of steroid precursors are both sources of estrogen in human mammary tissue. Estrone-3-sulfate (E1S) is an important estrogenic form in premenopausal women, and dehydroepiandrosterone sulfate (DHEAS) constitutes a major adrenal precursor. Membrane transport systems that govern delivery of these anionic steroid conjugates to the mammary gland were investigated. RNA was screened by RT-PCR and Northern blotting for expression of organic anion transporting polypeptide (OATP) (solute carrier family 21A) and organic anion transporter (OAT) (solute carrier family 22A) gene families. OATP-B (SLC21A9) was the major carrier expressed; OATP-D (SLC21A11) and OATP-E (SLC21A12) were less abundant. In normal sections, OATP-B immunolocalized to the myoepithelium that surrounds the ductal epithelial cells. In invasive carcinoma, ductal epithelial cells were positive. OATP-B was characterized in stable transfected Chinese hamster ovary cells. E1S affinity constant (Km) [Km = 5 µmol/liter, maximum velocity (Vmax) Vmax = 777 pmol/mg/min] and DHEAS (Km = 9 µmol/liter, Vmax = 85 pmol/mg/min) were substrates. The prostaglandins (PG) A1 and PGE2 stimulated uptake of E1S and DHEAS by increasing Vmax 2-fold but not changing Km. The effect of PGE was selectively blocked by the lipophilic thiol reagent N-ethylmaleimide but not by the hydrophilic acetamido-4-(iodoacetyl)aminostilbene-2,2'-disulfonic acid, suggesting an interaction between the electrophilic cyclopen tenone ring and specific cysteine residues of OATP-B. (J Clin Endocrinol Metab 88: 3902–3912, 2003)

The mammmary gland is an estrogen-responsive tissue. Estrogens act through the estrogen receptors to direct normal lobular development, regulate epithelial cell growth, and increase the expression of steroid hormone metabolizing enzymes (1, 2). Moreover, estrogen is the most important etiological factor that supports the growth of estrogen receptor-positive breast tumors. One source of estrogen is local biosynthesis within the epithelial cells and stromal fibroblasts from the adrenally derived precursors, dehydroepiandrosterone (DHEA) and androstenedione. DHEA circulates primarily in its 3β-sulfate form, dehydroepiandrosterone sulfate (DHEAS), and serves as the principal conjugated prohormone for the biosynthesis of both estrogen [17β-estradiol (E2), estrone (E1), and 5α-androstenediol] and androgenic (testosterone) steroids in peripheral tissues (3, 4). The enzymes that catalyze the desulfuration of DHEAS, the subsequent 3β oxidation of DHEA to androstenedione and 17β reduction of androstenedione to testosterone, as well as the aromatization of testosterone and androstenedione into E2 and E1, respectively, have all been detected in breast tissue and studied in breast cancer cell lines (5–7). A second source of estrogen are the circulating hormones, the composition and concentration of which vary widely as a function of age. In premenopausal women, estrone 3-sulfate (E1S) is the major form, and its cyclical concentrations range from 2.5 to 15 nmol/liter (8, 9). In breast tissue, E1S is sequentially desulfated and reduced to the more potent E2 (7, 10). In postmenopausal women, the estrogen concentrations decline, although adrenally derived DHEAS levels can remain above 2–3 µmol/liter even into the seventh decade (11).

The activities of several key enzymes necessary for in situ estrogen production are higher in tumors compared with normal tissue (12, 13), in keeping with the widely held tenet that sex steroid exposure is a strong risk factor for breast cancer. There are also epidemiological data to support an association between the circulating concentrations of hormones and prohormones, including E1S and DHEAS, and the eventual risk of developing breast cancer, especially in the postmenopausal years (14, 15). This link implies that steroids in their sulfated, anionic form gain access to the intracellular milieu and can determine the extent of exposure to downstream, biologically active hormones. Sulfated steroid conjugates carry a net negative charge at physiological pH levels, and as such, their transfer across cell membranes is carrier mediated. Steroid sulfates have been identified as substrates for distinct members of two organic anion carrier gene families: the organic anion transporting polypeptide (OATP) superfamily, classified within the solute carrier 21A gene family (SLC21A) (16) and the organic anion transporter (OAT) family, encoded by the solute carrier 22A (SLC22A) genes (17). OATPs are multispecific transporters expressed in many tissues, including the liver, brain, and placenta, where they mediate the Na⁺-independent uptake of a host of organic anionic compounds. In particular, OATP-A (SLC21A3) (18), OATP-B (SLC21A9) (19), the liver-specific

Abbreviations: CHO, Chinese hamster ovary; DAPI, 4′,6-diamidino-2-phenylindole; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; E1, estrone; E1S, estrone 3-sulfate; E2, 17β-estradiol; IASD, acetamido-4-(iodoacetyl)aminostilbene-2,2′-disulfonic acid; Km, affinity constant; NEM, N-ethylmaleimide OAT, organic anion transporter; OATP, organic anion transporting polypeptide; PG, prostaglandin(s); SSC, saline sodium citrate; Vmax, maximum velocity.
OATP-C (SLC21A6) and OATP-8 (SLC21A8) (20, 21), OATP-E (SLC21A12) (22), and OATP-F (SLC21A14) (23) have all shown convincingly that they accept selected conjugated steroids as substrates. Four isoforms of the OAT carrier family have been characterized. Of these, OAT3 (SLC22A8) and OAT4 (SLC22A11) mediate the cellular uptake of certain steroid conjugates in the kidney, liver, brain, and placenta (24–26).

Because the transport processes operative in mammary tissue will govern the cellular entry of conjugated steroids, it follows that individual carrier proteins may, in part, be determinants of downstream estrogen exposure in target cells. Accordingly, the identification and characterization of the relevant transporters present in human mammary epithelia deserve a detailed investigation. The aim of this study was to identify and characterize the organic anion uptake systems for conjugated steroids. Our findings show that OATP-B (SLC21A9) may be the most functionally relevant steroid sulfate carrier present and is able to account for delivery of both E1S and DHEAS to normal and tumor breast tissue.

