edoc

Functional analysis of the chicken delta1-crystallin enhancer activity in Drosophila reveals remarkable evolutionary conservation between chicken and fly

Blanco, J. and Girard, F. and Kamachi, Y. and Kondoh, H. and Gehring, W. J.. (2005) Functional analysis of the chicken delta1-crystallin enhancer activity in Drosophila reveals remarkable evolutionary conservation between chicken and fly. Development, Vol. 132, H. 8. S. 1895-1905.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257280

Downloads: Statistics Overview

Abstract

Functional conservation of enhancers among evolutionarily diverged organisms is a powerful way to identify basic regulatory circuits and key developmental regulators. This is especially applicable to Crystallin genes. Despite unexpected heterogeneity and diversity in their DNA sequences, many studies have revealed that most of the Crystallin genes are regulated by a relatively small set of developmentally important transcription factors. The chicken delta1-crystallin is one of the best-characterized Crystallin genes. Its lens-specific regulation is governed by a 30 bp long DC5 fragment present in the third intron of the gene. DC5 contains PAX6 and SOX2 binding sites, and its activity depends on the cooperative binding of these two transcription factors. To test the idea that Pax6 and Sox2, together with the DC5 enhancer, could form a basic regulatory circuit functional in distantly related animals, we introduced the DC5 fragment into Drosophila and studied its activation pattern and regulation. The results show that the DC5 enhancer is not only active in the compound eye but, remarkably, is specifically active in those cells responsible for Crystallin secretion in Drosophila, i.e. the cone cells. However, regulation of the DC5 enhancer is carried out not by Pax6, but by Pax2 (D-Pax2; shaven--FlyBase) in combination with the Sox2 homologue SoxN. Both proteins (D-PAX2 and SOXN) bind cooperatively to the DC5 fragment and activate the enhancer synergistically. As PAX6 and PAX2 proteins derive from the same ancestor, we propose that during evolution Pax6 function in vertebrate lens development was retained by Pax2 in Drosophila.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Cell Biology (Gehring)
UniBasel Contributors:Gehring, Walter Jakob
Item Type:Article, refereed
Bibsysno:Link to catalogue
Publisher:Company of Biologists
ISSN:0950-1991
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:19
Deposited On:22 Mar 2012 13:17

Repository Staff Only: item control page