edoc

Origin of the deep Bering Sea nitrate deficit : constraints from the nitrogen and oxygen isotopic composition of water column nitrate and benthic nitrate fluxes

Lehmann, M. F. and Sigman, D. M. and McCorkle, D. C. and Brunelle, B. G. and Hoffmann, S. and Kienast, M. and Cane, G. and Clement, J.. (2005) Origin of the deep Bering Sea nitrate deficit : constraints from the nitrogen and oxygen isotopic composition of water column nitrate and benthic nitrate fluxes. Global biogeochemical cycles, Vol. 19, H. 4. S. 1-15.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5249297

Downloads: Statistics Overview

Abstract

On the basis of the normalization to phosphate, a significant amount of nitrate is missing from the deep Bering Sea (BS). Benthic denitrification has been suggested previously to be the dominant cause for the BS nitrate deficit. We measured water column nitrate 15N/14N and 18O/16O as integrative tracers of microbial denitrification, together with pore water-derived benthic nitrate fluxes in the deep BS basin, in order to gain new constraints on the mechanism of fixed nitrogen loss in the BS. The lack of any nitrate isotope enrichment into the deep part of the BS supports the benthic denitrification hypothesis. On the basis of the nitrate deficit in the water column with respect to the adjacent North Pacific and a radiocarbon-derived ventilation age of 50 years, we calculate an average deep BS (<2000 m water depth) sedimentary denitrification rate of 230 mmol N m 2 d1 (or 1.27 Tg N yr1), more than 3 times higher than high-end estimates of the average global sedimentary denitrification rate for the same depth interval. Pore water-derived estimates of benthic denitrification were variable, and uncertainties in estimates were large. A very high denitrification rate measured from the base of the steep northern slope of the basin suggests that the elevated average sedimentary denitrification rate of the deep Bering calculated from the nitrate deficit is driven by organic matter supply to the base of the continental slope, owing to a combination of high primary productivity in the surface waters along the shelf break and efficient down-slope sediment focusing along the steep continental slopes that characterize the BS.
Faculties and Departments:05 Faculty of Science > Departement Umweltwissenschaften > Institut für Umweltgeowissenschaften > Geochemie Stoffkreisläufe (Lehmann)
UniBasel Contributors:Lehmann, Moritz F
Item Type:Article, refereed
Bibsysno:Link to catalogue
Publisher:American Geophysical Union
ISSN:0886-6236
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:22 Mar 2012 14:28
Deposited On:22 Mar 2012 14:02

Repository Staff Only: item control page