Materials and Methods

Materials

[6,7-3H]-E1S (53 Ci/mmol), [3H]-DHEAS (60 Ci/mmol), and [3H]-pregnenolone sulfate (389 mCi/mmol) were purchased from NEN Life Science Products (Boston, MA). [5,6-3H]-PGE1 and PGE2 were prepared by acid-catalyzed dehydration of [5,6-3H]-PGE1 and pregnenolone sulfate (389 mCi/mmol) were purchased from NEN Life Science Products (Boston, MA). [5,6-3H]-PGE1 and PGE2 were prepared by acid-catalyzed dehydration of [5,6-3H]-PGE1 and pregnenolone sulfate (389 mCi/mmol) were purchased from NEN Life Science Products (Boston, MA). [5,6-3H]-PGE1 and PGE2 were prepared by acid-catalyzed dehydration of [5,6-3H]-PGE1 and pregnenolone sulfate (389 mCi/mmol) were purchased from NEN Life Science Products (Boston, MA). [5,6-3H]-PGE1 and PGE2 were prepared by acid-catalyzed dehydration of [5,6-3H]-PGE1 and pregnenolone sulfate (389 mCi/mmol) were purchased from NEN Life Science Products (Boston, MA). [5,6-3H]-PGE1 and PGE2 were prepared by acid-catalyzed dehydration of [5,6-3H]-PGE1 and pregnenolone sulfate (389 mCi/mmol) were purchased from NEN Life Science Products (Boston, MA). [5,6-3H]-PGE1 and PGE2 were prepared by acid-catalyzed dehydration of [5,6-3H]-PGE1 and pregnenolone sulfate (389 mCi/mmol) were purchased from NEN Life Science Products (Boston, MA).

RT-PCR

Expression of the known members of the OATP and OAT gene superfamilies in normal human mammary tissue was studied by RT-PCR assay. Reverse transcription was performed using total RNA (Clontech, Palo Alto, CA) primed with Oligo(dT)$_{18}$ as a template and AMV Reverse Transcriptase (Promega, Wallisellen, Switzerland). PCR amplification used primers specific for each transporter (Table 1) and the following conditions: one cycle of 95°C for 2 min; 40 cycles of 95°C for 45 sec; primer-specific annealing temperature for 45 sec; 72°C for 1 min; and a final elongation of 72°C for 5 min. The primer-specific annealing temperature was 50°C for OATP-A, OATP-C, OATP-D, OATP-E, and OATP-F, and 58°C for HPGT, 63°C for OATP-B, and 55°C for all OATs.

Northern blot analysis

Twenty micrograms of normal human mammary gland total RNA (Clontech) per lane were loaded on a 1% agarose-formaldehyde gel. After electrophoresis, the gel was washed three times for 10 min in 10× saline sodium citrate (SSC) and transferred overnight in 20× SSC to a Hybridon-NX (Amersham Biosciences) nylon membrane. The blot was prehybridized for 30 min at 68°C in ULTRAHyb (Ambion, Austin, TX) and hybridized overnight at 68°C in the same buffer with a 32P-labeled antisense-RNA probe (nucleotides of the published sequences: OATP-A nts 1959–2614, accession no. NM_134331; OATP-D nts 266–984, accession no. NM_007256; OATP-D nts 1742–1905, accession no. NM_013272; OATP-E nts 1251–1551, accession no. NM_016354; OATP-F nts 1–545, accession no. AF260704, with a specific activity of 1.4 counts per minute × 106/ml). The blots were washed twice for 5 min with 2× SSC/0.1% SDS at 68°C, twice for 15 min with 0.1× SSC/0.1% SDS at 68°C, and then exposed to autoradiography film at −70°C with an intensifying screen, for 2 d for OATP-B and 5 d for OAT-P-A, OAT-P-D, OAT-P-E, and OAT-P-F.

Immunohistochemistry

Breast tissue was obtained from routine biopsies evaluated by the pathology department, sectioned at 10 μm on a cryostat, fixed for 5 sec in acetone at room temperature, air dried, and stored at −80°C. Sections were postfixed for 12 min in 4% paraformaldehyde in PBS (pH 7.4) and washed three times in PBS. Nonspecific binding was blocked for 30 min with 10% normal goat serum/0.05% Triton X-100 buffered saline. The sections were incubated for 1.5 h at room temperature with an affinity-purified OATP-B rabbit antisera (28), diluted to an IgG concentration of 70 μg/ml in ChemMate diluent (DAKO, Glostrup, Denmark) with 0.05% Triton. Control experiments were performed by incubating sections with normal rabbit IgG and by preadsorption of the antisera with 20 μg/ml of the antigenic peptide. Sections were washed three times with PBS, incubated for 30 min at room temperature with a Cy2-conjugated F(ab’)$_2$ fragment goat antirabbit IgG (Jackson ImmunoResearch, West Grove, PA), diluted to 3 μg/ml in DAKO ChemMate diluent, then washed (three times) in PBS. Finally, sections were incubated for 2 min in 5 mM 4′-6-diamidino-2-phenylindole (DAPI), washed with PBS, briefly rinsed with water, then mounted with fluorescent

TABLE 1. Detection of RT-PCR transcripts of the OATP and organic anion transporter gene superfamilies in normal human mammary RNA

