edoc

Dimethylfumarate inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine secretion

Seidel, P. and Merfort, I. and Hughes, J. M. and Oliver, B. G. G. and Tamm, M. and Roth, M.. (2009) Dimethylfumarate inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine secretion. American journal of physiology : AJP, Vol. 297 , L326-339.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6003802

Downloads: Statistics Overview

Abstract

The antipsoriatic dimethylfumarate (DMF) has been anecdotically reported to reduce asthma symptoms and to improve quality of life of asthma patients. DMF decreases the expression of proinflammatory mediators by inhibiting the transcription factor NF-kappaB and might therefore be of interest for the therapy of inflammatory lung diseases. In this study, we determined the effect of DMF on platelet-derived growth factor (PDGF)-BB- and TNFalpha-induced asthma-relevant cytokines and NF-kappaB activation by primary human asthmatic and nonasthmatic airway smooth muscle cells (ASMC). Confluent nonasthmatic and asthmatic ASMC were incubated with DMF (0.1-100 microM) and/or dexamethasone (0.0001-0.1 microM), NF-kappaB p65 siRNA (100 nM), the NF-kappaB inhibitor helenalin (1 microM) before stimulation with PDGF-BB or TNFalpha (10 ng/ml). Cytokine release was measured by ELISA. NF-kappaB, mitogen and stress-activated kinase (MSK-1), and CREB activation was determined by immunoblotting and EMSA. TNFalpha-induced eotaxin, RANTES, and IL-6 as well as PDGF-BB-induced IL-6 expression was inhibited by DMF and by dexamethasone from asthmatic and nonasthmatic ASMC, but the combination of both drugs showed no glucocorticoid sparing effect in either of the two groups. NF-kappaB p65 siRNA and/or the NF-kappaB inhibitor helenalin reduced PDGF-BB- and TNFalpha-induced cytokine expression, suggesting the involvement of NF-kappaB signaling. DMF inhibited TNFalpha-induced NF-kappaB p65 phosphorylation, NF-kappaB nuclear entry, and NF-kappaB-DNA complex formation, whereas PDGF-BB appeared not to activate NF-kappaB within 60 min. Both stimuli induced the phosphorylation of MSK-1, NF-kappaB p65 at Ser276, and CREB, and all were inhibited by DMF. These data suggest that DMF downregulates cytokine secretion not only by inhibiting NF-kappaB but a wider range of NF-kappaB-linked signaling proteins, which may explain its potential beneficial effect in asthma.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Pulmonary Cell Research (Roth/Tamm)
UniBasel Contributors:Tamm, Michael
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physiological Society
ISSN:0002-9513
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:24 May 2013 09:21
Deposited On:24 May 2013 08:58

Repository Staff Only: item control page