edoc

Electron spins in quantum dots for spintronics and quantum computation

Engel, H. A. and Recher, P. and Loss, D.. (2001) Electron spins in quantum dots for spintronics and quantum computation. Solid state communications, Vol. 119, H. 4-5. pp. 229-236.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5254725

Downloads: Statistics Overview

Abstract

Coherent manipulation, filtering, and measurement of electronic spin in quantum dots and other nanostructures have promising applications in conventional and in quantum information processing and transmission. We present an overview of our theoretical proposal to implement a quantum computer using electron spins in quantum dots as qubits. We discuss all necessary requirements towards a scalable quantum computer including one- and two qubit gates and read in/out tasks. We then present some concepts for promising single quantum dot devices which eventually could be used as building blocks for sophisticated spintronic devices. We show how a single quantum dot can act as an efficient spin filter, Further, in combination with an ESR source, a quantum dot can be used as a single spin memory or as a spin pump. In addition, the sequential tunneling current through a quantum dot in the presence of an ESR field can exhibit a resonance whose line width is deter-mined by the decoherence time T-2 of a single dot-spin. Finally, we consider mobile non-local spin entangled electrons as needed for quantum communication. We propose how to create such EPR pairs by means of Andreev tunneling at a superconductor-normal junction and discuss experimental setups in which spin entanglement may be detected via transport measurements.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss)
UniBasel Contributors:Loss, Daniel
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Elsevier
ISSN:0038-1098
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:22 Mar 2012 14:27
Deposited On:22 Mar 2012 13:56

Repository Staff Only: item control page