<table>
<thead>
<tr>
<th>Gene</th>
<th>Transporter</th>
<th>Primer sequence forward (5′ → 3′)</th>
<th>Primer sequence reverse (5′ → 3′)</th>
<th>Transcript</th>
</tr>
</thead>
<tbody>
<tr>
<td>OATPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC21A3</td>
<td>OATP-A</td>
<td>CTTCAGTTGTGGTGGGAAATAATACC</td>
<td>TCCACAGGTAGTAGCACCTCC</td>
<td>+</td>
</tr>
<tr>
<td>SLC21A9</td>
<td>OATP-B</td>
<td>CATGGGACCGACGATGAGGGGACGGG</td>
<td>GGCCTGCGCCCATCAGTGTACCTG</td>
<td>−</td>
</tr>
<tr>
<td>SLC21A6</td>
<td>OATP-C</td>
<td>CAAATGCGAACGACCAATCAGCTT</td>
<td>GATATCGACCTCCAATAAGATGTTAG</td>
<td>−</td>
</tr>
<tr>
<td>SLC21A11</td>
<td>OATP-D</td>
<td>CTGTAACACGAGCAACCTGTGTCC</td>
<td>GACCTGAGTGTCAGGTCAGTGTCC</td>
<td>+</td>
</tr>
<tr>
<td>SLC21A12</td>
<td>OATP-E</td>
<td>GCCATGACCGACGACGGAAATGTG</td>
<td>TCTTGGTACGAGGACGAGGCC</td>
<td>−</td>
</tr>
<tr>
<td>SLC21A14</td>
<td>OATP-F</td>
<td>CAGAGAGAACATGAGTGTCC</td>
<td>CATATCTTTATATCCATTTTTAAGGGG</td>
<td>−</td>
</tr>
<tr>
<td>SLC21A8</td>
<td>OATP8</td>
<td>GAATTTAACGAGCACTGACAGTCACT</td>
<td>GCCAAATAGCTGATAGCAGG</td>
<td>−</td>
</tr>
<tr>
<td>SLC21A2</td>
<td>PGT</td>
<td>CGCGGAGCGACTCTGGT</td>
<td>CGCGATCAGAAGAACAGACC</td>
<td>+</td>
</tr>
<tr>
<td>OATs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC22A6</td>
<td>OAT1</td>
<td>CATTCACTCATGTGCTGAGTGTG</td>
<td>CTCAGCATTACGAGTTGTCCTTC</td>
<td>−</td>
</tr>
<tr>
<td>SLC22A7</td>
<td>OAT2</td>
<td>GATGACGACCGACGACCAAGCCCGATC</td>
<td>GAAAGGCTGACGCTAGTAAAGGGT</td>
<td>−</td>
</tr>
<tr>
<td>SLC22A8</td>
<td>OAT3</td>
<td>GTCTCGTGACGAGGTAAGCCG</td>
<td>GCAGAATGACGGACCAGCTG</td>
<td>−</td>
</tr>
<tr>
<td>SLC22A11</td>
<td>OAT4</td>
<td>CTCTCGGCGTTCCACAAAACATGACC</td>
<td>CCACCACGTAGTGTCAGTAACTCAG</td>
<td>−</td>
</tr>
</tbody>
</table>

RT-PCR was performed using total RNA from normal mammary gland as a template. Primers and PCR conditions specific for each transporter are described in Materials and Methods. (+), Transcript present; (−), no transcript detectable.
mounting medium (DAKO) and examined by confocal laser scanning microscopy (Leica, Wetzlar, Germany). For double-labeled immunofluorescence, one of the following primary antibodies was included: mouse monoclonal anti-human cytokeratin AE1/AE3 (DAKO), 1.74 µg/ml; mouse and bovine anti-human calponin Ab-1, clone CALP (NeoMark- ers, Fremont, CA), 2 µg/ml; or mouse monoclonal anti-Ki-67 antigen, clone MIB-1 (DAKO), 700 µg/ml. The Alexa Fluor 647-conju- gated F(ab')2 fragment of goat anti-mouse IgG (Molecular Probes, Eugene, OR), 2.5 µg/ml, served as the secondary antibody.

Stable transfection of OATP-B in CHO-K1 cells

Chinese hamster ovary (CHO)-K1 cells were cultured in DMEM (Life Technologies) supplemented with 10% fetal calf serum, 2 mmol/liter t-glutamine, 50 µg/ml t-proline, 100 U/ml penicillin, and 100 µg/ml streptomycin at 37°C with 5% CO2 and 95% humidity. Selective medium contained 500 µg/ml G418 (Life Technologies). The OATP-B open reading frame, originally cloned from human brain (19), was directionally cloned into the pIRE6neo2 (Clontech) expression vector and transfected into CHO-K1 wild-type cells by electroporation as fol- lows: subconfluent CHO-K1 cells were trypsinized and resuspended in cell culture medium. Approximately 107 cells were transferred to a 0.4-cm Gene Pulser cuvette (Bio-Rad, Hercules, CA), mixed with 20 µg plasmid and incubated for 10 min on ice before electroporation using a single electrical pulse with an initial field strength of 250 V, discharged from the 960-µF capacitor (Bio-Rad). After a 10-min incubation on ice, the cells were plated on 10-cm culture dishes, then selected in G418 (1000 µg/ml). Single clones were isolated from the transfected cell pool using cloning cylinders and tested for sodium-independent E5 uptake. The clone with the highest transport activity was selected.

For immunofluorescent detection of OATP-B in stably transfected CHO-K1 cells grown on glass coverslips, sodium butyrate (5 mmol/liter) was added to the culture medium for 24 h. Cells were fixed in 4% paraformaldehyde for 1 h, permeabilized for 10 min with saponin (0.1%) in PBS, and blocked with gelatin (2%) and BSA (1%) in PBS containing 0.1% saponin for 40 min, then incubated with OATP-B antisera, di- luted to 6 µg IgG per milliliter in PBS with 0.1% saponin and 1% BSA. The Cy2-conjugated F(ab')2 fragment goat anti-irritant secondary antibody was diluted in PBS with 1% BSA.

