edoc

Expression of members of the multidrug resistance protein family in human term placenta

St-Pierre, M. V. and Serrano, M. A. and Macias, R. I. and Dubs, U. and Hoechli, M. and Lauper, U. and Meier, P. J. and Marin, J. J.. (2000) Expression of members of the multidrug resistance protein family in human term placenta. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, Vol. 279, H. 4 , R1495-R1503.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5261672

Downloads: Statistics Overview

Abstract

The placenta serves, in part, as a barrier to exclude noxious substances from the fetus. In humans, a single-layered syncytium of polarized trophoblast cells and the fetal capillary endothelium separate the maternal and fetal circulations. P-glycoprotein is present in the syncytiotrophoblast throughout gestation, consistent with a protective role that limits exposure of the fetus to hydrophobic and cationic xenobiotics. We have examined whether members of the multidrug resistance protein (MRP) family are expressed in term placenta. After screening a placenta cDNA library, partial clones of MRP1, MRP2, and MRP3 were identified. Immunofluorescence and immunoblotting studies demonstrated that MRP2 was localized to the apical syncytiotrophoblast membrane. MRP1 and MRP3 were predominantly expressed in blood vessel endothelia with some evidence for expression in the apical syncytiotrophoblast. ATP-dependent transport of the anionic substrates dinitrophenyl-glutathione and estradiol-17-beta-glucuronide was also demonstrated in apical syncytiotrophoblast membranes. Given the cellular distribution of these transporters, we hypothesize that MRP isoforms serve to protect fetal blood from entry of organic anions and to promote the excretion of glutathione/glucuronide metabolites in the maternal circulation.
Faculties and Departments:11 Rektorat und Verwaltung > Vizerektorat Forschung
UniBasel Contributors:Meier-Abt, Peter J.
Item Type:Article, refereed
Bibsysno:Link to catalogue
Publisher:American Physiological Society
ISSN:0002-9513
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:21
Deposited On:22 Mar 2012 13:23

Repository Staff Only: item control page