edoc

SycE allows secretion of YopE-DHFR hybrids by the Yersinia enterocolitica type III Ysc system

Feldman, M. F. and Muller, S. and Wuest, E. and Cornelis, G. R.. (2002) SycE allows secretion of YopE-DHFR hybrids by the Yersinia enterocolitica type III Ysc system. Molecular microbiology, Vol. 46, H. 4. pp. 1183-1197.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5259163

Downloads: Statistics Overview

Abstract

The Ysc type III secretion system allows Yersinia enterocolitica to translocate virulence proteins, called Yop effectors, into the cytosol of eukaryotic cells. Some of the Yop effectors possess an individual chaperone called a Syc protein. The first 15 amino acids of the YopE effector constitute a secretion signal that is sufficient to promote secretion of several reporter proteins. Residues 15-50 of YopE comprise the minimal binding domain for the SycE chaperone. In this study, we investigated the secretion by the Ysc system of several YopE-DHFR hybrid proteins with different folding properties, and evaluated the role of SycE, the cognate chaperone of YopE, in this context. We have analysed the secretion of hybrids containing 16 (YopE16), 52 (YopE52) and 80 (the complete region covered by the chaperone, YopE80) amino acids of YopE or full-length YopE (YopEFL) with wild-type DHFR and two mutants with altered folding properties. The hybrids containing DHFR delta77, the mutant whose folding properties are the most drastically affected, could be secreted in all the conditions tested, even in the absence of the chaperone SycE. In contrast, DHFRwt could only be secreted fused to the first 52 amino acids of YopE, and its secretion was strictly dependent on SycE. The hybrids YopE80-DHFRwt and YopEFL-DHFRwt were not secreted. YopEFL-DHFRwt completely jammed the channel in an SycE-dependent fashion. Our experiments indicate that, in order to be secreted, proteins must be unfolded or only partially folded, and that TSS chaperones could keep their substrates in a secretion-competent conformation, probably by preventing their folding. In addition, they show that the secretion apparatus can reject folded proteins if they are not deeply engaged into the injectisome.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Molecular Microbiology (Cornelis)
UniBasel Contributors:Cornelis, Guy R.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Blackwell
ISSN:0950-382X
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:21

Repository Staff Only: item control page