Transport assays

The uptake of radiolabeled substrates in OATP-B transfected CHO cells was measured in triplicate, as follows: cells were grown to con- fluency on 35-mm dishes and stimulated for 24 h with 5 mmol/liter sodium butyrate (29). Individual dishes were rinsed three times with prewarmed (37°C) uptake buffer consisting of 116 mmol/liter NaCl, 5.3 mmol/liter KCl, 1 mmol/liter NaH2PO4, 0.8 mmol/liter MgSO4, 5.5 mmol/liter tris-glucose, and 20 mmol/liter HEPES (pH 7.4). Uptake experi- ments were performed in 800 µl solution containing 0.2–0.3 µCi tritiated substrate supplemented with unlabeled compound to reach the indicated concentrations. Transport was stopped by 2 ml of ice-cold buffer (116 mmol/liter choline Cl, 5.3 mmol/liter KCl, 1 mmol/liter KH2PO4, 0.8 mmol/liter MgSO4, 5.5 mmol/liter tris-glucose, and 20 mmol/liter HEPES), followed by three additional washes. The cells were solubilized in 1 ml of 1% Triton, and the radioactivity was measured by liquid scintillation counting. Specific OATP-B-mediated uptake was determined by subtracting values from identical experiments conducted in wild-type CHO cells.

Real time quantitative PCR

Total RNA was extracted from the breast cancer cell line T-47D (American Type Culture Collection, Manassas, VA), CHO-K1 wild-type cells, and OATP-B-stable transfected CHO cells using the TRizol Reagent (Life Technologies). Additional RNA from the breast cell lines MCF-7 and MDA-MB-435 and the hepatocyte cell line Hep-G2 was purchased from Ambion, Inc. (Austin, TX). Reverse transcription of 2 µg total RNA was performed with random hexamer primers and 125 U reverse tran- scriptase (MultiScribe, Applied Biosystems, Rotkreuz, Switzerland). An aliquot (50 ng) was used as a template for real-time PCR (TaqMan, ABI PRISM 7700 Sequence Detector, Applied Biosystems). Primers and the VIC dye-labeled probe for 18S ribosomal RNA, which served as the internal control, were provided by Applied Biosystem. The primers and probe that detected OATP-B have been characterized previously (28): forward primer 5'-AGGACGTGGCCGACAAAT-3', reverse primer 5'- CCATTGGACAGACGAGAT-3', and VIC-labeled probe 5'-CATCAACGTCGTCTGACCACA-3'. To detect OATP-D, the following were designed: forward primer 5'GTTGTCACCTGCTTC- TAGCT-3', reverse primer 5'-TCCGTGTTGCCATACGATTT-3', and VIC-labeled probe 5'-ACAGACACAGCTTGGCTACA- GCC-3'. To detect OATP-E, the following were designed: forward primer 5'-CGAGCGAACCCGAGCTT-3', reverse primer ACATCCG- GTGATGAGACTG-3', and VIC-labeled probe 5'-AGACCTGCTCCTCCTCACTTGCC-3'.

Results

Detection of OATs in human mammary gland by RT-PCR and Northern blot analysis

RT-PCR of total RNA from normal mammary gland detected transcripts for the following carriers: OATP-A, OATP-B, OATP-D, OATP-E, and OATP-F. The liver-specific carriers, OATP-C and OATP-8, and the related PG trans- porter (SLC21A2) were not present, nor was expression of transporters belonging to the OAT family detected (Table 1). Subsequent Northern blot analyses (Fig. 1) confirmed the presence of OATP-B, which showed a major hybridization signal at 4 kb and a minor band at 1.7 kb after 2 d of exposure. OATP-D and OATP-E showed weaker signals at 3.8 kb and 3.3 kb, respectively, but required exposure for 5 d. Signals for OATP-A and OATP-F could not be detected by Northern blotting, suggesting a very low abundance.

Immunofluorescent localization of OATP-B in the mammary gland

Because of the apparent abundance at the RNA level rel- ative to the other carriers tested, OATP-B was chosen for further characterization. OATP-B was immunolocalized in frozen sections from biopsy material. In tissue with normal appearance, cut from the edges of tumor regions, the OATP-B immunolabeling was weak and discontinuous, and

Fig. 1. Northern blot analysis of OATP expression in human breast tissue. Twenty micrograms of total RNA from normal mammary gland were transferred to a nylon membrane and hybridized over-night with a specific antisense-RNA probe for OATP-A (A), OATP-B (B), OATP-D (D), OATP-E (E), and OATP-F (F), as described in Materials and Methods. Blots were washed with high stringency and exposed to autoradiographic film at -70°C for 2 d (OATP-B) or 5 d (OATP-A, OATP-D, OATP-E, OATP-F).
confined to the membranes of the external cell layer that surround the ductules (Fig. 2A). Control sections incubated with the preadsorbed OATP-B antibody were negative (Fig. 2B). Normal ductal epithelial cells did not show a signal.

Immunolocalization and transport activity of recombinant OATP-B in transfectants

To confirm the membrane expression of OATP-B in stably transfected CHO cells, we immunolocalized the protein after induction of transcription with sodium butyrate. The uniform, positive surface staining indicated marked expression at the plasma membrane (Fig. 3). Wild-type cells were negative (data not shown).

