edoc

Automatic slice positioning (ASP) for passive real-time tracking of interventional devices using projection-reconstruction imaging with echo-dephasing (PRIDE)

Patil, S. and Bieri, O. and Jhooti, P. and Scheffler, K.. (2009) Automatic slice positioning (ASP) for passive real-time tracking of interventional devices using projection-reconstruction imaging with echo-dephasing (PRIDE). Magnetic resonance in medicine : MRM : an official journal of the International Society for Magnetic Resonance in Medicine, Vol. 62. pp. 935-942.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6006208

Downloads: Statistics Overview

Abstract

A novel and fast approach for passive real-time tracking of interventional devices using paramagnetic markers, termed "projection-reconstruction imaging with echo-dephasing" (PRIDE) is presented. PRIDE is based on the acquisition of echo-dephased projections along all three physical axes. Dephasing is preferably set to 4pi within each projection ensuring that background tissues do not contribute to signal formation and thus appear heavily suppressed. However, within the close vicinity of the paramagnetic marker, local gradient fields compensate for the intrinsic dephasing to form an echo. Successful localization of the paramagnetic marker with PRIDE is demonstrated in vitro and in vivo in the presence of different types of off-resonance (air/tissue interfaces, main magnetic field inhomogeneities, etc). In order to utilize the PRIDE sequence for vascular interventional applications, it was interleaved with balanced steady-state free precession (bSSFP) to provide positional updates to the imaged slice using a dedicated real-time feedback link. Active slice positioning (ASP) with PRIDE is demonstrated in vitro, requiring approximately 20 ms for the positional update to the imaging sequence, comparable to existing active tracking methods.
Faculties and Departments:03 Faculty of Medicine > Bereich Querschnittsfächer (Klinik) > Ehemalige Einheiten Querschnittsfächer (Klinik) > Radiologische Physik (Scheffler)
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Querschnittsfächer (Klinik) > Ehemalige Einheiten Querschnittsfächer (Klinik) > Radiologische Physik (Scheffler)
UniBasel Contributors:Scheffler, Klaus
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Wiley-Liss
ISSN:0740-3194
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:24 May 2013 09:21
Deposited On:24 May 2013 09:01

Repository Staff Only: item control page