OATP-B mediates E1S uptake when expressed in oocytes (19) and in HEK293 cells (31) with affinity constant (Km) values estimated to be 4–6 μmol/liter. However, the assignment of DHEAS as a substrate is equivocal, and the extent of its interaction with other steroids has not been investigated. The validity of the OATP-B stably transfected CHO expression system was first tested for E1S. Uptake was linear for 20 sec (Fig. 4A) and saturable with an apparent Km value of 5 μmol/liter and a maximum velocity (Vmax) value of 777 pmol/mg protein-min (Fig. 4B). In cis-inhibition studies with 5 μmol/liter [3H]-E1S, DHEAS showed a dose-dependent effect that reached statistical significance at 50 μmol/liter (Fig. 5A). Another adrenally derived steroid hormone precursor, pregnenolone sulfate, was a more potent inhibitor and significantly inhibited E1S uptake to 50% and 20% of control values at 10 μmol/liter and 50 μmol/liter, respectively. Other pregnenolone derivatives, 17-OH pregnenolone sulfate and 21-OH pregnenolone sulfate, inhibited uptake to a moderate degree at the higher concentration tested (Fig. 5B). The unconjugated forms of pregnenolone, 17-OH pregnenolone and 21-OH pregnenolone, exerted no effect when tested at 10 μmol/liter (data not shown).

The inhibition by DHEAS and earlier findings that OATP-B-injected oocytes displayed a 1.6-fold signal over control oocytes (19) imply that DHEAS is a weak substrate for this carrier. Because of the importance of DHEAS as an estrogen precursor, the uptake of [3H]-DHEAS was reevaluated in the OATP-B expressing CHO cells. A significant uptake rate was measurable and showed linearity for 40 sec (Fig. 6A). Nevertheless, the OATP-B-specific signal was weak and displayed large variations when the difference (uptakeE1S − uptakeOATP-B) was calculated (Fig. 6B). To confirm that DHEAS uptake in OATP-B-transfected CHO cells was carrier-mediated over a broad concentration range, equation 1, describing saturable Michaelis-Menten kinetics with a non-

saturable first-order process, and equation 2, which describes simple nonsaturable first-order kinetics, were curve-fitted to the data.

\[
v = \frac{V_{\text{max}} \cdot [S]}{K_m + [S]} + P \cdot [S]
\]

(1)

\[
v = P \cdot [S]
\]

(2)

where \(v \) is the initial rate of uptake (pmol/min/mg), \([S]\) is the substrate concentration (μmol/liter), and \(P \) represents a first-order clearance term (μl/min/mg). The background signal in wild-type CHO cells was well described by equation 2. Total DHEAS uptake in OATP-B transfectants was best described by a saturable component plus a first-order process (equation 1) (Fig. 6B). The statistical improvement of the curve fit of equation 1 over equation 2 was assessed by the F test (\(F < 0.01 \)). The estimated \(K_m \) and \(V_{\text{max}} \) values calculated in this way were 9 μmol/liter and 85 pmol/min/mg, respectively, consistent with the fact that OATP-B has moderate affinity but low capacity for DHEAS. Conversely, no OATP-B-mediated uptake of \(^3\text{H}\)-pregnenolone sulfate could be identified (data not shown), despite the strong inhibition of \(E_1S \) transport by this steroid (Fig. 5).

The interaction of OATP-B and PG

Additional physiological substrates of OATP-B could influence the extent of steroid sulfate uptake in mammary tissue. OATP-B shares 76% identity with the PG transporter (SLC21A2), and other more distantly related members of the solute carrier family 21A, such as OATP-C, do transport PG (21). PGE\(_2\) is especially relevant as a potential substrate for OATP-B because high intratumoral levels are achieved via the cyclooxygenase pathway that is up-regulated in tumors relative to the surrounding normal tissue (32). The role of OATP-B in PG transport was reevaluated in the stable-transfected CHO cells. Neither PGE\(_1\) nor PGE\(_2\) inhibited \(^3\text{H}\)-E\(_1S\) uptake (Fig. 7A). Additional experiments with radiolabeled PGE\(_1\) and PGE\(_2\) confirmed that OATP-B did not mediate the uptake of PG (data not shown). Unexpectedly, the naturally occurring cyclopentenone PGA\(_1\), which is derived from PGE\(_1\), increased OATP-B-mediated \(^3\text{H}\)-E\(_1S\) transport (Fig. 7A). The PGA\(_1\)-mediated stimulation was detectable after 15 sec and was maximal at 1 min (Fig. 7B). No further stimulation occurred when transport was measured at longer intervals or when cells were preincubated with PGA\(_1\) (data not shown).
not shown). A more marked stimulation was observed at lower substrate concentrations (500 nmol/liter) with both 100 nmol/liter and 1 μmol/liter (Fig. 7B). PGA₂, a second cyclopentenone prostanoid derived from PGE₂, also enhanced E₁S uptake at similar concentrations. However, PGJ₂, a third cyclopentenone PG, which differs from the PG of the A series by the position of the reactive electrophilic carbon, had no effect (Fig. 7C). The PGA₁ and PGA₂ stimulation of transport was also manifest with DHEAS and to the same extent (an increase of 100% ± 5 and 100% ± 10 for PGA₁ and PGA₂, respectively) (Fig. 7D).

To further characterize the PGA-stimulated steroid sulfate transport, the estimation of kinetic parameters was repeated in the presence of 1 μmol/liter PGA₁. There was no difference in the Kₘ value for either substrate, but the Vₘₐₓ increased by 2-fold for DHEAS (from 85 ± 20 to 166 ± 19 pmol/min/mg) and 1.5-fold for E₁S (from 777 ± 45 to 1191 ± 36 pmol/min/mg). To determine whether PGA was a substrate for OATP-B and able to effect stimulation of transport from the trans-side of the cell, we measured the time-dependent uptake of [³H]-PGA₁. No OATP-B-mediated uptake of PGA₁ occurred (Fig. 8A). However, a significant signal was evident with both the OATP-B transfectants and wild-type cells, which could represent an element of membrane binding of the radiolabel.
The stimulation by PGA 1 and PGA 2 and not PGE 1 and PGE 2 suggests that the cyclopentenone moiety of the compound with its \(\text{H} \)-unsaturated carbonyl group (Fig. 9), is a key determinant of this activity. Accordingly, cyclopentenone (2-cyclopenten-1-one) itself should mimic the effect of PGA. To test this, E1S uptake was measured in the presence of 50 \(\mu \text{mol/liter} \) and 100 \(\mu \text{mol/liter} \) cyclopentenone, which resulted in a 1.3-fold and 1.5-fold increase, respectively, in the signal (Fig. 8B). This suggests that the mechanistic basis for the PGA stimulation is the chemical reactivity of the cyclopentenone ring. In particular, the electrophilic C11 of PGA1 and PGA2 (Fig. 9) is susceptible to addition reactions with nucleophiles such as the free sulfhydryl group of cysteine residues (33). To investigate whether Cys residues in the OATP-B protein may be target sites for the actions of PGA1 and PGA2, transport studies were performed in the presence of thiol reagents. Cells pretreated with 100 \(\mu \text{mol/liter} \) of the membrane-permeable NEM showed a 40% decrease in E1S uptake, suggesting that one or more Cys residues are involved in substrate binding and/or transport (Fig. 8C). In NEM-pretreated cells, the PGA1 stimulation was completely abrogated. This supports the notion that an interaction with cysteine residues regulates the actions of PGA1.

Additional experiments with the membrane impermeable, polar sulfhydryl reagent IASD at 500 \(\mu \text{mol/liter} \), which accesses only those Cys residues within a hydrophilic
environment, supported this view. E1S uptake was equally sensitive to the presence of IASD as with NEM (Fig. 8C). However, a 2-fold stimulation with PGA1 was still possible, in keeping with the hypothesis that the Cys residues reacting with PGA are inaccessible to the hydrophilic IASD but are nevertheless blocked by NEM.

The presence of OATPs in breast cancer cell lines

To establish whether widely used breast cancer cell lines expressed OATP carriers and could serve as in vitro models for additional studies of steroid sulfate transport, the mRNA expression of OATP-B, OATP-D, and OATP-E was measured in MCF-7, T47D, and MDA-MB-453 cell lines. For comparison, the expression levels in the OATP-B stably transfected CHO cells as well as in the Hep-G2 cell line, which reportedly expresses both OATP-B and OATP-E (34), are given. None of the breast cancer lines examined gave detectable signals for OATP-B above background levels (Table 2). Conversely, when standardized for expression in Hep-G2 cells, our studies identified MCF-7 as the cell line with the highest expression of OATP-E (13-fold higher than Hep-G2), whereas the MDA-MB-453 and T47-D cell lines express 10-fold and 100-fold less, respectively. Although no standard cell line was

after 1 min at 37 C. Cyclopentenone at 50 μmol/liter and 100 μmol/liter significantly stimulated transport compared with control conditions (no cyclopentenone). C, The effect of thiol reagents on PGA stimulation of OATP-B transport. E1S uptake was measured at 1 min in wild-type (■) and OATP-B transfectants (□) in the absence (bars 1, 3, and 5) and presence of PGA1 1 μmol/liter (bars 2, 4, and 6). The membrane permeable thiol reagent, NEM (bars 3 and 4) inhibited substrate binding and/or transport. The effect of PGA1 (bar 4) was blocked. The hydrophilic thiol reagent, IASD acid, also inhibited transport (bars 5 and 6), but transport was stimulated 2-fold by PGA1 (bar 6). Data are mean ± SD of triplicate determinations.

FIG. 8. Interaction of PGA with OATP-B. A, [3H]-PGA1 was tested as a substrate for OATP-B in wild-type CHO cells (○) and OATP-B transfectants (■) after stimulation for 24 h with sodium butyrate. Uptake was measured at 37 C for 1 min and 5 min. B, The effect of the cyclopentenone moiety of PGA on OATP-B-mediated E1S uptake. Wild-type CHO (WT) cells (■) and OATP-B transfectants (□) were incubated with cyclopentenone, and uptake of [3H]-E1S was measured

FIG. 9. Cyclopentenone PG. PGA1 and PGA2 both contain the cyclopentenone ring structure. The electrophilic carbon (C11) is indicated.
normal and tumoral breast tissue has been documented (34, protein MRP1, the expression of which in epithelial cells of will, nevertheless, be tempered by the multidrug resistance of OATP-B in determining the estrogen level of target cells and relevance of OATP-B in breast tumors. (38, 39), it could have an unpredictable influence on the status variability in expression levels detected in cancer patients gene (OATP-B, OATP-E, OATP-D).

TABLE 2. Real-time quantitative PCR of OATP carriers in human mammary cancer cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>OATP-B</th>
<th>OATP-E</th>
<th>OATP-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHO/OATP-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB-453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T47-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hep-G2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are mean ± sd of triplicate measurements. ND, Not detected.

a The data were calculated by subtracting the signal threshold cycles (Ct) of the internal standard (ribosomal 18S) from the Ct of the target gene (OATP-B, OATP-E, OATP-D).

b Values were normalized to the expression level of OATP-B transfected CHO, set to 100%.

c Values were normalized to the expression level of Hep-G2 cells, set to 100%.

available for OATP-D, MCF-7 again expressed the highest levels of OATP-D mRNA (approximately 100-fold more than T47-D and 500-fold more than MDA-MB-453) (Table 2).

Discussion

OATP-B appears to be one of the most abundant organic anion uptake carriers expressed in the human mammary gland. Generally, OATP family members exhibit broad substrate specificity, encompassing bile salts, sulfate, and glucuronide conjugates of endogenous and exogenous compounds, anionic peptides, and even cations in some cases (16). OATP-B is peculiar in that its substrate list is restricted, despite its expression in a broad range of tissues (22). The transport of E1S remains the best characterized function for this carrier and may represent its true physiological role in the mammary gland.

At the protein level, the expression of OATP-B in normal mammary tissue was confined to the myoepithelium. Myoepithelial cells have contractile properties required for lactation and can elaborate extracellular matrix proteins, such as collagen and laminin, that are needed to maintain polarity in the adjacent ductal epithelial cells (35). The current findings identify OATP-B as a steroid sulfate carrier in the myoepithelium. In view of the recent report that marked steroid sulfatase activity is also present in isolated myoepithelial cells (36), it is tempting to speculate that these cells engage in intercellular cross-talk to supply desulfated hormones to adjacent target cells. OATP-B is also expressed in the epithelia of invasive ductal carcinomas, which are characterized in part by the absence of myoepithelial cells. In these sections, expression was marked in the majority of tumor cells, including those in an active proliferating state. The presence of a steroid sulfate carrier in tumor cells could be a previously unrecognized factor, together with the elevated expression levels of the 17β-hydroxysteroid dehydrogenase type 1 and aromatase enzymes (12, 37), that contributes to the high intratumor levels of E2 reported in some cases. The influence of OATP-B in determining the estrogen level of target cells will, nevertheless, be tempered by the multidrug resistance protein MRP1, the expression of which in epithelial cells of normal and tumoral breast tissue has been documented (34, 38, 39). MRP1 can export E2 (40), and, considering the high variability in expression levels detected in cancer patients (38, 39), it could have an unpredictable influence on the status and relevance of OATP-B in breast tumors.

Independent of the eventual conversion to E2, DHEA itself may exert biological actions on mammary tissue, both on transcription events and through signal transduction mechanisms. There is evidence that DHEA contributes to estrogen receptor-dependent trans-activation of transcription (41, 42), and DHEA can inhibit vascular smooth muscle cell proliferation through an inhibition of phosphorylation signaling (43).

Pregnenolone sulfate, an adrenal steroid that serves as a precursor for DHEA and progesterone, achieves circulating concentrations of approximately 1 μmol/liter (44). There is some evidence that the enzymatic pathway from pregnenolone to 17-hydroxypregnenolone to DHEA and androstenedione is intact in human breast tissue (45) and that pregnenolone sulfate can accumulate in fibrocystic breast cyst fluid in concentrations up to 20 times greater than in serum (46). In light of previous findings that pregnenolone sulfate could inhibit OATP-B-mediated E2 uptake in an oocyte expression system and in basal membrane vesicles isolated from placental syncytiotrophoblast (28), we speculated that OATP-B may be a broad-spectrum steroid sulfate carrier and could accept such a relevant steroid hormone precursor. Despite the clearly evident interaction of pregnenolone sulfate with the OATP-B carrier to inhibit E2 transport, it is not a substrate. Therefore, OATP-B remains a selective carrier but one that is susceptible to inhibition by other physiological steroids.

The finding that PGA1 and PGA2 can stimulate OATP-B-mediated uptake implies that E2S and DHEAS cellular entry can be regulated locally at the plasma membrane, possibly with downstream consequences of increased hormone exposure in target cells. PGE2 is a product of arachidonic acid metabolism and is secreted by breast tumor cells as well as stromal cells (47–49). Its formation is catalyzed by cyclooxygenase 2, an enzyme up-regulated in breast cancer tissue. PGA1 and PGA2 arise from the dehydration of PGE1 and PGE2, respectively, both intracellularly and in the circulation. It follows that PGA1 and/or PGA2 are physiologically relevant and available for interaction with the OATP-B carrier. The mode of this interaction requires detailed study, but the present findings emphasize that the reactive cyclopentenone ring and cysteine residues are critical elements (Fig. 8, B and C). PGA can form adducts with selected proteins: PGA1 covalently binds to IκB kinase to inhibit the phosphorylation of IκBa (50), and PGA2 binds covalently to Cys 47 of the
glutathione S-transferase P1 isozyme (51). Therefore, a re-
action between PG1/PG2 and one or more cysteine res-
due of OATP-B can be counted as a plausible mechanism but
one that must accommodate a resulting increase in activity
rather than a decrease. As with the other members of
the human OATP superfamily, OATP-B has several Cys residues
within the purported extracellular domains (16). It is likely
that one or more are important for substrate binding and
transport because E2S uptake is sensitive to the thiol reagents,
NEM and IASD. PG1 remains effective in the presence of
the impermeable IASD, suggesting that PG1 is acting at a
distinct site, inaccessible to the hydrophilic reagent but vul-
nerable to the more lipophilic PG. The mechanism by which
the proposed PG1-OATP-B interaction stimulates transport
has not been addressed here. One reasonable hypothesis
volves consideration of the quaternary structure of this
integral membrane protein. OATP-B has 12 putative
membrane-spanning domains, a characteristic it shares with
all members of the solute carrier family SLC21A (16). Other
membrane transporters with a similar 12 trans-membrane
domain structure, such as glucose transporter type 1 belong-
ing to the SLC2A family, form oligomers mediated by disulfide bonds. A change
in the state of oligomerization carries functional con-
sequences (52, 53). If OATP-B shares these biochemical fea-
tures, it is possible that PGA could intervene at critical Cys
residues to induce a more favorable oligomeric structure.

OATP-B was not expressed in three widely used, pheno-
typically characterized breast cancer cell lines (Table 2). This
precludes their fortuitous use as model cell lines in which to
conduct additional regulatory studies against backgrounds of
varying steroid hormone receptor levels and metabolic
pathways. The lack of OATP-B notwithstanding, both MCF-7
and T47-D cells respond positively to exposure to E1S and
DHEAS, with changes in downstream metabolites and
growth (4, 54, 55). The fact that both cell lines express
OATP-D and OATP-E to some degree (Table 2) and that E1S
is listed as a weak substrate for both of these carriers (22)
could account for this. Whether OATP- D and OATP-E have
a role in determining steroid hormone levels in human breast
tissue has yet to be examined.

The perceived risk of estrogen exposure in the genesis and
progression of breast cancer is strong. In light of the current
findings, additional studies that specifically address 1) the
comparative expression of OATP-B in breast tumors and
normal tissue and 2) the possible coordinate regulation of
this carrier with enzymes that metabolize precursors to
downstream, biologically active hormones, are warranted.
Moreover, the possibility that the interaction with PG of the
A series constitutes a point of regulation for the actions of
OATP-B in breast tissue merits further consideration.

Acknowledgments

We are grateful for the help provided by Dr. Matthias Hoechli and
the use of the facilities of the Electron Microscopy Laboratory, University of
Zürich.

Address all correspondence and requests for reprints to: M. V. St-
Pierre, Ph.D., Division of Clinical Pharmacology and Toxicology,
Department of Internal Medicine, University Hospital Zürich, 100 Rämistrasse,
Zürich 8091, Switzerland. E-mail: stpierre@kpt.unizh.ch.

This work was supported by Grant 01538 from the Novartis Foun-
dation for Biomedical Research (to M.V.S.-P.), a grant from the Univer-
sity of Zürich Forschungskommission (to M.V.S.-P.), and grants from
the National Science Foundation, Switzerland (31-67173.01, to M.V.S.-P.,
and 31-66410.00, to P.J.M.).

References

gland structure and development. Microsc Res Tech 51:204–223
2. Katzenellenbogen BS, Katzenellenbogen JA 2000 Estrogen receptor trans-
scription and transactivation: estrogen receptor α and estrogen receptor β:
regulation by selective estrogen receptor modulators and importance in breast
Candas B 1998 DHEA and the intracrine formation of androgens and estrogens
in peripheral target tissues during aging. Steroids 63:322–326
dehydroepiandrosterone-sulfate predicts breast cancer progression during
new aromatase inhibitor therapy and stimulates breast cancer cell growth in
5. Schmitt M, Klinga KA, Brönner B, Mory D, Mayer D 2001 Dehydroepiandro-
sterone stimulates proliferation and gene expression in MCF-7 cells after con-
version to estradiol. Mol Cell Endocrinol 173:1–13
6. Magnaghi M, Bonotiglio D, Pezzi V, Carnino A, Marsico S, Rago V, Viv-
acqua A, Picard D, Ando S 2002 Aromatase overexpression enhances the
stimulatory effects of adrenal androgens on MCF7 breast cancer cells. Mol Cell
Endocrinol 193:13–18
Comparison of estrogen concentrations, estrone sulfate and aromatase ac-
tivities in normal, and in cancerous, human breast tissues. J Steroid Biochem
Mol Biol 72:23–27
sulfate concentration in plasma of normal individuals, postmenopausal
Effects of endogenous sex hormones on breast cancer in postmenopausal
Metabolism of estrone and estradiol by normal breast tissue: influence of menopausal
serum levels of unconjugated dehydroepiandrosterone and its sulphate in
17β-Hydroxysteroid dehydrogenase type 1 and type 2 in ductal carcinoma in
situ and intraductal proliferative lesions of the human breast. Breast Cancer
Res 1:101–108
17β-Hydroxy-5-androstan-3β-ol: a new metabolite in breast cancer: a correlation of
clinical and pathological parameters. Br J Cancer 82:518–523
14. Dorgan JF, Stanczyk FZ, Longcope C, Stephenson Jr HE, Chang L, Miller R,
Franz C, Falk RT, Kahle L 1998 Relationship of serum dehydroepiandro-
sterone (DHEA), DHEA sulfate, and 5-androstane-3β,17β-diol to risk of breast
cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 7:
171–181
15. Endogenous Hormones and Breast Cancer Collaborative Group 2002
Endogenous sex hormones and breast cancer in postmenopausal women: re-
polypeptides. Biochim Biophys Acta 1609:141–178
17. Sweet DH, Bush KT, Nigam SK 2001 The organic anion transporter family:
from physiology to entogeny and the clinic. Am J Physiol Renal Physiol
281:F197–F205
18. Kullak-Ublick GA, Fisch T, Oswald M, Hagenbuch B, Meier PJ, Beuers U,
Paumgartner G 1998 Dehydroepiandrosterone sulfate (DHEAS): identification of
polyptide B (OATP-B) and its functional comparison with three other
transporting polyptide localized to the basolateral hepatocyte membrane.
Am J Physiol Gastrointest Liver Physiol 278:F156–F164
M, Suzuki M, Naitoh T, Matsuno S, Yawo H 1999 Identification of a novel
identification and characterization of novel members of the human organic
anion transporter (OATP) family. Biochem Biophys Res Commun 273:251–260
Identification of a novel human organic anion transporting polypeptide as a
high affinity thyroxine transporter. Mol Endocrinol 16:2283–2296
2001 Identification and characterization of human organic anion transporter 3
expressing predominantly in the kidney. Mol Pharmacol 59:1277–1286
325/H9252
2001 In-
1999 The human mammary
tion by novel non-steroidal steroid sulfatase inhibitors. J Steroid Biochem Mol
2002 Signaling pathways regu-
cancer development. Breast Cancer Res Treat 76:103
2002 Dehydroepiandrosterone inhibits human
2002 Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of
1999 Correlation of aromatase and cytochrome P450 expression in human breast
2000 Stimulation of MCF-7 breast cancer cell
2000 Aromatase and prostaglandin E2 stimulation by cyclopentenone prostaglandins.
2000 Molecular
276:6404–6411
2001 Cyclopentenone prostaglandins: new insights on
1996 Estrogen biosynthesis
874
1993
827
The Endocrine Society. Downloaded from press.endocrine.org by [individualUser.displayName] on 04 February 2014. at 06:40 For personal use only. No other uses without permission. All rights reserved.